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Abstract

We introduce the concept of a decision-driven model, a probabilistic model that
reasons directly over the uncertain information of interest to a decision maker. We
motivate the use of these models from the perspective of personalized medicine.
Decision-driven models have a number of benefits that are of particular value in
this domain, such as being easily interpretable and naturally quantifying confi-
dences in both evidence and predictions. We show how decision-driven mod-
els can easily be constructed using probabilistic soft logic, a recently introduced
framework for statistical relational learning and inference which allows the spec-
ification of medical domain knowledge in concise first-order-logic rules with as-
signed confidence values.

1 Introduction

Medical professionals have to make many important decisions in their daily work. Whether select-
ing appropriate tests, providing the patient with a diagnosis or prognosis, or devising an effective
treatment plan, many of these decisions must be based on uncertain and sometimes contradictory
information. Medical professionals must infer accurate conclusions from this information in order
to make appropriate decisions. Complicating these inferences is the rapidly increasing amount of
information available from advances in medical and information collection technologies. Such in-
ferences are further complicated as we seek to personalize them. Health care providers know that
they can improve outcomes by integrating information about a particular patient with more general
information collected across patient populations. Therefore, identifying and integrating relevant in-
formation is becoming an ever more daunting task for the time-stressed health care provider. We
propose decision-driven modeling as an approach to such complex inference processes. Starting
from the decisions to be made, a decision-driven model (DDM) identifies those random variables on
which the decisions primarily depend and provides a mathematical framework to relate the marginal
probability distributions over these variables to the available uncertain information. Inference in
DDMs computes these marginals in an easy-to-interpret way, and can also compute confidence val-
ues, which enable a deeper analysis of the conclusions reached.

To motivate decision-driven models we use the diagnosis and treatment of prostate cancer for a
fictitious patient “Joe Black” as our running example. Figure 1 shows excerpts of the medical
records of Joe Black and some of his relatives. Joe was recently screened for prostate cancer and
had a digital rectal examination (DRE) and blood tests done. The DRE showed no signs of cancer,
but the slightly high volume-correlated Prostate-Specific Antigen (PSA) level of 5.2 indicates a risk
of prostate cancer. Joe’s doctor must decide which of these options is best: (a) conduct an invasive
biopsy to collect cell samples from the prostate, (b) monitor the PSA level more frequently to identify
any trend, or (c) tell Joe not to worry and to return for his regular screening next year. This decision
primarily depends on the probabilities of Joe having prostate cancer and whether it is aggressive,
as well as the confidence in those probabilities. For the majority of men, prostate cancer is not
aggressive and progresses too slowly to be health threatening. Hence, if the probabilities of either
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father 

brother wife 

Joe Black 
Age: 72 
BMI: 28 
Diet: high in fat 
Rectal exam: no signs 
PSA (blood test): 5.2 
Mutations on: LMTK2, KLK3, 
JAZF1 
Discomfort when urinating 

Mary Black 
Age: 69 
BMI: 32 
Diet: high in fat 
Diagnosed with 
breat cancer, 
XMRV virus 
detected 

Bob Black 
Died at age 79 
Never diagnosed with 
prostate cancer 
PSA (blood test) 
levels: 
3.2-8.9 
BMI: 23 

Frank Black 
Age: 68 
BMI: 24 
PSA (blood test): 3.1, 
4.2, 4.9, 55 
Biopsy: 8/12 positive  
Grade P1: 2-3, 60/40 
Grade P2: 4-5, 90/10 
Mutations on: 
LMTK2, KLK3, JAZF1, 
CDH13 

Figure 1: Example patient records and relationships

proposition A ≡ “Joe has prostate cancer” or B ≡ “Joe’s prostate cancer is aggressive” (given that
he has prostate cancer) is very low with high confidence, then the biopsy might cause more harm
than good. We can help Joe’s doctor make this decision by inferring the desired probabilities.

We want our inference to be as accurate as possible, so we want to incorporate as much relevant
information as we can. The first source of relevant information is Joe. His PSA level and DRE,
as well as his lifestyle choices, such as diet, all influence the probabilities that A and B are true.
Another source of information is Joe’s brother, Frank. The chances of developing prostate cancer and
whether that cancer is aggressive are believed to be dependent in part on heritable factors. Suppose
that Frank had a prostate biopsy done in the past, resulting in 8 positive samples out of 12, after
which he had the cancerous tissue removed surgically. This information increases our belief that
Joe also has prostate cancer. Given that Joe has cancer, we additionally need to infer the probability
that his cancer is also aggressive. Again, Frank’s medical history provides information. A histo-
pathological assessment of the cells from Frank’s biopsy yielded a P1 grading of 2 or 3 (with 60%
and 40% probability respectively). This indicates that, although there is no certainty how Frank’s
cancer would have progressed had it not been treated, his cancer did not appear to be particularly
aggressive at the time. This affects our belief that “Joe’s prostate cancer is aggressive” is true.
DDMs can incorporate such probabilistic dependencies and correlations and effectively combine
probabilities in a sound mathematical framework, which leads to accurate inferences and, therefore,
better decisions.

2 Decision-Driven Models

Before discussing decision-driven models in full generality, we define propositional decision-driven
models as a particular type of DDM to reason about propositional assertions like A and B from our
running example.

Definition 1. Let A = {A1, . . . , An} be a set of propositions. We define a probability space (Ω,P)
where Ω = 2A is the finite set of all possible worlds (where we treat non-existence as negation) and
P is some discrete probability distribution over Ω. Furthermore, we define the random variables
Xi : Ω → {0, 1} as Xi(ω) = 1 if Ai ∈ ω and 0 otherwise. We denote PXi = P(Xi = 1) =∑

ω∈Ω,Ai∈ω P(ω).

This standard definition of a probability space over propositions lies at the heart of many approaches
to probabilistic modeling which aim to represent the probability function P compactly (see e.g. [1]).
Compact representation is crucial since the number of possible worlds grows exponentially in the
number of propositions and therefore it is intractable to enumerate their respective probabilities.
However, in many applications one is not actually interested in the individual probability of any
particular possible world ω but rather in the probability that some proposition Ai is true across
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all possible worlds, i.e. the marginal probability PXi
. We call such applications decision-driven

because making a single decision often requires only knowledge of the marginal probability of a
single or few propositions. For instance, to devise a treatment plan, Joe’s doctor needs to infer the
probability of A and B but the probability of any single world such as “Joe has prostate cancer
AND Frank has prostate cancer AND Bob has diabetes AND Mary has breast cancer AND . . . ”
does not factor into his decision making. The decision the doctor needs to make determines the
propositions he or she ought to consider. Reasoning probabilistically about these propositions might
require considering additional ones. For instance, PC , where C ≡ “Frank has prostate cancer,” is
helpful to infer PA. However, their joint probability distribution is often not relevant to the decision.
For example, Joe’s doctor will probably ignore the probability of A and B.

Prior approaches to probabilistic modeling infer these marginal distributions from the joint prob-
ability function P through the process of marginalization, which is often intractable. Therefore,
approximations such as sampling or variational techniques are often used [2]. The key idea behind
DDMs is to avoid this process by modeling the distribution of the random variablesXi directly, since,
for decision-driven applications, the decision maker is only interested in those marginal probabilities
PXi .

Definition 2 (Propositional Decision-Driven Model). Let A = {A1, . . . , An} be a set of propo-
sitions. A decision-driven model for A is defined by the sample space ΩP = [0, 1]n, the set of
marginal distribution denotations M = {PX1

, . . . ,PXn
}, a probability density function f(x =

〈x1, . . . , xn〉) : ΩP → R+
0 such that

∫
x∈[0,1]n

f(x)dx = 1, and a mapping g : ΩP → (M→ [0, 1]).

We are reusing the notation PXi
in the definition to illustrate the relationship to the probability

space over all possible worlds and highlight the fact that propositional DDMs model a probability
density function f over the space of distributions of the random variables Xi. The mapping g
defines this connection between each xi and PXi

explicitly. That is, instead of computing PXi

bottom-up through the process of marginalization, we reason about those distributions directly as
first-class citizens in the model. In this sense, DDMs are second-order probability distributions over
the marginal distributions of interest to the decision-maker. We make no assumption about the
density function f other than they produce a valid continuous probability distribution.

In propositional DDMs each random variable Xi is binary and therefore we restrict the marginal
distributions PXi

to be Bernoulli distributions. In theory, we can define decision-driven models for
arbitrary random variables, such as real-valued random variables. However, the range of real-valued
random variables is no longer enumerable. Hence, we would have to introduce a σ−algebra for the
n-fold product of the space of arbitrary probability distributions over the real line. In practice, this
full level of generality is intractable and we have to either fix the parameterization of the marginal
distributions (e.g. Gaussian) or approximate the distribution using kernel densities.

Definition 3 (General Decision-Driven Model). A decision-driven model is a probability distribu-
tion over a set of random variables, each of which represents a probability distribution.

A decision-driven model (DDM) places a joint probability distribution over the marginal distributions
of interest to a decision maker, as well as the other distributions which influence them.

To construct a DDM, we start from the decision(s) to be made. We then recursively identify probabil-
ity distributions that are needed to make the decisions, with each distribution providing information
about others. Finally, we place a second-order probability distribution over these distributions. In
our example, the decision is whether to conduct a biopsy, for which we need to infer the probabilities
over the truth values of the propositionsA ≡ “Joe has prostate cancer” orB ≡ “Joe’s prostate cancer
is aggressive.” Those probabilities in turn are influenced by other probabilities as discussed above.
Such a relationship encoded in a DDM is a statement that the probability of a proposition provides
(uncertain) information about the probability of another. These influences might be believed to be
causal, or just correlational. For some propositions, we assign fixed probabilities. For instance, the
proposition “Frank’s prostate cells have a P1 grading of 2” would have a fixed probability of 60%
stemming from the pathological assessment. These fixed probabilities serve as the evidence in the
inference process. The goal of inference is to determine the probabilities of the other propositions.

We now consider the form of the probability density function f in a propositional DDM. A natural
choice is a constrained continuous Markov random field (CCMRF) [3]. We define a set of compati-
bility functions {φi}mi=1, which implicitly expresss dependencies among probability assignments to
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propositions. These dependencies might be based on domain or case knowledge, or learned from
data. The compatibility functions induce a probability density function over x as follows:

f(x) =
1

Z(Λ)
exp[−

m∑
i=1

λiφi(x)] ; Z(Λ) =

∫
x∈[0,1]n

exp[−
m∑
i=1

λiφi(x)] dx (1)

where Λ = {λi} are parameters associated with the compatibility functions. In addition, a CCMRF
has a set of constraints which must be satisfied for a setting of x to have non-zero density. This
lets us constrain the probabilities of propositions to be between zero and one. We can also specify
other constraints of use in DDMs. For example, sets of propositions are often known to be mutually
exclusive. We can easily express this by adding the constraint that the sum of the probabilities of
those propositions must be less than or equal to one.

In our model for Joe’s condition, the mapping g assigns each xi ∈ x to the marginal probability PXi

that proposition Ai is true. We can use compatibility kernels to encode dependencies among these
probabilities. As an example, recall A ≡ “Joe has prostate cancer” and C ≡ “Frank has prostate
cancer.” Statistical data show that 2 out of 5 men whose brothers have prostate cancer develop cancer
as well. Based on this medical knowledge we can devise the following compatibility function:

φ1(< PA = x1,PB = x2,PC = x3 >) = max(0, x3 ∗ 0.4− x1)

If PA = 0.05 and PC = 0.8, then φ1(x) = 0.27. This means, intuitively, that the probability
assignments are incompatible with degree 0.27 according to φ1, since we would have expected a
higher probability that Joe has cancer given that Frank had cancer. In this example, the value of λ1

reflects our confidence in this piece of medical knowledge. In Section 3, we describe a convenient
language for defining such compatibility functions.

We now discuss some of the properties of DDMs and why they are of particular value in the medical
community.

2.1 Quantification of Confidence

The nature of these second-order distributions enables the quantification of confidence, both in evi-
dence and in inferences. This is of particular value in cost-sensitive domains, such as personalized
medicine. Users can express relative confidence in different sources of evidence by encoding dif-
ferent strengths in the interactions among a marginal probability and various sources of evidence.
For example, one could express the relative reliability of different medical tests. Then, a DDM will
incorporate these beliefs when learning and predicting. Further, since the marginals are a MAP state
in a DDM, one can quantify how sharply peaked the distribution is around that state. In other words,
one can infer confidence intervals around the MAP value of one or more variables. Broecheler and
Getoor [3] showed how to efficiently infer such intervals in continuous CCMRFs. This is of particu-
lar value in the medical community because health care providers must regularly make probabilistic
predictions and express their confidences in them.

2.2 Interpretability

The MAP states which DDMs infer are inherently straightforward to understand and interpret, since
users can easily see how each variable was affected by its relationships to other variables. When
human decision makers, such as health care providers, use predictive models, it is important that
they have confidence in the model’s predictions and that they can recognize any errors in the model.
To do this, they need to be able to understand the process by which a model arrives at its predictions.
Since DDMs directly encode the relationships among the marginals, users can gain insight into why
the model considers a set of marginal distributions to be optimal. Also, the confidence quantification
discussed above further aids in the interpretation of the model.

2.3 Second-Order Distributions

As mentioned above, a DDM is a second-order probability distribution, meaning that it is a probabil-
ity distribution defined over probability distributions. In addition to enabling the benefits mentioned
above, this is semantically most appropriate for medical predictions. Medical information, e.g.,
test results, clinical trials, etc., is often uncertain. For example, in our hypothetical biopsy decision,
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Joe’s brother, Frank, had the cells obtained from his biopsy sent to a laboratory for histo-pathological
assessment. The results from an expert analysis are a probability distribution over the five possible
grades. DDMs can incorporate such subjective probabilistic information naturally in their inferences.
Sources of subjective probability can be human, such as specialized medical examiners, or software
systems optimized for particular recognition tasks, such as computer vision system for cancer clas-
sification [4]. DDMs reason using probabilistic evidence, and so are a natural fit for personalized
medicine. Using probabilities as evidence to infer other probabilities is exactly what medical pro-
fessionals routinely do.

3 Probabilistic Soft Logic

We implemented a variant of DDMs using probabilistic soft logic1 (PSL), a framework for statistical
relational learning and inference [5]. Instead of the propositional formulation of DDMs presented
above, PSL uses a first-order-logic syntax to concisely represent CCMRFs. PSL reasons probabilis-
tically about the values of atoms, which are first-order predicates grounded with arguments. Each
atom corresponds to a (vector valued) continuous random variable. We use each atom to represent
the marginal probability that a proposition is true. A PSL program is a set of logical rules. Each rule
contains first-order predicates combined with logic operators corresponding to atom-combination
functions. The sequence of predicates and operators in each rule defines a template for a compatibil-
ity function. Each assignment of the variables in a rule to constants defines a compatibility function
over those atoms. A compatibility function assigns a non-negative value to how compatible the pos-
sible values of the atoms are, with zero being perfect compatibility. Finally, each rule can be a hard
rule, meaning it must have a value of zero, i.e., perfect compatibility, or a soft rule, which has an
associated, non-negative weight, corresponding to the confidence in the rule.

Using first-order logic one can succinctly represent the propositions about Joe and Frank
having prostate cancer, which we would write as follows: hasCancer(joe,prostate),
hasCancer(frank,prostate). The compatibility function φ1 would be represented as the
following ground rule in PSL:

hasCancer(frank,prostate)× 0.4⇒ hasCancer(joe,prostate)

The implication operator A ⇒ B corresponds to the atom-combination function max(0, A − B),
meaning that the greater A is, the greater B must be to maintain a given compatibility. The notation
“×0.4” indicates that the value of the body of the rule should be multiplied by 0.4. PSL allows us to
compactly formulate such rules using variable symbols instead of the constants for Joe and Frank.
Hence, we can write one rule which applies to all brothers and therefore encode the general knowl-
edge that brothers of individuals with prostate cancer have a 40% chance of developing prostate
cancer themselves:

hasCancer(P,prostate) ∧ brother(P,Q)× 0.4⇒ hasCancer(Q,prostate)

As before, the weight assigned to this rule would reflect our confidence in the rule across all ground-
ings. The weights of PSL rules can either be specified by a domain expert or learned from available
data.

To construct a probability density function, a PSL program is applied to a set of (possibly typed)
entities. For each possible atom in rules of the program, a variable is added to a CCMRF. Then, for
each grounding of each soft rule, a compatibility function among the atoms is added to the CCMRF.
Each compatibility function has the weight λ of the rule that created it. Finally, each grounding of
each hard rule is added as a constraint. It is easy to see that this induces a probability density of
the same form as Equation 1. PSL programs can therefore be seen as templates for CCMRFs. The
advantage of using a template is that one can define a density function in terms of classes of variables,
instead of individual variables. This leads to more compact definitions in large, relational domains.
Personalized medicine is obviously one such domain, and PSL rules allow medical professionals
to compactly express domain knowledge. Also, the same template can produce different density
functions when reasoning over different entities, such as different patients with different structures

1Probabilistic soft logic was originally presented as probabilistic similarity logic [5]. The former is now
used to refer to the modeling framework, to express its ability to model continuous values in general, not just
similarities.
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of genetic relatives, different sets of available test results, etc. In this way, the same general pieces
of knowledge can be applied to different tasks with minimal user effort, as shown in the example
rule above.

This also facilitates the adoption of novel medical knowledge into medical practice. For the example
of prostate cancer, it has recently been suggested that the XMRV retrovirus is linked to prostate
cancer [6]. Assume furthermore that XMRV can be sexually transmitted. Hence, we might devise
the following rules which would apply to Joe and Mary from our example:

hasVirus(P,xmrv) ∧ sexualPartner(P,Q)× 0.5⇒ hasVirus(Q,xmrv)

hasVirus(P,xmrv)× 0.4⇒ hasCancer(P,prostate)

Now, as those rules encode novel and to some extent speculative medical knowledge, we would
assign those rules low weights or choose to learn the weights from medical records as it becomes
available. In any case, the ease with which such rules can be devised and deployed across decision
systems allows the rapid adoption and verification of novel medical knowledge.

PSL is well suited for constructing DDMs. First, PSL can model marginal distributions accurately.
Broecheler et. al. [5] used PSL to predict categorical labels for Wikipedia articles. They combined
the probabilistic predictions of a Naive Bayes classifier with the observed relationships among doc-
uments to improve performance over Naive Bayes alone. PSL is also an efficient framework. Since
the MAP-state problem is over continuous variables, we can formulate it as a numerical optimization
problem. Therefore, one can leverage many of the efficient algorithms that exist for this well-
understood class of problems. If the compatibility functions are linear or conic in their arguments,
then the MAP-state problem can be solved as a second-order conic program (SOCP) in O(R3.5)
time, where R is the number of compatibility functions plus the number of random variables in the
CCMRF. Additionally, the optimizer can incorporate any hard, linear equality or inequality rules.
The exact derivation of the optimization problem is presented in [5]. Finally, PSL can scale to
applications with millions of uncertain propositions and 8 million relationships between them [7].
Scalability to problems of such size is important in order to achieve the full potential of personalized
medicine since the amount of data is rapidly increasing due to advances in medical and information
technologies. For these reasons, constructing DDMs with PSL is a promising approach.

4 Related Work

Applications of machine learning techniques and probabilistic modeling in general to clinical deci-
sion support have been widely studied in the literature. What primarily distinguishes DDMs from
most other approaches to inferring uncertain information is their use of second order probabilities,
that is, reasoning probabilistically about probabilities. In contrast, most previous work on proba-
bilistic modeling has focused on defining joint probability distributions directly over data. In case of
complex dependencies and relationships between pieces of information, inference requires marginal-
ization of the distribution. Such approaches often (a) have difficulty incorporating prior subjective
probabilistic knowledge about propositions, such as a pathologist’s grading of prostate cells, (b)
cannot compute the confidence in the inference results, and (c) are difficult to understand and trace
due to the complex process of marginalization – in particular for undirected models.

Our implementation of DDMs uses PSL, a framework for statistical relational learning (SRL), an area
of research which generally seeks to combine logical formalisms and probabilistic models to reason
in relational domains [8]. A related SRL technique is the CLP(βN ) language [9], which uses induc-
tive logic programming (ILP) to describe how the outputs of probabilistic models should be used to
infer uncertain information. A CLP(βN ) program could be viewed as a deterministic counterpart to
a DDM. The probabilistic nature of DDMs allows multiples sources of uncertain evidence to be com-
bined in different ways depending on their values. Instead of a probability distribution, CLP(βN )
programs use only hard rules to constrain the inferred marginals in terms of the outputs of probabilis-
tic models. CLP(βN ) programs have been used for a number of biomedical problems. Srinivasan
et. al. [10] created quantitative pharmacophore models, which describe Euclidean constraints on
the location of small molecules and can be used in drug design. Costa et. al. [9] implemented a
bioinformatics model for detecting a homology between a sequence of amino acids and a family of
such sequences. They observed that the use of logical formalisms led to a model that was easy to
interpret and study further.
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Other approaches to personalized medicine have also used ILP techniques. For example, Davis et. al.
[11] predicted which patients would be at substantial risk for heart attacks if they were to take Cox-2
inhibitors. They learned ILP rules to use as binary features in a probabilistic model. This approach
is related to DDMs in that DDMs also can use predictions as features. However, binary features
are limited in expressivity. They cannot capture the uncertainty usually inherent in evidence or
predictions. DDMs can integrate the degrees of uncertainty in different predictions to make an overall
prediction. Davis et. al. concluded three things: SRL techniques were best for their personalized
medicine problem, a user’s ability to interpret their model was of paramount importance, and that
more work needs to be done to improve personalized medicine. These conclusions support the
position of this paper.

A number of approaches to personalized medicine have sought to identify good predictors from
a larger pool of features and/or models. Moon et. al. [12] used an ensemble approach to make
diagnostic and treatment decisions. Predictors were trained on subsets of the feature space, and
a cross-validation technique was used to select the optimal number to include in the ensemble.
The International Warfarin Pharmacogenetics Consortium [13] used probabilistic models to predict
good dosages of the anticoagulant warfarin. They started with a wide range of predictors, performed
cross-validation on training data, eventually selecting linear regression. Farinas et. al. [14] used
discriminant analysis to identify genes useful in predicting responses to the medicine alefacept in
psoriasis. They selected 23 genes from a pool of thousands of candidates. In all of these approaches,
absolute decisions had to be made about which features to use in the model. DDMs can help improve
and automate this selection problem. Standard statistical learning techniques can determine how to
weigh the relative influence of features, and even identify different subsets of features that are best
for different regions of the feature space. For example, using PSL, weight learning would assign
greater weights to the rules that related the marginals to the outputs of models which are better
predictors.

5 Conclusions and Future Work

In this paper we introduced the concept of a decision-driven model, a probabilistic model that rea-
sons directly over the marginals of interest to a decision maker. We explained why such models
would be of particular use in personalized medicine. Finally, we explained how DDMs can easily
be constructed using probabilistic soft logic. This approach to predictive models has a number of
benefits, including the ability to express confidences in evidence and inferences, and ease of in-
terpretability. These properties are especially important in personalized medicine, since medical
professionals, often making life-and-death decisions, need to know not just what the model predicts,
but also why it predicts that and how confident it is in that prediction. DDMs will enable the creation
of decision-support tools which can give medical professionals all of this information.

There has been much interest in pooling available medical information to create large resources
for personalized medicine. For example, Cancer Commons [15] is working to pool information on
molecular subtypes of tumors and provide a network for medical professionals to share information
as it is discovered. The goal is to provide the best care possible for each individual patient, while
maximizing the information learned to help future patients. Using computational techniques to aid
this process has already been identified as a priority. We believe this is a promising application of
DDMs to improve decision making in the diagnosis, prognosis, and treatment of cancer patients.
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