

Introduction

- Hinge-loss Markov random fields are powerful models for structured prediction
- New scalable MPE inference algorithm much faster than inference in discrete MRFs
- State-of-the-art performance on four diverse learning tasks

Hinge-loss Markov Random Fields

Undirected probabilistic graphical models analogous to discrete MRFs

- Variables are **continuous valued** in [0,1]
- Potentials are hinge-loss functions
- Arbitrary linear **constraints**

$$P(\mathbf{Y}|\mathbf{X}) = \frac{1}{Z} \exp\left[-\sum_{j=1}^{m} \lambda_j \max\left\{\ell_j(\mathbf{Y}, \mathbf{X}), 0\right\}^{p_j}\right]$$

where $\ell_i(\mathbf{Y}, \mathbf{X})$ is a linear function, Z is a normalization constant, and $p_j \in \{1, 2\}$

Templating Language

Easy to define via **interpretable relaxation** from logical rules to hinge-loss functions using a templating language called probabilistic soft logic (PSL)

Example:

 $\lambda : \text{LABEL}(D_1, L) \land \text{LINK}(D_1, D_2) \Rightarrow \text{LABEL}(D_2, L)$

 $\lambda \cdot \max\{\operatorname{LABEL}(D_1, L) + \operatorname{LINK}(D_1, D_2) - \operatorname{LABEL}(D_2, L) - 1, 0\}$

Fast, Convex MPE Inference

- Hinge-loss Markov random fields are log-concave densities
- New MPE inference algorithm based on the alternating direction method of multipliers (ADMM) is highly scalable

	Citeseer	Cora	Epinions	
HL-MRF-Q	0.42	0.70	0.32	
HL-MRF-L	0.46	0.50	0.28	
MRF	110.96	184.32	212.36	

Average inference times in seconds vs. MC-SAT for discrete MRFs

This work was supported by NSF grants CCF0937094 and IIS1218488, and IARPA via DoI/NBC contract number D12PC00337. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the of- ficial policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

http://linqs.cs.umd.edu

Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction

Stephen H. Bach, Bert Huang, Ben London, and Lise Getoor University of Maryland, College Park

- Learn tied weights Λ with • Approximate max likelihood: $\frac{\partial \log p(\mathbf{Y}|\mathbf{X})}{\partial \log p(\mathbf{Y}|\mathbf{X})} = \mathbb{E}_{\Lambda} \left[\Phi_{\alpha}(\mathbf{Y}, \mathbf{X}) \right] - \Phi_{\alpha}(\mathbf{Y}, \mathbf{X})$
- Max pseudolikelihood:
- Large margin:
- Fast inference enables fast learning

- Lal or
- Lea la
- Ci

Collective Classification				Social-trust Prediction				
abels in graph depend n neighbors' labels earn propensity of each abel value to propagate titation network data sets				 Who trusts whom in social networe Easily encode social-science theories, such as structural balant theory, as logical rules Epinions data set 				
	Citeseer	Cora			ROC	P-R (+)	P-	
HL-MRF-Q HL-MRF-L MRF	0.729 0.729 0.715	0.818 0.808 0.797		HL-MRF-Q HL-MRF-L MRF	0.832 0.757 0.725	0.979 0.963 0.963	(
Average cla	assification accu	3			as under curv	es on Epinions da	ata set	
Preferer	nce Predio	a	Fast perfo and state-o accuracy diverse	of-the-art on four	ge Reco	onstruction	า	
low will a user n ratings of sin compared to Ba natrix factorizat	nilar users ayesian pr tion (BPM	s? robabilistic	b	Truth	HL-MF	RF-Q Sum-F	Product	
ester jokes dat					I	HL-MRF-Q) S	
	NMSE	NMAE		Caltech-Lef	t	1741	1	
HL-MRF-Q HL-MRF-L	$\begin{array}{c} 0.0738\\ 0.0544\end{array}$	0.2297 0.1875		Caltech-Bo		1910	1	
BPMF	0.0544 0.0501	0.1875 0.1832		Olivetti-Lef Olivetti-Bo		$\begin{array}{c} 927 \\ 1226 \end{array}$	(
rmalized mean square and absolute errors on Jester data set				Mean squared pixel error on 0-255 grayscale				

- Hc or
- Co ma
- Jes

Social-trust Prediction				
 Who trusts whom in social networe Easily encode social-science theories, such as structural balant theory, as logical rules Epinions data set 				
ROC P-R(+) P				
HL-MRF-Q 0.832 0.979 HL-MRF-L 0.757 0.963 MRF 0.725 0.963				
Average areas under curves on Epinions data set				
performance state-of-the-art uracy on four verse tasks! Image Reconstruction				
Truth HL-MRF-Q Sum-Product				
HL-MRF-Q S				
Caltech-Left17411Caltech-Bottom19101Olivetti-Left927927Olivetti-Bottom1226				
Mean squared pixel error on 0-255 grayscale				
sta JI				

Norn

To get the code and learn more: http://psl.umiacs.umd.edu

Fast Supervised Learning

$$\begin{split} \overline{\partial \Lambda_q} &= \mathbb{E}_{\Lambda} \left[\Phi_q(\mathbf{Y}, \mathbf{X}) \right] - \Phi_q(\mathbf{Y}, \mathbf{X}) \\ \overline{\partial \log P^*(Y|X)}_{\partial \Lambda_q} &= \sum_{i=1}^n \mathbb{E}_{Y_i|\text{MB}} \left[\sum_{j \in t_q: i \in \phi_j} \phi_j(\mathbf{Y}, \mathbf{X}) \right] - \Phi_j(\mathbf{Y}, \mathbf{X}) \\ \min_{\Lambda \geq 0} \quad \frac{1}{2} ||\Lambda||^2 + C\xi \quad \text{s.t.} \quad \Lambda^\top (\Phi(\mathbf{Y}, \mathbf{X}) - \Phi(\tilde{\mathbf{Y}}, \mathbf{X})) \leq -L(\mathbf{Y}, \tilde{\mathbf{Y}}) \end{split}$$

