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• Joe Black is a patient with test results indicating a chance 

of prostate cancer. Should his doctor conduct an invasive 

biopsy?

• We have multiple sources of personalized information with 

which to assess the probability that Joe has cancer and the 

probability that it is aggressive.

Motivating Example

Introduction

• Personalized medical decisions require integrating ever-

increasing amounts of uncertain information, making it 

more difficult to compute the marginal probability 

distributions of interest to decision makers.

• We propose a new modeling approach: decision-driven 

modeling, which reasons probabilistically about marginals.

• We show how decision-driven models can be constructed 

easily and represented compactly using probabilistic soft 

logic, a recently introduced framework for statistical 

relational learning.
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brother wife

Joe Black
Age: 72

BMI: 28

Diet: high in fat

Rectal exam: no signs

PSA (blood test): 5.2

Mutations on: LMTK2, KLK3, 

JAZF1

Discomfort when urinating

Mary Black
Age: 69

BMI: 32

Diet: high in fat

Diagnosed with 

breat cancer,

XMRV virus 

detected

Bob Black
Died at age 79

Never diagnosed 

with prostate cancer

PSA (blood test) 

levels:

3.2-8.9

BMI: 23

Frank Black
Age: 68

BMI: 24

PSA (blood test): 3.1, 

4.2, 4.9, 55

Biopsy: 8/12 positive 

Grade P1: 2-3, 60/40

Grade P2: 4-5, 90/10

Mutations on: 

LMTK2, KLK3, JAZF1, 

CDH13

Decision-Driven Models

• Intuitively, a decision-driven model (DDM) is a probability 

distribution over a set of random variables, each of which 

represents a probability distribution.

• To define a propositional DDM, we must first define the 

propositions for which we wish to infer marginals, such as A = 

“Joe has prostate cancer,” B = “Joe’s prostate cancer is 

aggressive,” and C= “Frank has prostate cancer.”

• Then we define a propositional DDM as follows:

An Example Decision-Driven Model

• A natural choice to represent a density function for a 

propositional DDM is a constrained continuous Markov random 

field (CCMRF).

• A CCMRF has the following form:

along with a set of constraints on .
• Each      is a non-negative compatibility function measuring how 

compatible dimensions of     are. The value 0 is perfect  

compatibility.

• Example: Statistical data show that 2 out of 5 men whose 

brothers have prostate cancer develop prostate cancer as well. 

We can represent this as the compatibility function

Probabilistic Soft Logic

• Probabilistic soft logic (PSL) is a language for compactly 

representing CCMRFs.

• PSL reasons probabilistically about atoms, which are first-

order predicates grounded with arguments.

• Each atom corresponds to a continuous random variable in 

a CCMRF.

• Templates for compatibility functions and constraints are 

written as rules in first-order logic.

• Example: The compatibility function      can be expressed 

as the ground rule

hasCancer(frank,prostate)*0.4 ⇒ hasCancer(joe,prostate)

• We can compactly express this knowledge for all brothers 

with the first-order rule

hasCancer(P,prostate)⋀  brother(P,Q)*0.4 ⇒ hasCancer(Q,prostate)

Inference

• The MAP state of a DDM is the set of most likely marginal 

distributions.

• Inference in many DDMs, such as those constructed with 

PSL, is efficient, since finding the MAP state of the random 

variables can be formulated as a numerical optimization 

problem.

• Interpreting the MAP state is straightforward, since users 

can see how each inferred marginal affected the others.

• Marginal inference in such DDMs can be viewed as 

computing a confidence measure in the inferred marginals.
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𝑑𝒙 = 𝟏, and a mapping 𝑔: Ωℙ → (𝑴 →  0,1 ). 
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Let 𝐴 =  𝐴1 , … , 𝐴𝑛  be a set of propositions. A decision-driven 

model for 𝐴 is defined by the sample space Ωℙ =  0,1 𝑛 , the set of 

marginal distribution denotations 𝑴 =  ℙ𝑋1
, … , ℙ𝑋𝑛

 , a probability 

density function 𝑓 𝒙 =< 𝑥1 , … , 𝑥𝑛 > : Ωℙ → ℝ0
+ such that 

𝜙1 < ℙ𝐴 = 𝑥1, ℙ𝐵 = 𝑥2, ℙ𝐶 = 𝑥3 > =  max(0, 𝑥3 ∗ 0.4 − 𝑥1) 

𝜙1 


