Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale

Stephen Bach (Brown University); Daniel Rodriguez (Google); Yintao Liu (Google); Chong Luo (Google); Haidong Shao (Google); Cassandra Xia (Google); Souvik Sen (Google); Alex Ratner (Stanford University); Braden Hancock (Stanford University); Houman Alborzi (Google); Rahul Kuchhal (Google); Chris Ré (Stanford University); Rob Malkin (Google);

This Talk

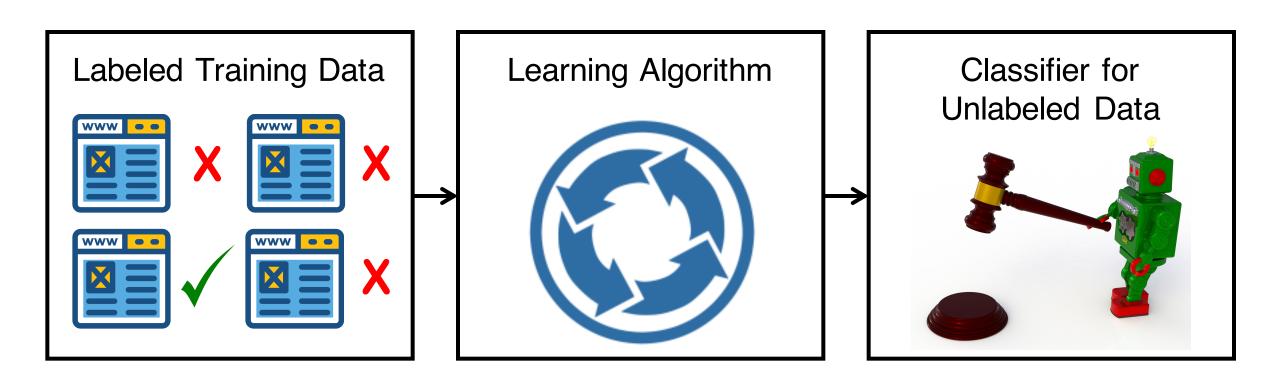
 Weakly supervised machine learning seeks to train classifiers without hand labeled training data

 What impact can it have on industry and other organizations that use machine learning? What challenges arise?

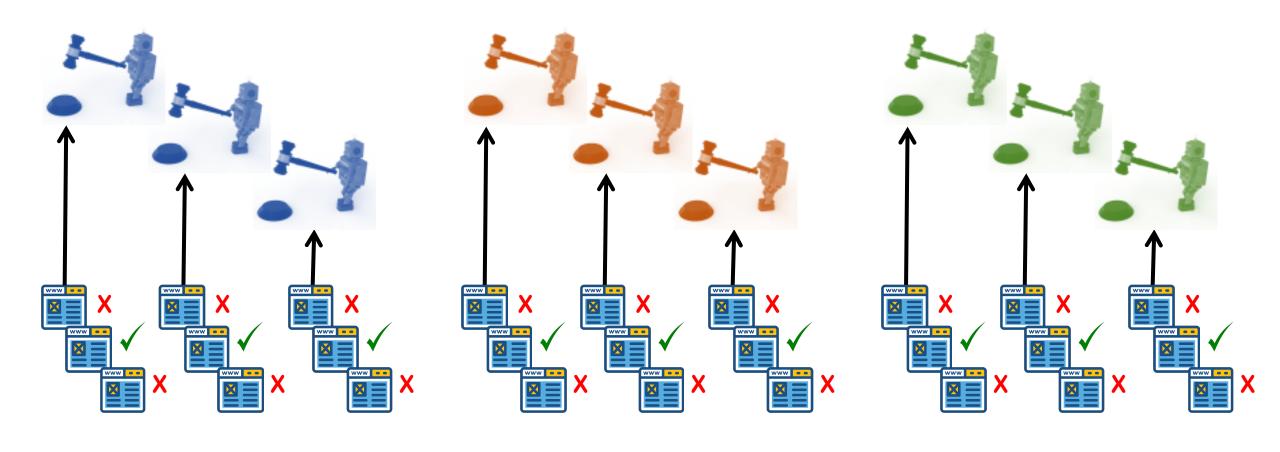
• It can save labeling tens of thousands of examples without sacrificing prediction quality!

Training Data is the Bottleneck for Industrial Machine Learning

Supervised Machine Learning



Today's Organizations: Many Classifiers



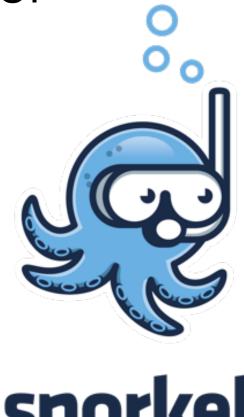
Weak Supervision with Rules

Open-Source Framework: Snorkel

 Open-source framework to program classifiers by writing rules that label data

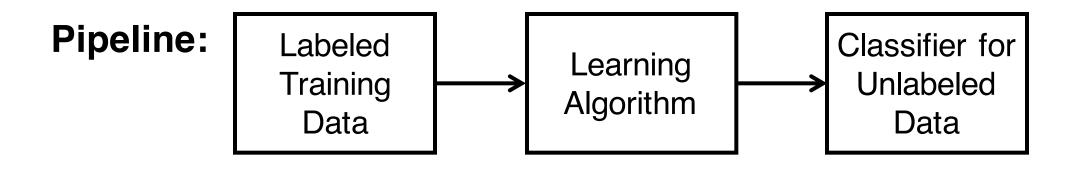
 Results: State-of-the-art performance on benchmark tasks and new applications without any hand-labeled training data

snorkel.stanford.edu

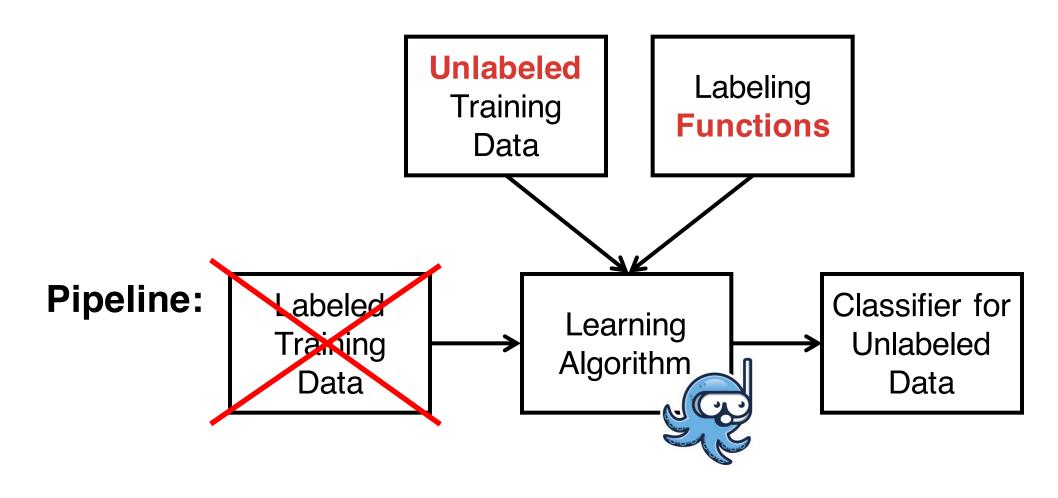


Snorkel: Rapid Training Data Creation with Weak Supervision. A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, C. Re. PVLDB 11(3):269-282, 2017. Best of VLDB 2018

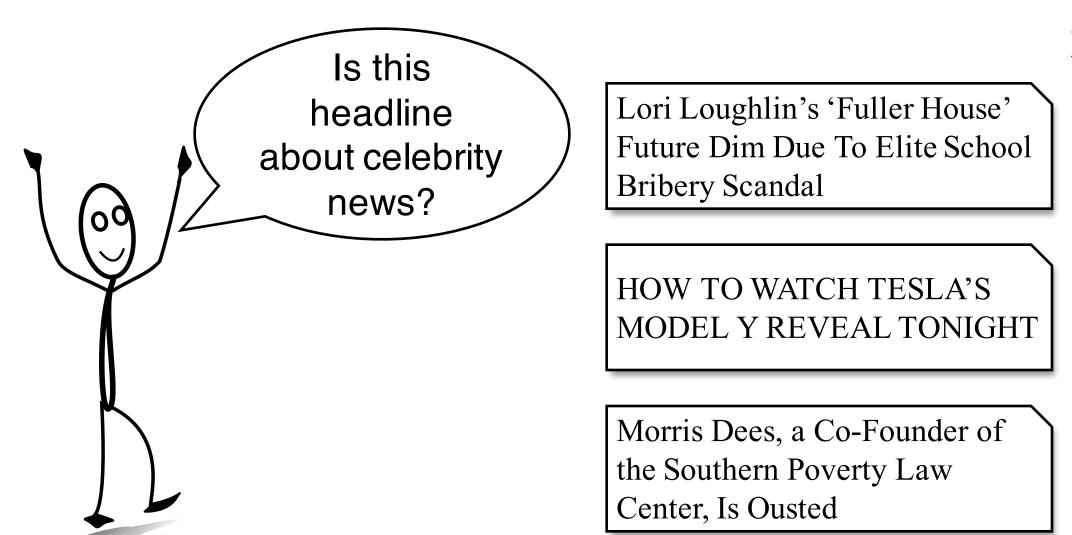
Supervised Machine Learning



Weakly Supervised Machine Learning



Example Task: Celebrity News



True Label

Example Labeling Function: Keywords

Lori Loughlin's 'Fuller House' Future Dim Due To Elite School Bribery Scandal

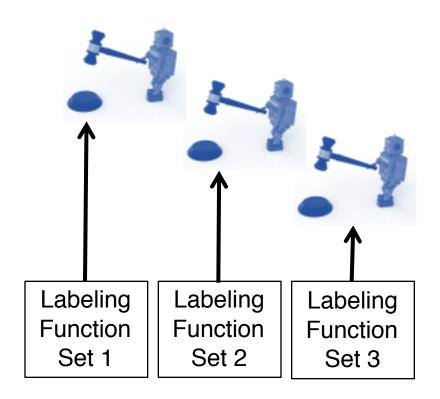
HOW TO WATCH TESLA'S MODEL Y REVEAL TONIGHT

Morris Dees, a Co-Founder of the Southern Poverty Law Center, Is Ousted **Vote**

In the Industrial Setting...

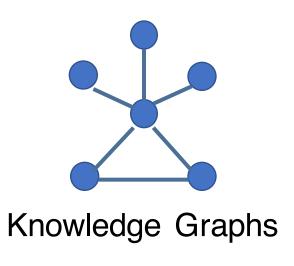
How Can We:

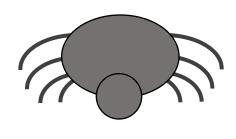
- 1. Manage the Proliferation of Supervision Sources?
- 2. Turn the Many Overlapping Sources into an Advantage?



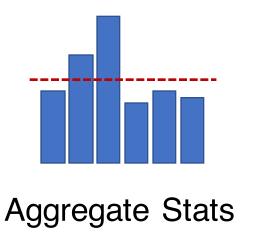
Don't Start from Scratch!

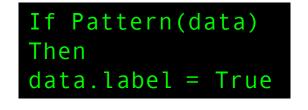
Knowledge Resources





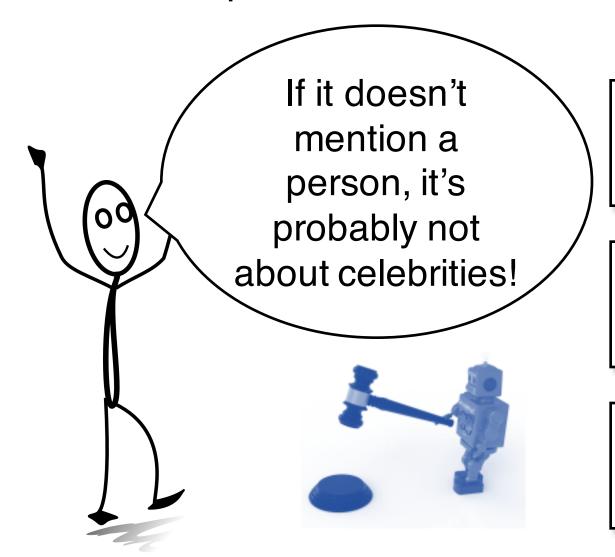
Web Crawlers





Rules

Example: Related Classifier



Lori Loughlin's 'Fuller House'
Future Dim Due To Elite School
Bribery Scandal

HOW TO WATCH TESLA'S MODEL Y REVEAL TONIGHT

Morris Dees, a Co-Founder of the Southern Poverty Law Center, Is Ousted <u>Vote</u>

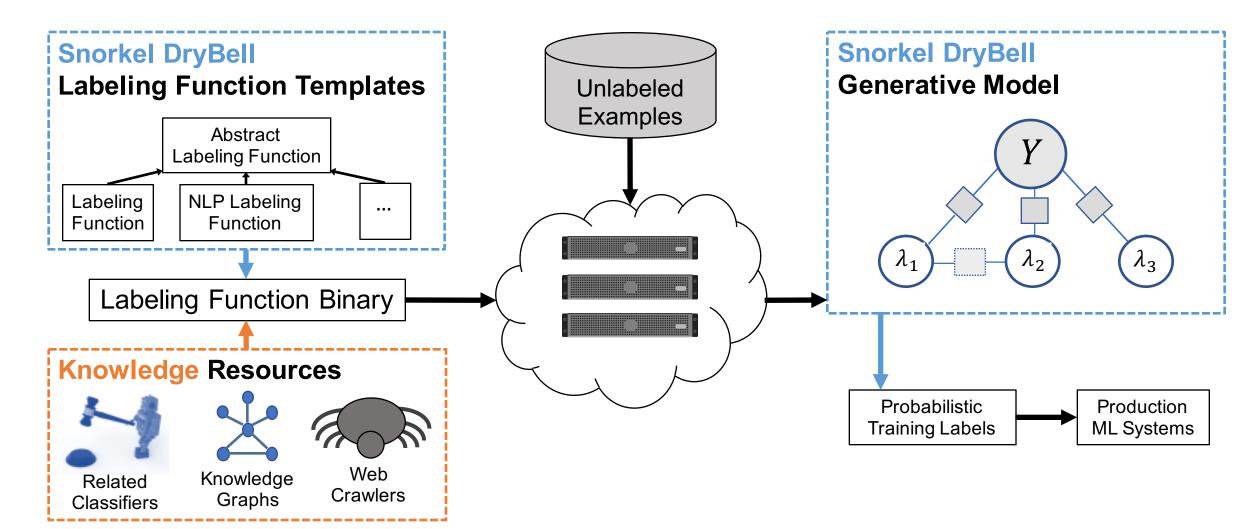
7

X

7

Snorkel DryBell

Snorkel DryBell Architecture

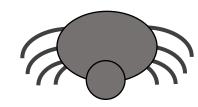


Resources Come in Diverse Forms

Related classifiers need their own servers

Knowledge Graph has REST API

Web crawlers maintained by separate team



Snorkel DryBell Provides Templates

Example: NLP Labeling Function

```
string GetText(const Example& x) {
    return StrCat(x.title, " ", x.body);
LFVote GetValue(const Example& x,
                const NLPResult& nlp) {
    if (nlp.entities.people.size() == 0) {
        return NEGATIVE;
    else { return ABSTAIN; }
int main(int argc, char *argv[]) {
    Init(argc, argv);
    NLPLabelingFunction < & GetText, & GetValue > 1f;
    lf.Run();
```

Defines text to analyze

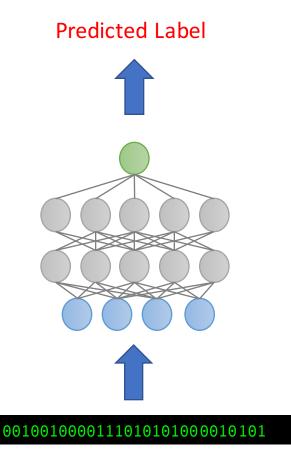
"If the text doesn't mention any people, vote negative"

Launches MapReduce pipeline, starts NLP classifier server on each worker, and saves the results

Resources are Often Not Servable

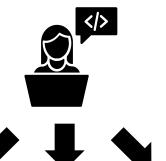
Servable

- ✓ Service-Level Agreement
- √ Fixed Model
- √ Fixed-Size Input



Not Servable

- X No Service-Level Agreement
- X Input Varies in Size
- X Input Expensive to Collect



Related Classifiers

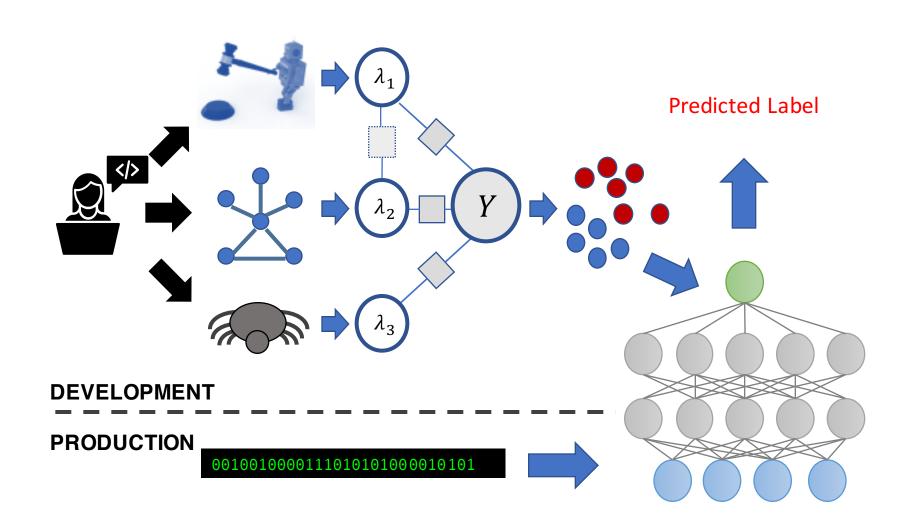
Knowledge Graphs

Topic Models

Aggregate Stats

Web Crawlers

Knowledge Transfers to Servable Models



Experimental Study

Case Studies at Google

 Collaborated with an engineering team responsible for 100+ classifiers in production

 Looked at two recent instances where strategic decisions necessitated new classifiers

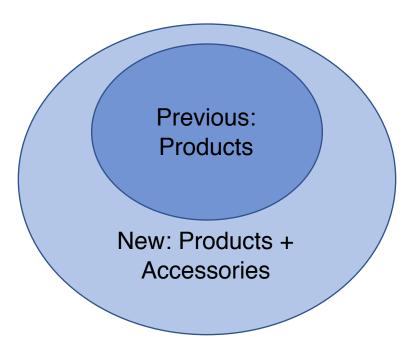
 Due to sensitive nature of applications, we describe at a high-level and report relative scores

Case #1: Product Classification

 Existing classifier used to detect products in a certain category of interest

Goal: expand label to include accessories

Instant depreciation of investment in labels!

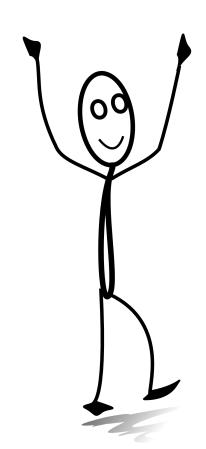


Case #2: Topic Classification

• Emerging topic of interest in Google content

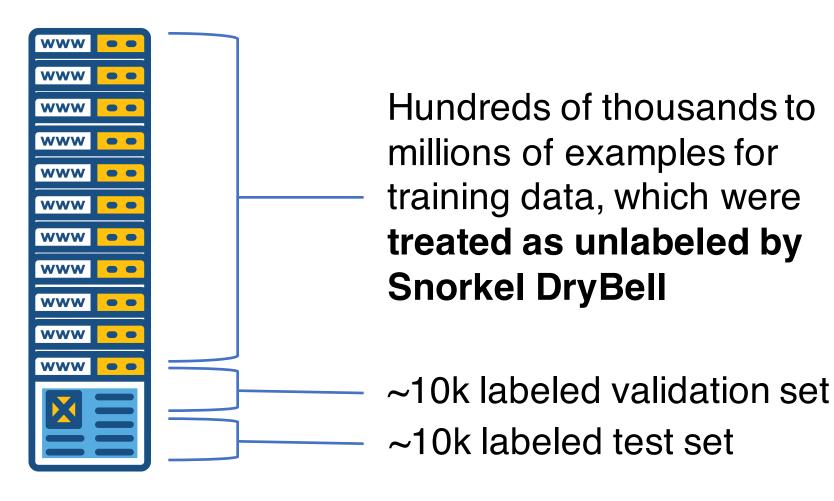
Goal: develop new classifier to identify topic

 Default procedure is to collect hundreds of thousands of labels for new topic!



Setup

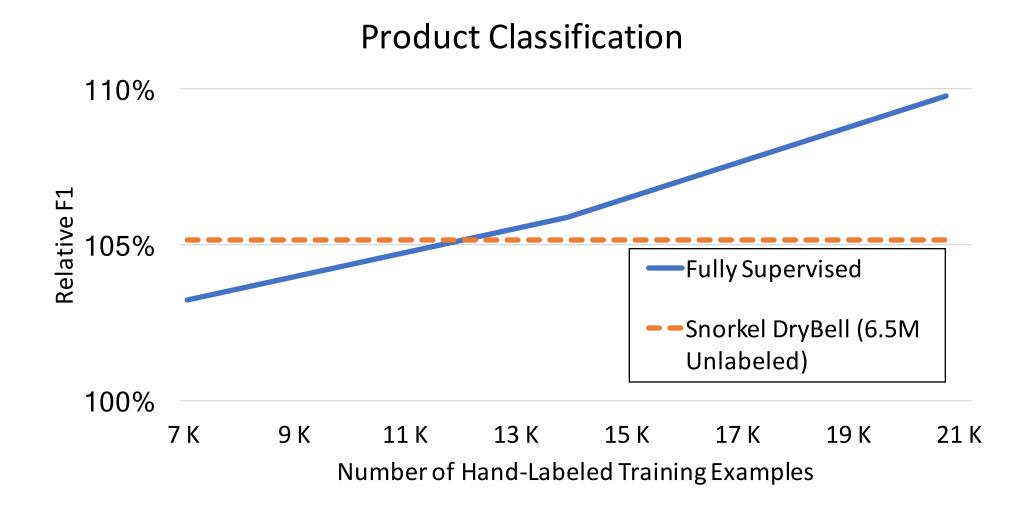
Since these are production tasks, large labeled data sets were available



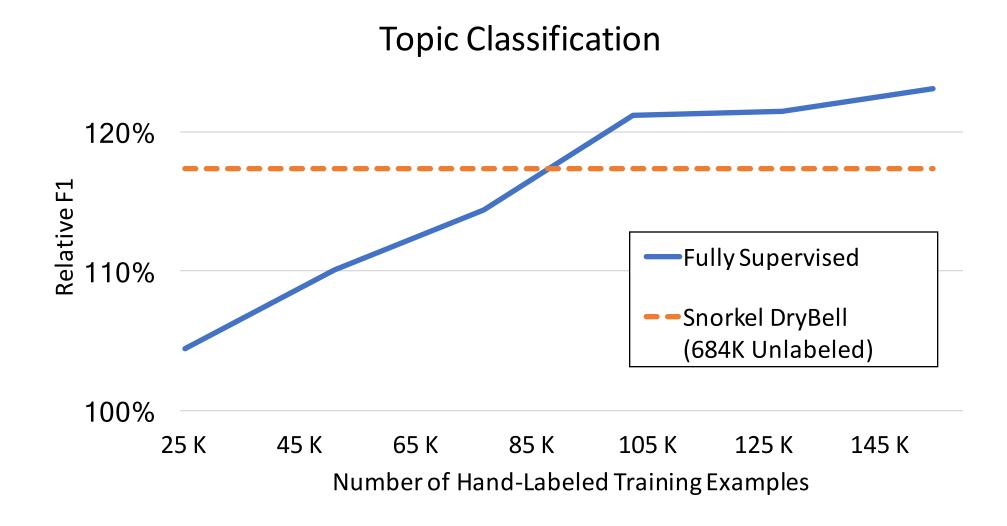
Comparison with Baselines

	Products		Topics		
	Rel. F1	Lift	Rel. F1	Lift	
Train on Val. Data	100%		100%		
Generative Model	103%	+3%	94%	-6%	
Snorkel DryBell	105%	+5%	118%	+18%	

Break-Even Point



Break-Even Point



Summary

Summary

- Snorkel DryBell is a new system for industrial workloads, enabling users to transfer knowledge from organization resources to machine learning classifiers
- Our study shows that Snorkel DryBell can save labeling tens of thousands of training examples
- The key lesson for other organizations: knowledge resources are abundant, take advantage of them!

More Information

snorkel snorkel.stanford.edu Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale. S. H. Bach, et al. SIGMOD 2019 Industrial Track. https://arxiv.org/abs/1812.00417

Thank you!

Appendix

Snorkel DryBell Scales Up to Big Data

- Using Google's distributed compute environment, we can, for example, label and fit the generative model for 5 million+ examples in ~30 minutes.
- Scalability of the generative model relies on new,
 TensorFlow-based implementation

Non-Servable Resources

	Pro	ducts	To	Topics		
	Rel. F1	Lift	Rel. F1	Lift		
Servable Resources	63%		86%			
+ Non-Servable	105%	+68%	118%	+36%		

Table 1: Number of unlabeled examples used during training n, number of labeled examples in the development set n_{Dev} and test set n_{Test} , fraction of positive labels in n_{Test} , and number of labeling functions used for each task, for the content classification applications.

Task	n	$n_{ m Dev}$	n_{Test}	% Pos.	# LFs
Topic Classification	684K	11K	11K	0.86	10
Product Classification	6.5M	14K	13K	1.48	8

Labeling Function Details: Topic

- 10 labeling functions
- Examples:
 - URL-based: Heuristics regarding URLs in the content
 - NER tagger-based: Heuristics based on presence of named entities
 - Topic model-based: Heuristics based on coarse-grain topic model

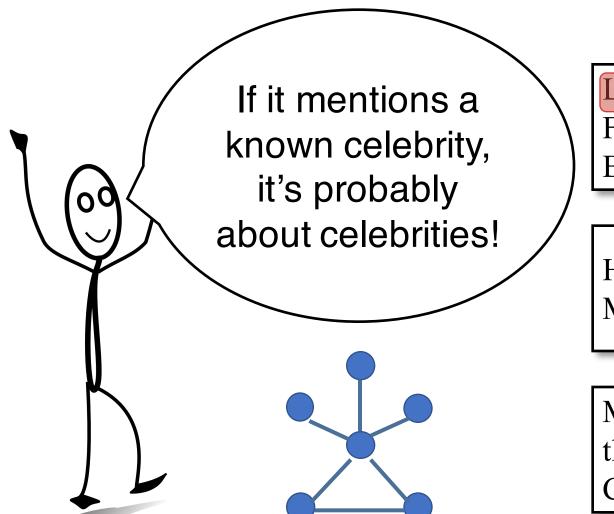
Labeling Function Details: Product

- 8 labeling functions
- Examples:
 - Keyword-based: rules looking for product-related keywords
 - Knowledge Graph-based: queried for names of related products and translations in 10 languages for which the classifier is used
 - Topic model-based: Heuristics based on coarse-grain topic model

Table 4: An ablation study of Snorkel DryBell using equal weights for all labeling functions to label training data ("Equal Weights") compared with using the weights estimated by the generative model. All scores are normalized to the precision, recall, and F1 of the logistic regression classifier trained directly on the development set. Lift is reported relative to Equal Weights.

Relative: Topic Classification	P	R	F1	Lift
Equal Weights	54.1%	163.7%	109.0%	+7.7%
+ Generative Model	100.6%	132.1%	117.5%	
Product Classification				
Equal Weights	94.3%	110.9%	103.24%	+1.9%
+ Generative Model	99.2%	110.1%	105.2%	

Example 2: Knowledge Graph



Lori Loughlin's 'Fuller House'
Future Dim Due To Elite School
Bribery Scandal

HOW TO WATCH TESLA'S MODEL Y REVEAL TONIGHT

Morris Dees, a Co-Founder of the Southern Poverty Law Center, Is Ousted **Vote**

?

?

Example 3: Web Crawler

