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Collective Classification

Undirected probabilistic graphical models analogous to discrete MRFs
• Variables are continuous valued in [0,1]
• Potentials are hinge-loss functions
• Arbitrary linear constraints

where                is a linear function,           is a normalization constant, and 

Easy to define via interpretable relaxation from logical rules to hinge-loss functions 
using a templating language called probabilistic soft logic (PSL)

Example: 

• Labels in graph depend
on neighbors' labels

• Learn propensity of each
label value to propagate

• Citation network data sets

Average classification accuracy

Preference Prediction

• How will a user rate something based 
on ratings of similar users?

• Compared to Bayesian probabilistic 
matrix factorization (BPMF)

• Jester jokes data set

Normalized mean square and absolute errors on Jester data set

Social-trust Prediction

• Who trusts whom in social networks?
• Easily encode social-science 

theories, such as structural balance 
theory, as logical rules

• Epinions data set

Average areas under curves on Epinions data set

Image Reconstruction
                  Truth                      HL-MRF-Q          Sum-Product Net.

Mean squared pixel error on 0-255 grayscale

• Hinge-loss Markov random fields are
log-concave densities

• New MPE inference algorithm based
on the alternating direction method of
multipliers (ADMM) is highly scalable

Average inference times in seconds vs. MC-SAT for discrete MRFs

Fast, Convex MPE Inference

Templating Language

Citeseer Cora Epinions

HL-MRF-Q 0.42 0.70 0.32

HL-MRF-L 0.46 0.50 0.28

MRF 110.96 184.32 212.36

Citeseer Cora

HL-MRF-Q 0.729 0.818
HL-MRF-L 0.729 0.808
MRF 0.715 0.797

ROC P-R (+) P-R (-)

HL-MRF-Q 0.832 0.979 0.482
HL-MRF-L 0.757 0.963 0.333
MRF 0.725 0.963 0.298

NMSE NMAE

HL-MRF-Q 0.0738 0.2297

HL-MRF-L 0.0544 0.1875
BPMF 0.0501 0.1832

HL-MRF-Q SPN

Caltech-Left 1741 1815
Caltech-Bottom 1910 1924
Olivetti-Left 927 942
Olivetti-Bottom 1226 918
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A or B? 

A or B? 
A or B? 

λ : Label(D1, L) ∧ Link(D1, D2) ⇒ Label(D2, L)

⇐⇒
λ ·max{Label(D1, L) + Link(D1, D2)− Label(D2, L)− 1 , 0}
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• Learn tied weights        with
• Approximate max likelihood:

• Max pseudolikelihood:

• Large margin:

• Fast inference enables fast learning

Fast Supervised Learning

∂ log p(Y|X)

∂Λq
= EΛ [Φq(Y,X)]− Φq(Y,X)

∂ logP ∗(Y |X)
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||Λ||2 + Cξ s.t. Λ�(Φ(Y,X)− Φ(Ỹ,X)) ≤ −L(Y, Ỹ) + ξ, ∀Y

Hinge-loss Markov Random Fields

• Hinge-loss Markov random fields are powerful models for structured prediction
• New scalable MPE inference algorithm much faster than inference in discrete MRFs
• State-of-the-art performance on four diverse learning tasks

Introduction
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Fast performance
and state-of-the-art
accuracy on four 

diverse tasks!
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To get the code and learn more:   http://psl.umiacs.umd.edu


