
Snorkel DryBell: A Case Study in Deploying
Weak Supervision at Industrial Scale

Stephen H. Bach† Daniel Rodriguez‡ Yintao Liu‡ Chong Luo‡

Haidong Shao‡ Cassandra Xia‡ Souvik Sen‡ Alex Ratner§

Braden Hancock§ Houman Alborzi‡ Rahul Kuchhal‡ Chris Ré§ Rob Malkin‡

†Brown University ‡Google §Stanford University

ABSTRACT
Labeling training data is one of the most costly bottlenecks in
developingmachine learning-based applications. We present
a first-of-its-kind study showing how existing knowledge
resources from across an organization can be used asweak su-
pervision in order to bring development time and cost down
by an order of magnitude, and introduce Snorkel DryBell,
a new weak supervision management system for this set-
ting. Snorkel DryBell builds on the Snorkel framework,
extending it in three critical aspects: flexible, template-based
ingestion of diverse organizational knowledge, cross-feature
production serving, and scalable, sampling-free execution.
On three classification tasks at Google, we find that Snorkel
DryBell creates classifiers of comparable quality to ones
trained with tens of thousands of hand-labeled examples,
converts non-servable organizational resources to servable
models for an average 52% performance improvement, and
executes over millions of data points in tens of minutes.

KEYWORDS
Systems for machine learning, weak supervision
ACM Reference Format:
StephenH. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong
Shao, Cassandra Xia, Souvik Sen, Alex Ratner, Braden Hancock,
Houman Alborzi, Rahul Kuchhal, Chris Ré, and Rob Malkin. 2019.
Snorkel DryBell: A Case Study in Deploying Weak Supervision
at Industrial Scale. In 2019 International Conference on Management
of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam, Netherlands.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3299869.
3314036

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5643-5/19/06.
https://doi.org/10.1145/3299869.3314036

1 INTRODUCTION
One of the most significant bottlenecks in developing ma-
chine learning applications is the need for hand-labeled train-
ing data sets. In industrial and other organizational deploy-
ments, the cost of labeling training sets has quickly become a
significant capital expense: collecting labels at scale requires
carefully developing labeling instructions that cover a wide
range of edge cases; training subject matter experts to carry
out those instructions; waiting sometimes months or longer
for the full results; and dealing with the rapid depreciation
of training sets as applications shift and evolve.

As a result, in industry and other domains there has been a
major movement towards programmatic or otherwise more
efficient but noisier ways of generating training labels, of-
ten referred to as weak supervision. Given the increasing
commoditization of standard machine learning model archi-
tectures, the supervision strategy used is increasingly the key
differentiator for end model performance, and recently has
been a key element in state-of-the-art results [8, 20]. Many
prior weak supervision approaches rely on a single source
of labels, a small number of carefully chosen, manually com-
bined sources [23, 40], or on sources that make uncorrelated
errors such as independent crowd workers [9, 10]. Recent
work has explored building end-to-end systems for program-
matic supervision, e.g., simple heuristic rules and pattern
matching scripts written from scratch by users, which may
have diverse accuracies and correlations [3, 29, 30].
In this work, we present a first-of-its-kind study show-

ing how existing organizational knowledge can be used as
weak supervision to have significant impact even in some
of the most heavily-engineered, high-value industrial ML
applications. We introduce Snorkel DryBell, a production-
scale weak supervision management system which extends
the Snorkel framework [29] to handle three novel aspects
we find to be critical: flexible template-based ingestion of
organizational knowledge, cross-feature production serving,
and scalable, sampling-free modeling. We evaluate Snorkel
DryBell on three content and real-time event classification

https://doi.org/10.1145/3299869.3314036
https://doi.org/10.1145/3299869.3314036
https://doi.org/10.1145/3299869.3314036

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands S. H. Bach et al.

Figure 1: Rather than using hand-labeled training
data, Snorkel DryBell uses diverse organizational re-
sources asweak supervision to train content and event
classifiers on Google’s platform.

applications at Google (Figure 1), where we move beyond
using simple pattern matchers over text as weak supervi-
sion for small-scale, first-cut applications (as in initial work
on Snorkel [29]), and demonstrate the value of using exist-
ing organizational knowledge resources, measured against
baselines with person-decades of development.

Based on our experience at Google, we outline three core
principles that are central to deploying weak supervision
at organizational scale, and highlight how these are imple-
mented in Snorkel DryBell:
• Flexible Ingestion of Organizational Knowledge: In
large organizations, a wide range of resources—such as
models, knowledge bases, heuristics, and more—are often
available; a weak supervision system should support rapid
and flexible integration of as many of these resources as
possible for quickly training models to the highest possi-
ble quality. We highlight the importance of this approach
with three case studies involving content and event clas-
sification tasks. Engineers at Google are responsible for
hundreds of separate classifiers, which often rely on hand-
labeled training data. They must be responsive to every-
thing from shifting business objectives to changes in prod-
ucts; updating these classifiers is often the critical blocker
to core product and feature launches. We describe how a
single engineer can use weak supervision to rapidly de-
velop new classifiers, leading to average, relative quality
improvements of 11.5% (measured in F1 points) over clas-
sifiers trained on small ∼15K-example development sets,
and reaching the quality equivalent of using 80K labels.

• Cross-Feature Production Serving: Organizational
knowledge is often present in non-servable form factors,

i.e., too slow, expensive, or private to be used in produc-
tion; instead, a weak supervision system can provide a
way to use these to quickly train servable models suitable
for deployment. For example, internal models or heuristics
are often defined over features like monthly aggregate sta-
tistics, expensive internal models, etc., whereas Snorkel
DryBell can allow users to quickly transfer this knowl-
edge to models defined over servable features, e.g., inex-
pensive, real-time signals. We demonstrate how Snorkel
DryBell allows users to quickly and flexibly transfer or-
ganizational knowledge from non-servable forms to new
servable deployment models focused on the classification
task of interest. We view this as a practical, flexible form
of transfer learning, and show that incorporating these
resources leads to 52% average gains in performance.

• Scalable, Sampling-Free Execution: A weak supervi-
sion system should cleanly decouple subject matter ex-
perts (SMEs), who should be able to rapidly and iteratively
specify weak supervision, from the details of execution
and model training over industrial scale datasets. We de-
scribe how the architecture of Snorkel DryBell cleanly
decouples the interface by which SMEs across an organiza-
tion can contribute labeling strategies, and the system for
executing these at massive scale while supporting rapid
human-in-the-loop iteration—for example, implementing
weak supervision over 6M+ data points with sub-30min.
execution time—including a new TensorFlow compute
graph-based generative modeling approach that avoids
expensive sampling, and a MapReduce-based pipeline.

We achieve these principles in Snorkel DryBell by adopt-
ing the three main stages of the Snorkel pipeline: first, users
write labeling functions, which are simply black-box func-
tions that take in unlabeled data points and output a label or
abstain, and can be used to express a wide variety of weak su-
pervision strategies; next, a generative modeling approach is
used to estimate the accuracies of the different labeling func-
tions based on their observed agreements and disagreements;
and finally, these accuracies are used to re-weight and com-
bine the labels output by the labeling functions, producing
probabilistic (confidence-weighted) training labels.
We start in Section 2 with a brief description of exist-

ing work on weak supervision, and of the approach taken
by Snorkel, the framework that Snorkel DryBell extends.
In Section 3, we present three case studies of content and
event classification applications at Google, where we survey
the categories of weak supervision strategies that can be
employed within Snorkel DryBell. We discuss these case
studies at a high level due to the proprietary nature of the
applications. In Section 4, we highlight a particularly critical
cross-feature form of production model serving supported

Snorkel DryBell SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

in Snorkel DryBell, in which non-servable supervision re-
sources that are expensive to run, private, or otherwise not
servable in production are used to train servable deployment
models. In Section 5, we then present the architecture of
Snorkel DryBell, emphasizing a new sampling-free gener-
ative modeling approach, and a MapReduce-based pipeline
and template library. In Section 6, we describe experimental
results on benchmark data sets using Google data represen-
tative of production tasks. We show that Snorkel DryBell
can replace hand-labeling tens of thousands of training ex-
amples. Finally, we conclude with lessons learned on how
weakly supervised machine learning can be integrated into
the development processes of production machine learning
applications, and discuss how these lessons can be applied
at many different kinds of organizations.

2 BACKGROUND
In recent years, modernmachine learningmodels have achieved
new state-of-the-art accuracies on a range of traditionally
challenging tasks. However, these models generally require
massive hand-labeled training sets [37]. In response, many
machine learning developers have increasingly turned to
weaker methods of supervision, in which a larger volume of
cheaper, noisier labels is used [6, 9, 10, 23, 24, 29, 40].

We build on top of Snorkel, a recently proposed framework
for weakly supervised machine learning [29], which allows
users to generically specifymultiple sources of programmatic
weak supervision—such as rules and pattern matchers over
text—that can vary in accuracy, coverage, and that may be
arbitrarily correlated. The Snorkel pipeline follows three
main stages, which we also adopt in Snorkel DryBell: first,
users write labeling functions, which are simply black-box
functions that take in unlabeled data points and output a
label or abstain; next, a generative model is used to estimate
the accuracies of the different labeling functions, and then
to re-weight and combine their labels to produce a set of
probabilistic training labels, effectively solving a novel data
cleaning and integration problem; and finally, these labels
are use to train an arbitrary end discriminative model, which
is used as the final classifier in production.

This setup can be formalized as follows. LetX = (X1, . . . ,Xm)

be a collection of unlabeled data points, Xi ∈ X, with as-
sociated unobserved labels Y = (Y1, . . . ,Ym). For simplicity,
we focus on binary classification, Yi ∈ {−1, 1}, however
Snorkel DryBell can handle arbitrary categorical targets
as well, e.g. Yi ∈ {1, . . . ,k}.

In our weak supervision setting, we do not have access to
these ground-truth labelsYi , and our goal is to estimate them
to use as training labels. Instead, we have access to n labeling
functions λ = (λ1, . . . , λn), where λj : X → {−1, 0, 1}, with
0 corresponding to an abstain vote. We use a generative model

wherein we model each labeling function as abstaining or
not with some probability, and labeling a data point correctly
with some probability. Let Λ be the matrix of labels output
by the n labeling functions over them unlabeled data points,
such that Λi, j = λj (Xi). We then estimate the parametersw
of this generative labeling model Pw (Λ,Y) by maximizing
the log marginal likelihood of the observed labels Λ:

ŵ = argmax
w

log
∑

Y ∈{−1,1}m
Pw (Λ,Y) .

Note that we are marginalizing out Y , i.e. we are not using
any ground truth training labels in our learning procedure;
instead, we are learning solely from the information about
agreements and disagreements between the labeling func-
tions, as contained in the observed label matrixΛ. We discuss
the choice of the structure of Pw (Λ,Y) and the unsupervised
approach to estimating ŵ further in Section 5.2.
Given the estimated generative model, we use its pre-

dicted label distributions, Ỹi = Pŵ (Yi |Λ), as probabilistic
training labels for the end discriminative classifier that we
aim to train. We train this discriminative classifier hθ on our
weakly labeled training set, (X , Ỹ), by minimizing a noise-
aware variant of a standard loss function, l , i.e. we minimize
the expected loss with respect to Ỹ :

θ̂ = argmin
θ

m∑
i=1
Ey∼Ỹi [l(hθ (Xi),y)]

A formal analysis shows that as the number of unlabeled
data, i.e.m, is increased, the generalization error of the dis-
criminative classifier should decrease at the same asymptotic
rate as it would if supervised with traditional hand-labeled
data [30]. More generally, we expect the discriminative classi-
fier to provide performance gains over the generative model
(i.e. the reweighted combination of the labeling function out-
puts) that it is trained on, both by applying to data types
that the labeling functions cannot be applied to, e.g. servable
versus non-servable features (see Section 4), and by learning
to generalize beyond them. For example, the discriminative
classifier can learn to put weight on more subtle or syn-
onymous features that the labeling functions (and thus, the
generative model) do not cover. For empirical evidence of
this generalization, and further details of the actual discrimi-
native models used, see Section 6.

In building Snorkel DryBell, we sought to extend Snorkel
to studyweak supervision in the context of an organizational-
scale deployment, focusing on three key aspects. First, while
Snorkel was designed to handle “de novo” weak supervision
applications built with a handful of simple pattern-matching
rules, written from scratch by domain experts, we design
a template-based interface for ingesting existing organiza-
tional knowledge resources like internal models, taggers,
legacy code, and more (Section 3). Second, we implement

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands S. H. Bach et al.

Figure 2: We plot the distribution of high-level cate-
gories of weak supervision types, counted by number
of labeling functions (LFs), for the three applications.

support for cross-feature production serving, where weak
supervision defined over features not servable for applica-
tion deployment—such as aggregate statistics or expensive
results of model inference—can be transferred to deployable
models defined over servable features (Section 4). Finally, our
design of the Snorkel DryBell architecture focuses on han-
dling massive scale (e.g. 6.5M data points in one application),
and thus we focus on speeding up both labeling function
execution and generative model training, in particular using
a new sampling-free modeling approach (Section 5).

3 CASE STUDIES: WEAK SUPERVISION
FOR RAPID DEVELOPMENT

We start by exploring three case studies of weak supervision
applied to classification problems at Google: two on content
classification related to topics and commercial product cate-
gories, and one for classifying real-time events across several
serving platforms. In this section, we focus on highlighting
the diversity of weak supervision signals from across the
organization that developers were able to express as labeling
functions (LFs) in Snorkel DryBell. We broadly categorize
the weak supervision sources into several coarse-grained
buckets, representing different types of organizational knowl-
edge and resources (Figure 2):
• Source Heuristics: Labeling functions expressing heuris-
tics (pattern or otherwise) about the source of the content
or event, or aggregate statistics of this.

• ContentHeuristics: Labeling functions expressing heuris-
tics about the content or event.

• Model-Based: Labeling functions that use the predictions
of internal models which were developed for some related
or component problem. Examples include topic models
and named entity recognizers applied to content.

• Graph-Based: Labeling functions that use a knowledge
or entity graph to derive labels.

We now describe the applications, giving examples of the
above weak supervision source types used in each.

3.1 Topic Classification
In the first task, an engineering team for a Google product
needed to develop a new classifier to detect a topic of in-
terest in its content. The team oversees well over 100 such
classifiers, each with its own set of training data, so there
is strong motivation for finding faster and more agile ways
to develop or modify these models. Currently, however, the
default procedure for developing a new classifier such as this
one requires substantial manual data labeling effort.

In our study, we instead used Snorkel DryBell to weakly
supervise 684,000 unlabeled data points, selected by a coarse-
grained initial keyword-filtering step. A developer then spent
a short time writing ten labeling functions that both ex-
pressed basic heuristics, and pulled on organizational re-
sources such as existing models at Google. Specific examples
of labeling functions included:

• URL-based: Heuristics based on the linked URL;
• NER tagger-based: Heuristics over entities tagged within
the content, using custom named entity recognition (NER)
models maintained internally at Google;

• Topic model-based:Heuristics based on a topic model main-
tained internally at Google. This topic model output se-
mantic categorizations far too coarse-grained for the tar-
geted task at hand, but which nonetheless could be used
as effective negative labeling heuristics.

These weak supervision strategies pulled on diverse types
of signal from across Google’s organization, but were simple
towrite within the Snorkel DryBell framework.With these
strategies, we matched the performance of 80K hand-labeled
training labels, and get within 4.6 F1 points of amodel trained
on 175K hand-labeled training data points (see Section 6).

3.2 Product Classification
In a second case study with the same engineering team
at Google, a strategic decision necessitated a modification
of an existing classifier for detecting content references to
products in a category of interest. The category of inter-
est was expanded to include many types of accessories and
parts—meaning that all previously negative class labels (i.e.,
“not in the category of interest”) needed to be relabeled, or
else discarded. In fact, our post-hoc experiments revealed
that even using the previously positive labels resulted in
a slight reduction in end model F1 score, highlighting the
near-instantaneous depreciation of a significant labeling in-
vestment given a change in strategy.

Snorkel DryBell SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Instead, in a similar process to the content classification
scenario described above, one developer was able to write
eight labeling functions, leveraging diverse weak supervi-
sion resources from across the organization. These labeling
functions included:
• Keyword-based: Keywords in the content indicated either
products and accessories in the category of interest, or
other accessories not of interest;

• Knowledge Graph-based: In order to increase coverage
across the many languages for which this classifier is used,
we queried Google’s Knowledge Graph for translations of
keywords in ten languages;

• Model-based: We again used the semantic topic model to
identify content obviously unrelated to the category of
products of interest.
A classifier trained with these labeling functions matched

the performance of 12K hand-labeled training examples, and
got within 5.1 F1 points of classifier model trained on 50K
hand-labeled training examples (see Section 6).

3.3 Real-Time Event Classification
Finally, we applied Snorkel DryBell to a real-time events
classification problem over two of Google’s platforms. In this
setting, a common approach is to classify events based on
offline (or non-servable) features such as aggregate statistics
and relationship graphs. However, this approach induces
latency between when an event occurs and when it is identi-
fied. An alternative approach is to use a machine learning
model to classify events directly from real-time, event-level
features. However, getting hand-labeled training data in this
setting is challenging due to the shifting environment, as
well as the cost of trained expert annotators. Instead, we used
Snorkel DryBell to train models over the event-level fea-
tures using weak supervision sources (n=140) defined over
the non-servable features, spanning three broad categories:
• Model-based: Several smaller models that had previously
been developed over various feature sets were also used
as weak labelers in this setting.

• Graph-based:A set of models over graphs of entity and des-
tination relationships provided higher recall but generally
lower-precision signals than the heuristic classifiers.

• Other heuristics: A large set of existing heuristic classifiers
that had previously been developed.
These sources were combined in Snorkel DryBell and

used to train a deep neural network over real-time event-
level features. Compared to the same network trained on an
unweighted combination of the labeling functions, Snorkel
DryBell identifies 58%more events of interest, with a quality
improvement of 4.5% according to an internal metric.

One of the aspects that we found critical in this setting was
the ability of Snorkel DryBell to estimate the accuracies of

Figure 3: In Snorkel DryBell, developers can use non-
servable development features for weak supervision,
to train classifiers that operate over separate servable
features in production.

different labeling functions. Given the large number of weak
supervision sources in play, determining the quality or utility
of each source, and tuning their combinations accordingly,
would have itself been an onerous engineering task. Using
Snorkel DryBell, these weak supervision signals could sim-
ply all be integrated as labeling functions, and the resulting
estimated accuracies were found to be independently use-
ful for identifying previously unknown low-quality sources
(which were then either fixed or removed).

4 CROSS-FEATURE MODEL SERVING
One significant advantage of a weakly supervised approach,
as implemented in Snorkel DryBell, is the ability to easily
and flexibly transfer knowledge contained in non-servable
feature sets that are too slow, expensive, or private to use in
production, to servable feature sets such as real-time event-
level signals or cheap edge-computable features, as in the
real-time event application (Figure 3). Formally, this goal of
transferring knowledge from a model defined over one fea-
ture set to a new model trained over another feature set can
be viewed as a type of transfer learning [27], or as similar to
a transductive form of model distillation [15]. However, most
commonly used transfer learning techniques today apply to
models with similar or identical architectures defined over
the same basic feature set. Instead, with Snorkel DryBell
we can quickly use models over one set of features—for ex-
ample, aggregate statistics, results of expensive crawlers,
internal models or graphs—and use these to supervise a new
model over external, cheap, or otherwise servable features.

In the applications we survey at Google, this is an essential
element. In the real-time events case study, as outlined in
the preceding section, none of the weak supervision sources
are directly applicable to the event-level, real-time, servable
features of interest; instead, with Snorkel DryBell we use

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands S. H. Bach et al.

them to train a new model that is defined over these serv-
able features. For the two content applications, while some
of the labeling functions could be applied at test time over
servable features, others—specifically, those comprising in-
ternal models that are expensive to run, or features obtained
with high-latency such as the result of web crawlers—are
effectively non-servable. By incorporating the signal from
these non-servable sources in Snorkel DryBell, we get av-
erage gains of 52% in final F1 score performance according
to an ablation. We find that this ability to bridge the gap
between non-servable organizational resources and servable
models is one of the major advantages of a weak supervision
approach like the one implemented in Snorkel DryBell.

5 SYSTEM ARCHITECTURE
Deploying the Snorkel framework proposed by Ratner et.
al. [29] required redesigning its implementation for an indus-
trial, distributed computing environment, where the scale of
examples (millions) is at least an order of magnitude larger
than any reported data set for which Snorkel has been used.
This required decoupling and redesigning the labeling func-
tion execution and generative modeling components of the
pipeline around a template library and distributed compute
environment, which we detail next.

5.1 Labeling Function Template Library
We implement support for user-defined labeling functions
as a library of templated C++ classes. Our goal is to abstract
away the repeated development of code for reading and
writing to Google’s distributed filesystem, and for execut-
ing MapReduce pipelines. We achieve this by implementing
an AbstractLabelingFunction class that handles all input
and output to Google’s distributed filesystem. Each subclass
defines a MapReduce pipeline, with class template slots for
functions to be executed within the pipeline. We initially
developed two labeling function pipelines.

The first pipeline is a default pipeline that does not launch
any additional services; it simply executes a user-defined
function written in C++ (LabelingFunction). This class
meets the needs of many use cases, such as content heuristics,
model-based heuristics for models that are executed offline
as part of data collection such as semantic categorization, and
graph-based heuristics that can query a knowledge graph
offline (e.g., categories of products in top-ten languages).
The second pipeline integrates with Google’s general-

purpose natural language processing (NLP) models
(NLPLabelingFunction). Such integration is necessary be-
cause these NLP models are too computationally expensive
to run for all content submitted to Google. Snorkel DryBell

therefore needs to enable labeling-function writers to exe-
cute additional models in a manner that scales to the mil-
lions of examples to be labeled. To achieve this goal, Snorkel
DryBell uses Google’s MapReduce framework to launch a
model server on each compute node. Other model servers
besides the NLP models can be supported by creating new
subclasses of AbstractLabelingFunction.
Engineers using this library need to write only simple

main files that define the function(s) that computes the la-
beling function’s vote for an individual example. These func-
tions capture the engineer’s knowledge about how to use
existing resources at Google as heuristics for weak supervi-
sion. As an example that is analogous to a labeling function
in our content classification application, suppose our goal
is to identify content related to celebrities. A developer can
implement a heuristic that uses a named-entity recognition
model for this task as an instance of NLPLabelingFunction.
The labeling function labels any content that does not con-
tain a person as not related to celebrities. The first template
argument is a pointer to a function that takes an example
object as input and selects the text to be provided to the NLP
model server. The second template argument is a pointer to
a function that takes the same example object and the output
of the NLP models as its inputs, and checks whether the
named-entity recognition model found any proper names of
people. We illustrate this example in code:

string GetText (const Example & x) {
return StrCat (x.title , " ", x.body);

}

LFVote GetValue (const Example & x,
const NLPResult & nlp) {

if (nlp. entities . people .size () == 0) {
return NEGATIVE ;

}
else { return ABSTAIN ; }

}

int main(int argc , char ∗argv []) {
Init(argc , argv);
NLPLabelingFunction <& GetText , &GetValue > lf;
lf.Run ();

}

This short bit of code captures a logical relationship between
an existing model and the target task, speeding development.

5.2 Sampling-Free Generative Model
The critical task in Snorkel DryBell is to combine the
noisy votes of the various labeling functions into estimates
of the true labels for training. In Snorkel DryBell, we use
a new sampling-free modeling approach which is far less
CPU intensive and far simpler to distribute across compute
nodes. We focus on a conditionally independent generative

Snorkel DryBell SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Labeling Function
Binary

Snorkel DryBell Labeling Function Template

Abstract
Labeling Function

Labeling
Function

NLP Labeling
Function

Distributed
Filesystem IO

Custom
MapReduce

Pipelines …

Organizational Resources

Semantic
Categorization

Knowledge
Graph

Web
Crawlers

Unlabeled
Examples

Snorkel DryBell Generative Model

Probabilistic
Training Labels

Production ML
Systems

𝜆" 𝜆# 𝜆$

𝑌

Figure 4: An overview of the Snorkel DryBell system. (1) Snorkel DryBell provides a library of templated C++
classes, each of which defines aMapReduce pipeline for executing a labeling function with the necessary services,
such as natural language processing (NLP). (2) Engineers write methods for the MapReduce pipeline to determine
a vote for each example’s label, using Google resources. (3) Snorkel DryBell executes the labeling function binary
on Google’s distributed compute environment. (4) Snorkel DryBell loads the labeling functions’ output into its
generative model, which combines them into probabilistic training labels for use by production systems.

model, which we write as:

Pw (Λ,Y) =
m∏
i=1

Pw (Yi)
n∏
j=1

Pw (λj (Xi)|Yi) ,

Following prior work [29], we assume each labeling func-
tion has an accuracy given that it did not abstain, and a
propensity to not abstain, i.e., we share parameters across
the conditional distributions. For simplicity, here we assume
that Pw (Yi) is uniform, but we can also learn this distribution.

The learning objective of the generative model is to mini-
mize the negative marginal log-likelihood of the observed la-
beling function outputs − log P(Λ). The open-source Snorkel
implementation1 uses a Gibbs sampler to compute the gra-
dient of this likelihood, but sampling is relatively CPU in-
tensive and complicated to distribute across compute nodes.
Instead, we design a new TensorFlow-based [1] implemen-
tation for sampling-free optimization. For numeric stability,
we represent the model parameters in log space. Let α j be
the unnormalized log probability that labeling function j is
correct given that it did not abstain, and let βj be the un-
normalized log probability that it did not abstain. Then, to
define a static compute graph, as required by TensorFlow,
we use 0-1 indicator functions for each possible label value

1http://snorkel.stanford.edu

and multiply by the corresponding log likelihood:

− log P(Λ) = −

m∑
i=1

log (P(Λi ,Yi = 1) + P(Λi ,Yi = −1)) ,

where

log P(Λi ,Yi = 1) =
n∑
j=1

(1[λj (Xi) = 1](α j + βj − Z j)

+1[λj (Xi) = −1](−α j + βj − Z j)

−1[λj (Xi) = 0]Z j) ,

log P(Λi ,Yi = −1) =
n∑
j=1

(1[λj (Xi) = 1](−α j + βj − Z j)

+1[λj (Xi) = −1](α j + βj − Z j)

−1[λj (Xi) = 0]Z j) ,

Z j = log(exp(α j + βj) + exp(−α j + βj) + 1) .

The result is a fast implementation that can take hundreds
of gradient steps per second on a single compute node. For
example, in our product classification application, in which
there are ten labeling functions, the optimizer takes an av-
erage > 100 steps per second with a batch size of 64. With
ten labeling functions and a batch size of 64, a Gibbs sampler
averages < 50 examples per second, so Snorkel DryBell
provides a 2× speedup. Implementing the generative model

http://snorkel.stanford.edu

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands S. H. Bach et al.

as a static compute graph in TensorFlow has another ad-
vantage over a Gibbs sampler. It is easy to parallelize across
multiple compute nodes using TensorFlow’s API. (Here we
report timing using a single process for a fair comparison.)
It is also possible to relax the conditional independence

assumption by defining model functions in TensorFlow that
capture specific, low-tree-width graphical model structures,
which we leave for future work. It is also possible to directly
plug-in matrix factorization models of the kind recently used
for denoising labeling functions [31] as TensorFlow model
functions.

5.3 Discriminative Model Serving
To create discriminative models that are servable in produc-
tion, we integrated Snorkel DryBellwith TFX [4], Google’s
platform for end-to-end production-scale machine learn-
ing. The probabilistic training labels estimated by Snorkel
DryBell are passed to TFX, where users can configure a
model to train with a noise-aware loss function. Once trained,
we use TFX to automatically stage it for serving.

As described in Section 4, the discriminative model acts
on a more compact feature representation than the labeling
functions, enabling a cross-feature transfer of knowledge
from non-servable resources used in labeling functions to a
servable model. TFX supports both logistic regression and
deep neural network models, which can operate on user-
specified features that are available in production, or on the
“raw” content, e.g., an LSTM [16] that embeds each token of
text in a vector space.

5.4 Comparison with Snorkel Architecture
There are several other key differences between Snorkel
DryBell and Snorkel’s existing open-source implementation
beyond the changes detailed above. Snorkel is designed to
run on a single, shared-memory compute node. In contrast,
Google, like many large organizations, uses a distributed job
scheduling and accounting system for large-scale computing.
It therefore was necessary to integrate Snorkel DryBell
with Google’s MapReduce framework.

Further, Snorkel is designed to be accessible to novice pro-
grammers with limited machine learning experience. It uses
a Jupyter notebook interface and enforces a strict context
hierarchy data model for representing training data. This
rigid approach is not appropriate for the wide range of tasks
that arise in a large organization. Snorkel also uses a rela-
tional database backend for storing data, which does not
easily integrate with Google’s existing data-storage systems.
We therefore developed the more loosely coupled system de-
scribed above, in which labeling functions are independent
executables that use a distributed filesystem to share data.

Table 1: Number of unlabeled examples used during
trainingn, number of labeled examples in the develop-
ment set nDev and test set nTest, fraction of positive la-
bels innTest, and number of labeling functions used for
each task, for the content classification applications.

Task n nDev nTest % Pos. # LFs

Topic Classification 684K 11K 11K 0.86 10
Product Classification 6.5M 14K 13K 1.48 8

6 EXPERIMENTS
To evaluate the performance of Snorkel DryBell, we cre-
ated benchmark data sets using Google data representative
of the production tasks described in Section 3. We first show
results on the content classification applications, and use
them to illustrate trade-offs between weak supervision and
collecting hand-labeled data, as well as the benefits of us-
ing non-servable features for weak supervision. We then
show results on the real-time events application. Due to
the sensitive nature of these applications, we report relative
improvement to our baselines for the content classification
applications. We are unable to describe the details of internal
metrics used to evaluate real-time events, but include a high-
level description as corroborating evidence that Snorkel
DryBell is widely applicable.

6.1 Topic and Product Classification
To evaluate on the topic and product classification applica-
tions, we used the probabilistic training labels estimated by
Snorkel DryBell to train logistic regression discriminative
classifiers with servable features similar to those used in pro-
duction.We have access to hundreds of thousands to millions
of unlabeled examples for these tasks. We also create a small,
hand-labeled development set (nDev in Table 1) which is used
by the developer while formulating labeling functions, for
hyperparameter tuning of the end discriminative classifier,
and as a supervised learning baseline in our experiments.

We use a logistic regression model in TFX. We train using
the FTLR optimization algorithm [22], a variant of stochastic
gradient descent that tunes per-coordinate learning rates,
with an initial step size of 0.2. We train for 10K iterations
for the topic classification task and 100K iterations for the
product classification task, in order to have a similar training
time to production classifiers. (The topic classification task
has an order-of-magnitude more features than the product
classification task.) All experiments use a batch size of 64.

Table 2 shows the results of applying the Snorkel DryBell
system on the product and topic classification tasks. We re-
port all results relative to the baseline approach of training

Snorkel DryBell SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Table 2: Evaluation of Snorkel DryBell on content classification tasks, optimizing for F1 score.We report numbers
relative to the baseline of training directly on the hand-labeled development set. Reported scores are normalized
relative to the precision, recall, and F1 scores of these baselines, using a true/false threshold of 0.5 for prediction.
Lift is reported relative to the baseline F1. We compare the generative model of Snorkel DryBell, i.e., a weighted
combination of the labeling functions, and the discriminative logistic regression classifier trained with Snorkel
DryBell. Note that the generative model is not servable, i.e., it cannot be used to make predictions in production.

Generative Model Only Snorkel DryBell
Task Relative: P R F1 Lift P R F1 Lift

Topic Classification 84.4% 101.7% 93.9% -6.1% 100.6% 132.1% 117.5% +17.5%
Product Classification 103.8% 102.0% 102.7% +2.7% 99.2% 110.1% 105.2% +5.2%

the discriminative classifier directly on the hand-labeled de-
velopment set.

We also report the predictive accuracy of Snorkel DryBell’s
generative model, i.e., using the weighted combination of
labeling functions directly to make predictions. We do so
to demonstrate that the discriminative classifier learns to
generalize beyond the information contained in the labeling
functions. Note that the generative model is not actually
viable for production tasks, because labeling functions often
depend on non-servable features of the data.
The results show that on both tasks, the discriminative

classifiers trained on Snorkel DryBell-produced training
data has higher predictive accuracy in F1 score on the test
sets than classifiers trained directly on the development set.
The weakly supervised classifiers also have higher predictive
accuracy than the corresponding generative models. This
result demonstrates that Snorkel DryBell effectively trans-
fers the knowledge contained in the non-servable resources
to classifiers that only depend on servable features.

6.2 Trade-Off Between Weak Supervision
Hand-Labeled Data

We next investigate the trade-off between using weak su-
pervision and collecting hand-labeled training examples. We
train the discriminative classifier for each content classifi-
cation task on increasingly large hand-labeled training sets.
Figure 5 shows the predictive performance in relative F1
score of the the classifiers versus the number of hand-labeled
training examples. On the topic classification task, we find
that it takes roughly 80K hand-labeled examples to match the
predictive accuracy of the weakly supervised classifier. On
the product classification task, we find that it takes roughly
12K hand-labeled examples. This result shows that weak su-
pervision can significantly reduce the need for hand-labeled
training data in content classification applications.

100%

110%

120%

25	K 45	K 65	K 85	K 105	K 125	K 145	K

Re
la
tiv
e	F

1

Number	of	Hand-Labeled	Training	Examples

Topic	Classification

Fully	 Supervised

Snorkel	DryBell							
(684K	Unlabeled)

100%

105%

110%

7	K 12	K 17	K

Re
la
tiv
e	F

1

Number	of	Hand-Labeled	Training	Examples

Product	Classification

Fully	 Supervised

Snorkel	DryBell	
(6.5M	Unlabeled)

Figure 5: Relative difference in predictive accuracy
measured in F1 of supervised classifiers trained on
increasing numbers of hand-labeled training exam-
ples for the topic and product classification tasks.
The dashed line shows the normalized F1 score of
the weakly supervised classifier trained on Snorkel
DryBell-inferred labels.

6.3 Ablation Study
We measured the importance of including non-servable or-
ganizational supervision resources by removing all labeling
functions that depend on them from the topic and product

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands S. H. Bach et al.

Table 3: An ablation study of Snorkel DryBell using
only labeling functions that depend on servable fea-
tures (“Servable LFs”) comparedwith all labeling func-
tions, including non-servable resources. All scores are
normalized to the precision, recall, and F1 of the logis-
tic regression classifier trained directly on the devel-
opment set. Lift is reported relative to Servable LFs.

Relative: P R F1 Lift
Topic Classification

Servable LFs 50.9% 159.2% 86.1%
+ Non-Servable LFs 100.6% 132.1% 117.5% +36.4%

Product Classification

Servable LFs 38.0% 119.2% 62.5%
+ Non-Servable LFs 99.2% 110.1% 105.2% +68.2%

Table 4: An ablation study of Snorkel DryBell us-
ing equal weights for all labeling functions to label
training data (“Equal Weights”) compared with using
the weights estimated by the generative model. All
scores are normalized to the precision, recall, and F1
of the logistic regression classifier trained directly on
the development set. Lift is reported relative to Equal
Weights.

Relative: P R F1 Lift
Topic Classification

Equal Weights 54.1% 163.7% 109.0%
+ Generative Model 100.6% 132.1% 117.5% +7.7%

Product Classification

Equal Weights 94.3% 110.9% 103.24%
+ Generative Model 99.2% 110.1% 105.2% +1.9%

classification applications. The only labeling functions that
remained were pattern-based rules. Table 2 shows the results.
We find that incorporating non-servable Google resources
in labeling functions leads to a 52% average performance
improvement for the end discriminative classifier. This re-
sult shows that the non-servable resources contain valuable
information that are effectively transferred.
We also measured the importance of using the genera-

tive model to estimate the weights of the labeling function
votes by training an identical logistic regression classifier
giving equal weight to all the labeling functions for the topic
and product classification applications. In other words, the
probabilistic training labels were an unweighted average of
the labeling function votes. Table 4 shows the results. We

Figure 6: We compare a histogram of the predicted
probabilities (“scores”) of an event using a model
trained with a baseline Logical-OR approach to com-
bining weak supervision sources (left), and trained us-
ing Snorkel DryBell’s output (right). We see that the
baseline approach results in greatly over-estimating
the score of events, whereas the model trained using
Snorkel DryBell produces a smoother distribution.
This results in better performance, and offers more
useful output to those monitoring the system.

find that using the generative model to weight labeling func-
tions leads to a 4.8% average performance improvement for
the end discriminative classifier. This result shows that the
generative model is an effective component of the Snorkel
DryBell pipeline.

6.4 Real-Time Events
We evaluate the application of Snorkel DryBell to the
real-time events application as compared to a baseline weak
supervision approach of training the same deep neural net-
work architecture on a simpler combination of the same set
of labeling functions. Specifically, we compare:
• Logical-OR Weak Supervision: Here, the weak supervision
sources, defined over the non-servable features, are com-
bined using a logical OR. The resulting labels are then
used to train a deep neural network (DNN) discriminative
classifier over the servable features.

• Snorkel DryBell: Here, we use Snorkel DryBell to
combine the weak supervision sources, and then use the
resulting probabilistic training labels to train a DNN over
the servable features.
We observed that Snorkel DryBell identifies an addi-

tional 58% of events of interest as compared to what the
baseline Logical-OR approach captures, and the quality of
the events identified by Snorkel DryBell offer a 4.5% im-
provement according to an internal metric.
Finally, we note that Snorkel DryBell leads to an end

discriminative classifier that produces a more reasonable
distribution of scores, i.e. predicted probabilities of a certain
event label, as compared to the Logical-OR weak supervi-
sion baseline (Figure 6). Whereas the DNN trained using

Snorkel DryBell SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

the latter approach ends up predicting labels with nearly
absolute confidence, the distribution produced by Snorkel
DryBell is far more nuanced and consistent with the ex-
pected distribution—resulting not only in better quality, but
more interpretable and usable end predictions.

7 DISCUSSION
The experimental results above demonstrate the importance
of Snorkel DryBell’s design principles to deployingweakly
supervised machine learning in an industrial setting. First,
the ability to incorporate diverse organizational resources
was critical to both the content and real-time event applica-
tions. In both cases, Google has a variety of tools from which
we constructed weak supervision sources, from existing ma-
chine learning classifiers, to structured background knowl-
edge, to previously developed heuristic functions. These tools
are heterogeneous, not just in the information they contain,
but how they are maintained and executed within Google.
Some, like semantic categorization, are maintained by one
team and applied generally to incoming content. Others, like
the natural language processing models, are maintained by
another team andmust be executed as part of the weak super-
vision development process because they are too expensive
to run on all incoming content. We find that labeling func-
tions are an effective abstraction for encapsulating all these
types of heterogeneity.
Second, we find that the mechanism of denoising label-

ing functions to produce training data and train new classi-
fiers used in Snorkel DryBell effectively transfers knowl-
edge from non-servable resources to servable models. This
is crucial in an industrial environment in which products are
composed of many services that are connected via latency
agreements. When engineers have to ensure that classifiers
make predictions within allotted times, they have to be very
selective about what features to use. In contrast, writing la-
beling functions affords developers flexibility because they
are executed as part of an offline training process.
Third, we find that the labeling function abstraction is

user friendly, in the sense that developers in the organiza-
tion can write new labeling functions to capture domain
knowledge. Snorkel DryBell’s architecture is designed for
high throughput, enabling rapid human-in-the-loop devel-
opment of labeling functions. For example, developing each
content classification application was possible because of the
ability to rapidly iterate on labeling functions. In contrast,
waiting for human annotators to hand-label training data
can cause lengthy delays.
We anticipate that this low-latency development of ma-

chine learning classifiers will be increasingly important as

businesses and other large organizations increasingly de-
pend on machine learning. This is because machine learn-
ing teams are now responsible for implementing business
strategies. For example, if a company like Google decides
to add a feature to a product that requires identifying con-
tent on a specific topic, the machine learning team currently
must respond by curating training examples for this topic.
If the strategy changes, then the training examples must
change too. Weakly supervised machine learning systems
like Snorkel DryBell enable these teams to respond by
writing code, rather than pushing high-latency tasks to data
annotators. When launch schedules for products that depend
on machine learning are short, time spent curating training
data is costly.

This code-as-supervision paradigm also has the potential
to meet additional challenges that modern machine learning
teams face. A single team in a large organization is often
now responsible for hundreds or more different classifiers.
Each one currently needs its own hand-labeled set of training
examples. We have demonstrated that Snorkel DryBell en-
ables Google to leverage existing resources—including other
machine learning classifiers—to create new classifiers. We an-
ticipate that the problem of managing these large networks
of classifiers that share knowledge will be a significant area
of future work in the near future.
Finally, we believe weakly supervised machine learning

has the potential to affect organizational structures. Google is
beginning to experiment with reorganizingmachine learning
development around the separation between subject matter
expertise and infrastructure enabled by weak supervision.
Dedicated teams could potentially focus on writing labeling
functions while others stay focused on serving the resulting
classifiers in production.

7.1 Lessons for Other Organizations
As the code-as-supervision paradigm grows in use, we antici-
pate that several lessons learned from our work are adoptable
beyond Google. First, resources that can be used for weak
supervision are abundant, and our findings demonstrate that
labeling functions combined via a generative model are a
new way to extract value from them. In our work, access
to broad-purpose natural language processing models saved
significant developer time, even though these models were
not designed specifically for our tasks. We observe other
organizations already developing broad-purpose models for
domains such as language modeling [13, 14], object recogni-
tion [20], and object detection [39]. In addition, cloud-service
providers are making pre-trained, broad-purpose models for
language and vision available to consumers [12, 35]. Fur-
ther, many open-source, broad-purpose models for tasks like
named entity recognition [17], sentiment analysis [21], and

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands S. H. Bach et al.

object detection [25] are freely available and could be incor-
porated into labeling functions for more specific tasks. While
our study focused on existing resources, our results also in-
dicate that further investment in broad-purpose models and
knowledge graphs that provide background knowledge for
weak supervision will be increasingly worthwhile.

Second, cross-feature transfer to servable models was crit-
ical in our applications, and represents a new perspective on
model serving strategies which we believe may be of general
applicability. In this approach, developers use a set of features
not servable in production—for example, expensive internal
models or private entity network graphs—to create training
data for models that are defined over production-servable
features. We learned that having multiple representations
of the same data is an effective way to weakly supervise
models with service-level agreements. This technique can
potentially benefit the many applications where efficient
model serving is needed.
Third, the design choices made in the original Snorkel

implementation can be improved for many use cases. Some
changes are applicable to both systems for novice users and
experts. We found that implementing the generative model
in an optimization framework with automatic differentiation
was faster to develop, easier to distribute, and faster to exe-
cute than an MCMC sampling approach. Other lessons came
from the different needs of advanced machine learning en-
gineers versus novice users. We found that advanced users
want maximum flexibility in implementing labeling func-
tions, including being able to launch additional services and
call remote procedures during execution. This approach is in
contrast to Snorkel’s focus on novice users, in which data to
be labeled is represented with a prescribed class hierarchy.
The tradeoff is that while Snorkel DryBell offers fewer
higher-level helper functions for labeling function writers,
it was easy to apply to a wider range of data, from online
content to events. We anticipate that other implementations
of weak supervision for advanced users will want to follow
Snorkel DryBell’s approach.

8 RELATEDWORK
Weakly supervised machine learning as implemented in
Snorkel DryBell—using multiple noisy but inexpensive
sources of labels as an alternative to hand-labeled training
data—is related to other areas of research inmachine learning
and data systems that also seek to learn and make inferences
with limited labeled data.

In machine learning, semi-supervised learning [7] com-
bines labeled data with unlabeled data. It is a broad category
of methods that generally seek to use the unlabeled data
to discover structure in the data, such as dense clusters or
low-dimensional manifolds, that enables better extrapolation

from the limited labeled examples. Transfer learning [26] ex-
ploits labeled data available for one or more tasks to reduce
the need for labeled data for a new task. Methods in which
a learner labels additional data for itself to train on include
self-training [2, 34], co-training [5], and pseudo-labeling [18].
Zero-shot learning [38] attempts to learn a sufficiently general
mapping between class descriptions and labeled examples
that new classes can be identified at test time from just a
description, without any additional training examples. Active
learning [36] methods select data points for human annota-
tors to label. They aim to minimize the amount of labeling
needed by interleaving learning and requests for new labels.

Related problems in data systems include data fusion [11,
33] and truth discovery [19]. Here the goal is to estimate
the accuracy of possibly conflicting records in different data
sources and integrate them into the most likely set of correct
records. A similar problem is data cleaning [28], which aims
to identify and correct errors in data sets. Recently, Rekatsi-
nas et. al. [32] proposed HoloClean, which uses weakly super-
vised machine learning to learn to correct errors. Many meth-
ods for these problems, e.g., the latent truth model [41], use
generative models similar to the one in Snorkel DryBell in
that they represent the unobserved truth as a latent variable.
Snorkel DryBell’s generative model differs in that it mod-
els the output of labeling functions executed on input data,
and these functions can provide any class label or abstain.

9 CONCLUSION
In this paper we presented the first results from deploying
the Snorkel DryBell framework for weakly supervised ma-
chine learning in a large-scale, industrial setting. We find
that weak supervision can train classifiers that would other-
wise require tens of thousands of hand-labeled examples to
obtain, and that Snorkel DryBell’s design enables devel-
opers to effectively connect a wide range of organizational
resources to new machine learning problems in order to im-
prove predictive accuracy. These results indicate that weak
supervision has the potential to play a significant role in
industrial development of machine learning applications in
the near future.

ACKNOWLEDGMENTS
The authorswould like to thankVikaramGupta, Shiv Venkatara-
man, and Sugato Basu for their support and help prepar-
ing the manuscript. A.R. gratefully acknowledges the sup-
port of the Stanford Bio-X Fellowship. A.R., B.H., and C.R.
gratefully acknowledge the support of DARPA under Nos.
FA87501720095 (D3M) and FA86501827865 (SDH), NIH under
No. N000141712266 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity) and CCF1563078 (Volume to Velocity),

Snorkel DryBell SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

ONR under No. N000141712266 (Unifying Weak Supervi-
sion), the Moore Foundation, NXP, Xilinx, LETI-CEA, Intel,
Google, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accen-
ture, Ericsson, Qualcomm, Analog Devices, the Okawa Foun-
dation, and American Family Insurance, and members of
the Stanford DAWN project: Intel, Microsoft, Teradata, Face-
book, Google, Ant Financial, NEC, SAP, and VMWare. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views,
policies, or endorsements, either expressed or implied, of
DARPA, NIH, ONR, or the U.S. Government.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A System for Large-scale Machine Learning. In USENIX
Conference on Operating Systems Design and Implementation (OSDI).

[2] A. K. Agrawala. 1970. Learning with a Probabilistic Teacher. IEEE
Transactions on Infomation Theory 16 (1970), 373–379.

[3] Stephen H. Bach, Bryan He, Alexander Ratner, and Christopher Ré.
2017. Learning the Structure of Generative Models without Labeled
Data. In International Conference on Machine Learning (ICML).

[4] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo,
Zakaria Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc,
et al. 2017. TFX: A TensorFlow-based production-scale machine learn-
ing platform. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD).

[5] A. Blum and T. Mitchell. 1998. Combining Labeled and Unlabeled Data
with Co-Training. In Workshop on Computational Learning Theory
(COLT).

[6] Jakramate Bootkrajang and Ata Kabán. 2012. Label-noise robust lo-
gistic regression and its applications. In Joint European conference
on machine learning and knowledge discovery in databases. Springer,
143–158.

[7] O. Chapelle, B. Schölkopf, and A. Zien (Eds.). 2006. Semi-Supervised
Learning. MIT Press.

[8] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and
Quoc V Le. 2018. AutoAugment: Learning Augmentation Policies from
Data. arXiv preprint arXiv:1805.09501 (2018).

[9] Nilesh Dalvi, Anirban Dasgupta, Ravi Kumar, and Vibhor Rastogi. 2013.
Aggregating crowdsourced binary ratings. In Proceedings of the 22nd
international conference on World Wide Web. ACM, 285–294.

[10] Alexander Philip Dawid and AllanM Skene. 1979. Maximum likelihood
estimation of observer error-rates using the EM algorithm. Applied
statistics (1979), 20–28.

[11] X. L. Dong and D. Srivastava. 2015. Big Data Integration. Morgan &
Claypool Publishers.

[12] Google. 2019. Cloud AI. https://cloud.google.com/products/ai/.
[13] Edouard Grave, Moustapha M Cisse, and Armand Joulin. 2017. Un-

bounded cache model for online language modeling with open vocab-
ulary. In Advances in Neural Information Processing Systems (NeurIPS.

[14] Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and Mike Lewis.
2018. Semantic parsing for task oriented dialog using hierarchical
representations. arXiv preprint arXiv:1810.07942 (2018).

[15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the
knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015).

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term
memory. Neural Computation 9, 8 (1997), 1735–1780.

[17] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural lan-
guage understanding with Bloom embeddings, convolutional neural
networks and incremental parsing. (2017).

[18] Dong-Hyun Lee. 2013. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In ICML Work-
shop on Challenges in Representation Learning.

[19] Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan,
and Jiawei Han. 2015. A Survey on Truth Discovery. SIGKDD Explor.
Newsl. 17, 2 (2015).

[20] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He,
Manohar Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der
Maaten. 2018. Exploring the Limits of Weakly Supervised Pretraining.
In European Conference on Computer Vision (ECCV).

[21] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,
Steven Bethard, and David McClosky. 2014. The Stanford CoreNLP nat-
ural language processing toolkit. In Annual meeting of the Association
for Computational Linguistics: System Demonstrations.

[22] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Di-
etmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov,
Daniel Golovin, et al. 2013. Ad click prediction: A view from the
trenches. In ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD).

[23] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant
supervision for relation extraction without labeled data. In Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 2-Volume 2. Association for Computational Linguistics,
1003–1011.

[24] Volodymyr Mnih and Geoffrey E Hinton. 2012. Learning to label
aerial images from noisy data. In Proceedings of the 29th International
conference on machine learning (ICML-12). 567–574.

[25] ONNX. 2017. Open Neural Network Exchange. https://github.com/
onnx/onnx.

[26] S. J. Pan and Q. Yang. 2010. A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (2010), 1345–
1359.

[27] Sinno Jialin Pan, Qiang Yang, et al. 2010. A survey on transfer learning.
IEEE Transactions on knowledge and data engineering 22, 10 (2010),
1345–1359.

[28] Erhard Rahm and Hong Hai Do. 2000. Data cleaning: Problems and
current approaches. IEEE Data Eng. Bull. 23, 4 (2000), 3–13.

[29] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen
Wu, and Christopher Ré. 2017. Snorkel: Rapid training data creation
with weak supervision. Proceedings of the VLDB Endowment 11, 3
(2017), 269–282.

[30] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam,
and Christopher Ré. 2016. Data programming: Creating large training
sets, quickly. In Advances in neural information processing systems.
3567–3575.

[31] Alexander J Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala,
Shreyash Pandey, and Christopher Ré. 2019. Training Complex Models
with Multi-Task Weak Supervision. In AAAI.

[32] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017.
HoloClean: Holistic Data Repairs with Probabilistic Inference. PVLDB
10, 11 (2017), 1190–1201.

https://cloud.google.com/products/ai/
https://github.com/onnx/onnx
https://github.com/onnx/onnx

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands S. H. Bach et al.

[33] Theodoros Rekatsinas, Manas Joglekar, Hector Garcia-Molina, Aditya
Parameswaran, and Christopher Ré. 2017. SLiMFast: Guaranteed Re-
sults for Data Fusion and Source Reliability. In ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD).

[34] H. J. Scudder. 1965. Probability of Error of some Adaptive Pattern-
Recognition Machines. IEEE Transactions on Infomation Theory 11
(1965), 363–371.

[35] Amazon Web Services. 2019. Amazon Comprehend. https://aws.
amazon.com/comprehend/.

[36] B. Settles. 2012. Active Learning. Morgan & Claypool Publishers.
[37] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta.

2017. Revisiting Unreasonable Effectiveness of Data in Deep Learning
Era. CoRR abs/1707.02968 (2017). arXiv:1707.02968 http://arxiv.org/
abs/1707.02968

[38] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata.
2018. Zero-shot learning - A comprehensive evaluation of the good, the
bad and the ugly. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2018).

[39] Andrew Zhai, Dmitry Kislyuk, Yushi Jing, Michael Feng, Eric Tzeng,
Jeff Donahue, Yue Li Du, and Trevor Darrell. 2017. Visual discovery at
Pinterest. In International Conference on the World Wide Web (WWW).

[40] Ce Zhang, Jaeho Shin, Christopher Ré, Michael Cafarella, and Feng
Niu. 2016. Extracting databases from dark data with deepdive. In
Proceedings of the 2016 International Conference on Management of
Data. ACM, 847–859.

[41] Bo Zhao, Benjamin IP Rubinstein, Jim Gemmell, and Jiawei Han. 2012.
A Bayesian approach to discovering truth from conflicting sources for
data integration. PVLDB 5, 6 (2012), 550–561.

https://aws.amazon.com/comprehend/
https://aws.amazon.com/comprehend/
http://arxiv.org/abs/1707.02968
http://arxiv.org/abs/1707.02968
http://arxiv.org/abs/1707.02968

	Abstract
	1 Introduction
	2 Background
	3 Case Studies: Weak Supervision for Rapid Development
	3.1 Topic Classification
	3.2 Product Classification
	3.3 Real-Time Event Classification

	4 Cross-Feature Model Serving
	5 System Architecture
	5.1 Labeling Function Template Library
	5.2 Sampling-Free Generative Model
	5.3 Discriminative Model Serving
	5.4 Comparison with Snorkel Architecture

	6 Experiments
	6.1 Topic and Product Classification
	6.2 Trade-Off Between Weak Supervision Hand-Labeled Data
	6.3 Ablation Study
	6.4 Real-Time Events

	7 Discussion
	7.1 Lessons for Other Organizations

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

