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Abstract

We develop a novel method that provides the-
oretical guarantees for learning from weak
labelers without the (mostly unrealistic) as-
sumption that the errors of the weak label-
ers are independent or come from a par-
ticular family of distributions. We show
a rigorous technique for efficiently selecting
small subsets of the labelers so that a ma-
jority vote from such subsets has a prov-
ably low error rate. We explore several ex-
tensions of this method and provide experi-
mental results over a range of labeled data
set sizes on 45 image classification tasks.
Our performance-guaranteed methods con-
sistently match the best performing alterna-
tive, which varies based on problem difficulty.
On tasks with accurate weak labelers, our
methods are on average 3 percentage points
more accurate than the state-of-the-art ad-
versarial method. On tasks with inaccurate
weak labelers, our methods are on average
15 percentage points more accurate than the
semi-supervised Dawid-Skene model (which
assumes independence).

1 INTRODUCTION

Supervised machine learning of high-dimensional mod-
els requires significant amounts of labeled data. The
process of obtaining labeled data can be very costly,
and for many classification tasks, labeled data may
not be sufficient for learning. To address this issue,
a recent line of research on weak supervision (Ratner
et al., 2016, 2017; Bach et al., 2017) exploited the infor-
mation contained in weak classifiers for mildly related
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tasks, also referred to as labelers. The labelers gen-
erate noisy labels for abundant unlabeled data, which
are then aggregated and used to train an end model
for the classification task of interest. Empirically, this
process yields better generalization than using the la-
belers directly for prediction.

In this paper, we focus on the important problem of
how to aggregate the output of the labelers to obtain
accurate labels for training. This problem is very chal-
lenging, as the estimation of statistical properties of
the labelers is hard with few labeled data for the clas-
sification task of interest. In order to handle this issue,
prior work makes strong modeling assumptions on the
labelers. The assumption most commonly used is that
the labelers make errors independently with respect to
the classification task of interest (Ratner et al., 2016).
The resulting model is well studied in the literature,
and it was first introduced for the similar problem of
crowdsourcing, where we want to answer a question
by aggregating the answers of different observers of
unknown expertise (Dawid and Skene, 1979). If the in-
dependence assumption holds, many properties of the
labelers—such as their error rates with respect to the
classification task of interest—can be estimated with
only unlabeled data. Further, taking a majority vote
weighted by a function of each labeler’s accuracy is the
optimal way to combine their outputs to maximize ac-
curacy (Nitzan and Paroush, 1982).

While the independence assumption is reasonable in
the crowdsourcing setting, as we are combining the an-
swers of different people who are given the same classi-
fication task, it is problematic in the weak supervision
setting. There is no reason to expect that the labelers
are independent. In fact, labelers are themselves often
learned with respect to different classification tasks,
and it is likely that there are dependencies introduced
based on the similarities of these classification tasks.

Consider the following example, where we want to
learn to recognize firetrucks in images of vehicles. A la-
beler could be a classifier that positively labels images
that contain any kind of truck. The labeler makes two
kind of mistakes: errors based on the fact that the two
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classification tasks are different (e.g., there are vehicles
that are trucks but are not firetrucks), and errors based
on the fact that the labeler is not perfectly accurate
with respect to its own classification task. When this
labeler makes errors of the first kind (mismatch be-
tween tasks), it can be correlated with the mistakes of
other labelers. For example, consider another labeler
that positively labels images with wheels. If a vehicle is
a truck, but not a firetruck, then it is also likely to have
wheels. Therefore, these labelers will have correlated
errors, and an algorithm that relies on the indepen-
dence assumption will overweight their outputs when
creating training data. Indeed, we will show that such
algorithms can achieve large errors when applied to
arbitrary sets of labelers. Since our available labelers
are often determined by available data, this problem
is not easily fixed by manually adjusting the labelers.
In this setting, it is of paramount importance to de-
vise methods that can aggregate the output of labelers
without assuming independence.

Contributions:

In this work, we introduce novel methods to compute
analytical bounds on the worst-case error of the major-
ity vote of any set of labelers. Based on this technique,
we develop algorithms that select a subset of the la-
belers which minimizes this worst-case error. Our key
insight is that by using few labeled data and abundant
unlabeled data, we can reliably estimate properties of
the labelers that are sufficient to bound this worst-
case error without any prior assumption on the joint
distribution of labelers and true labels. The labeled
data is only used to estimate the labelers’ individual
accuracies, while the unlabeled data is used to esti-
mate properties of the distribution of the output of
the labelers.

Our main contributions are the following:

1. We emphasize the importance of developing new
tools for aggregating weak supervision sources,
showing that solutions that assume independence
can yield high error rates when applied to non-
independent sources. Furthermore, we prove that
in contrast to the independent sources case, ef-
fective solutions for the non-independent case re-
quire more information than just the accuracy of
the labelers (Section 3).

2. We propose a novel method to bound the worst-
case error of the majority vote of a set of labelers
given their accuracies and the distribution of their
agreements. We also develop a fast method to
compute this quantity for sets of labelers of size 3
(Section 4.1).

3. Based on the previous method, we propose a novel

variant to bound the worst-case error of the ma-
jority vote of a set of labelers, using the distribu-
tion of their output instead of the distribution of
their agreements, which is harder to estimate but
provides tighter bounds (Section 4.2).

4. We devise heuristic algorithms that use the
bounds computed by these two methods to find
a subset of the labelers with small worst-case er-
ror of their majority vote (Section 4.3).

5. We conduct experiments on 45 image classi-
fication tasks to test the effectiveness of our
methods. Our experiments show that our algo-
rithms match or outperform the standard semi-
supervised model (Dawid and Skene, 1979) that
assumes independence. Our methods achieve as
much as 24 percentage points higher accuracy on
problems where labelers are inaccurate and there
is only few labeled data. Our methods also match
or outperform a recent method for labeler ag-
gregation that does not make assumptions about
the distribution of labelers’ errors (Arachie and
Huang, 2019), which does not come with any the-
oretical guarantees (Section 5).

2 RELATED WORK

The problem of combining the outputs from different
weak labelers arises in many different domains and has
been widely studied.

In crowdsourcing, the problem is to aggregate labels
from different human labelers with unknown reliabil-
ity. In that setting, it is common to assume indepen-
dence as the human labelers provide their answers in-
dependently from each other. In seminal work, Dawid
and Skene (1979) showed how to estimate the relia-
bility of the human annotators with expectation max-
imization and unlabeled data. The idea is that, as
the users are independent, their agreement ratio pro-
vides information on their reliability. Since then, many
other algorithms (Zhang et al., 2016; Gao and Zhou,
2013; Karger et al., 2014; Ghosh et al., 2011; Dalvi
et al., 2013) have been devised that can also provide
theoretical guarantees on their estimates based on the
amount of unlabeled data used and the properties of
the labelers. These works all make the independence
assumption.

In recent work (Ratner et al., 2016, 2017; Bach et al.,
2017; Varma et al., 2019), the Dawid-Skene model is
used as a building block for algorithms that learn a
classifier by using a set of hand-engineered weak su-
pervision sources (e.g., short programs that classify
according to a simple rule). These works recognized
the problem that the independence assumption is un-
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realistic in this setting. They relaxed the assumption
by adding particular kinds of structural dependencies
in the crowdsourcing model (e.g., if two specific sources
agree, they are likely to both be correct). These struc-
tural dependencies need to either be specified before-
hand in the model by domain experts, or selected by
learning algorithms that rely on assumptions that are
hard, if not impossible, to verify in practice. In con-
trast, our work does not assume any particular family
for the distribution of labeler outputs and true labels.

In another line of research (Balsubramani and Freund,
2015a,b), the labelers are used to formulate a minimax
game, where labels are given to an unlabeled dataset in
order to minimize the error with respect to an adver-
sarial choice of the true labels. This adversarial choice
is constrained to satisfy the individual error rates of
the labelers, estimated with labeled data. This ap-
proach does not require any further assumptions on
the distribution among labelers’ errors, and the mini-
max can be optimally solved, using different losses to
compute the error (Balsubramani and Freund, 2016).
While these works optimize with respect to a similar
objective as our solution, there are several differences.
First, these related works focus on a transductive set-
ting, and provides guarantees on the labeling of a fixed,
unlabeled dataset. In comparison, our guarantees fo-
cus on an inductive setting in which we label additional
unseen data points. Second, they allow both the ad-
versarial and the optimal predictions to be soft labels,
while we focus on a strict hard-classification setting.
Finally, solving the minimax game optimally as a lin-
ear program requires storing in memory the output
of the labelers for the whole unlabeled dataset, and
approximate solutions could have an arbitrarily large
convergence rate. In contrast, the runtime of our ap-
proach only depends on the number of labelers, that
is small in a lot of practical settings.

In similar recent work, Arachie and Huang (2019) pro-
posed a weakly supervised learning approach called
adversarial label learning that also does not assume
any distribution among labelers’ errors and learns a
(possibly complex) classifier by adversarially updating
a set of labels at each parameter update. This algo-
rithm minimizes error of the model with respect to
the worst-case labeling that satisfies known error rate
constraints on the labelers. Their strategy is similar
to ours in that it works when labelers are not indepen-
dent and employs a worst-case argument. However,
their method does not provide any theoretical guaran-
tees on the convergence or error of the algorithm. Fur-
ther, it couples the training of the classifier with the
aggregation of the labelers’ outputs. In comparison,
our method provides strong theoretical guarantees for
labeling training data that can then be used by any

learning algorithm.

We note that our setting differs from ensemble learn-
ing, where a significant amount of labeled data for
the classification task of interest is required to both
learn the weak classifiers and to combine them into a
stronger classifier. Conversely, in our work, we assume
that we have access to few labeled data for the classi-
fication task of interest and to labelers that have been
trained using labeled data for mildly correlated classi-
fication tasks. Therefore, we will not draw a detailed
comparison with this method and refer interested read-
ers to Zhang and Ma (2012).

3 PRELIMINARIES

Problem definition: Let D be a distribution over
a domain X , and let y : X → {0, 1} be an unknown
binary classification of X . Our goal is to learn y from
a collection of weak sources that we call labelers. A
labeler is a binary classifier ` : X → {0, 1} that was
trained on a task that is weakly related to our target
classification y.

Let S = {`1, . . . , `n} be the set of available labelers.
We assume that for each labeler `i we have an estimate
εi for Px∼D(y(x) 6= `i(x)), the error of the labeler with
respect to the target classification y (alternatively, we
can assume a small set of y-labeled data for estimating
the labelers error rates with respect to y). We suppose
that εi ≤ 1/2, otherwise we can always flip the output
of labeler `i. Note that the error rate εi of labeler `i
accounts for two type of errors: the error of the la-
beler with respect to the classification it was trained
for, and the difference between the classification that
`i was trained for and the target classification y. We
make no assumptions on the choice of the labelers in S
and possible dependencies between the labelers. (For-
mally, we make no assumptions on the joint distribu-
tion (`1(x), . . . , `n(x)) or the joint distribution of the
errors, only on the marginal distributions for each la-
beler.)

For domain X and labeler set S = {`1, . . . , `n}, let
~̀
S(x) = (`1(x), . . . , `n(x)) be the function that maps

an element x ∈ X to the n bit vector of the output
of the labelers on input x ∈ X . Consider the set of
functions F = {f : {0, 1}n → {0, 1}}, and recall that
our target classification is y. Given a function f ∈ F ,
we define its expected error as ε(f) = Prx∼D(y(x) 6=
f ◦ ~̀S(x)), where the symbol ◦ represents the composi-
tion operator between functions. To classify according
to y using only the outputs of the labelers in S, we
are looking for a function f ∈ F with minimum ex-
pected error with respect to y on the domain X and
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distribution D, i.e.,

min
f∈F

ε(f ◦ ~̀S) (1)

where the error rate ε is computed with respect to
distribution D on X .

Independent vs. non-independent labelers:
Label aggregations problems similar to (1) have been
studied in the context of crowdsourcing, where all the
labelers make predictions with respect to the same
target classification, and it is reasonable to assume
that labelers’ errors are independent events.

The independence assumption is very powerful in this
setting. Let S = {`1, . . . , `n} be a set of labelers with
error rates (ε1, . . . , εn) with respect to the target classi-
fication y. It was shown in Nitzan and Paroush (1982)
that if the errors the labelers make are independent
events, then the optimal classification of x is “1” iff∑n
i=1(2`i(x) − 1) log 1−εi

εi
> 0, and the error rate of

this classifer satisfies (Berend and Kontorovich, 2015)

− log ε(f∗ ◦ ~̀S) = Θ

(
n∑
i=1

(
1

2
− εi

)
log

1− εi
εi

)
.

However, as shown in the following example, the inde-
pendence assumption is crucial for this analysis. When
applied to labelers with non-independent errors the ac-
curacy of the classifier can be significantly worse.

Proposition 1. Assume that n is odd. There exists
a distribution D over X , a binary classification of X ,
and a set of n labelers with same error rate ε < 1/2
such that the optimal classifier for independent labelers
f∗ has error rate at least 2ε− 2ε/(n+ 1).

Proof. In the appendix.

The above example shows that classification al-
gorithms that rely on the independence assump-
tion (Zhang et al., 2016; Gao and Zhou, 2013; Karger
et al., 2014; Ghosh et al., 2011; Dalvi et al., 2013) can
have significantly higher error rate when the indepen-
dence assumption is violated. The following example
further demonstrates that adding non-independent la-
belers can actually reduce the accuracy even of the
simple classifier that returns the majority label out-
put by n classifiers:

Proposition 2. Assume that n is odd and fn is a
classifier that returns the majority label output by the
n labelers. There exists a distribution D over X , and
a binary classification of X , such that fn has error
rate at least median{ε1, . . . , εn}, where ε1, . . . , εn are
the error rates of the n labelers.

Proof. In the appendix.

Moreover, we can prove a stronger result and show
that if the independence assumption does not hold,
and if the only knowledge we have about the labelers is
their error rate with respect to the target classification,
then any function on the output of the labelers could
not improve upon the classification given by the most
accurate labeler in the set.

Let ~ε = (ε1, . . . , εn). Define S(~ε) as the set of all pos-
sible set of labelers {`1, . . . , `n} such that ε(`i) = εi
for i = 1, . . . , n. We consider the worst case error rate
of the best function that maps the output of the la-
belers to a classification, among all the possible set of
labelers S that have error rates ~ε , that is:

max
S∈S(~ε)

min
f∈F

ε(f ◦ ~̀S)

Proposition 3. If the only information given to the
classification algorithm is the labels of the labelers in
S and their error rates with respect to the target clas-
sification, then

max
S∈S(~ε)

min
f∈F

ε(f ◦ ~̀S) = min{ε1, . . . , εn}

Proof. In the appendix.

In the following section we show that we can obtain
significantly better results for classification using non-
independent labelers by learning additional informa-
tion about the labelers from their outputs on unlabeled
data sampled from the distribution D over X .

4 METHODS

Given a set of labelers S with no knowledge on the
joint distribution of their errors, our goal is to de-
sign a classifier that performs better than the result
in Proposition 3. We achieve this goal by inferring
properties on the joint distribution of the labelers us-
ing their outputs on unlabeled data sampled from D.
Using this information, we can identify a subset of the
labelers such that the majority function on that subset
performs better than any single labeler in S.

4.1 Labelers’ Pairwise Differences

The first quantity that we will use together with the
error rates to characterize the effectiveness of our set of
labelers is the pairwise difference. That is, for i 6= j, let
d(`i, `j) = Px∼D(`i(x) 6= `j(x)). Note that |εi − εj | ≤
d(`i, `j) ≤ εi+εj . Intuitively, labelers whose difference
is small contain similar information, hence we would
like to identify labelers that significantly differ from
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one another. It is important to point out that the
values d(`i, `j) can be estimated using only unlabeled
data.

The following example demonstrates the significance
of the pairwise difference values in evaluating classi-
fiers correctness. Suppose that we have three labelers
with error rates ε < 1/3, and we return their majority
vote. If their pairwise difference is 0, then the label-
ers express the same vote and their majority vote has
error ε, whereas if their pairwise difference is 2ε, then
only one labeler can be wrong on each instance, and
the majority vote is always correct.

Let ~ε = (ε1, . . . , εn), and let D ∈ Rn×n, where Di,j =
d(`i, `j). Define S(~ε,D) as the collection of all possible
sets of labelers {`1, . . . , `n} such that ε(`i) = εi for
i = 1, . . . , n, and d(`i, `j) = Di,j for j 6= i.

Let [n] = {1, . . . , n}. For any I ⊆ [n] of odd size,
let λI(x) be the majority vote of the labelers {`i : i ∈
I} ⊆ S, i.e., λI returns 1 iff

∑
i∈I `i(x) > |I|/2, else it

returns 0. Our method searches for a function inM =
{λI(x) | I ⊆ [n] and |I| odd} that minimizes the worst
case performance, over all possible classifications that
satisfy the observed properties of the labels. I.e., we
are interested in the majority function λI that satisfies

min
λI∈M

max
S∈S(~ε,D)

ε(λI ◦ ~̀S) (2)

Our first step is computing the worst case performance
of a given function λI :

max
S∈S(~ε,D)

ε(λI ◦ ~̀S) (3)

It turns out that given the error rates ~ε, the differences
D of n labelers, and a subset I ⊆ [n], it is possible
to compute the worst-case error of the majority vote
maxS∈S(~ε,D) ε(λI ◦ ~̀S) through a linear program.

Let I = {i1, . . . , ik}. Let ã = (a1, . . . , ak) be a random
vector that represents whether the output of each la-
beler is correct, i.e., for j = 1, . . . , k, we have that
aj ∈ {0, 1} and aj = 1 if and only if labeler ij is cor-
rect. For any ~a = (a1, . . . , ak) ∈ {0, 1}k, let

p~a
.
= Px∼D(ã = (a1, . . . , ak)) = (4)

Px∼D({`i(x) = y(x) ∀i : ai = 1}
∩{`i(x) 6= y(x) ∀i : ai = 0})

Note that if we fix the distribution D over the domain
X , and its binary classification y(·), then a set of la-
belers {`1, . . . , `n} fully determines the values p~a for
~a ∈ {0, 1}k. Also, for any ~a ∈ {0, 1}k, the major-
ity vote of the labelers in I is correct if and only if

|~a|1 > k/2, where | · |1 is the `1-norm. Hence, the total
error of the majority vote is given by

ε(λI ◦ ~̀S) =
∑

~a{0,1}k:|~a|1<k/2

p~a

Given a set of labeler S ∈ S(~ε,D) the values p~a can-
not be arbitrary as the labelers in I need to respect
the error and difference constraints. The strategy of
the linear program is to find the values p~a (variables of
the linear program) that maximize the error of the ma-
jority vote of the labelers in I, while satisfying these
constraints. These values p~a are associated with a set
of labelers S that maximizes the value (3). The for-
mulation of the linear programming is the following:

max
S∈S(~ε,D)

ε(λI ◦ ~̀S) = max
∑

~a∈{0,1}k:|~a|1<k/2

p~a (5)

(a)
∑

~a∈{0,1}k:aj=0

p~a = εij for j = 1, . . . , k

(b)
∑

~a∈{0,1}k:ah 6=aj

p~a = Dih,ij for h 6= j

(c)
∑
~a

p~a = 1

(d) p~a ≥ 0 ∀~a

In the above linear program, the constraint (a) spec-
ifies that each labeler i ∈ I must have error rate εi.
The constraint (b) specifies that for any two differ-
ent labelers i, j ∈ I, their pairwise difference must
be equal to Di,j . The constraints (c) and (d) impose
that the variables p~a are probabilities. We observe
that this linear program has 2|I| variables, but only
O(|I|2) constraints. The discussion above proves the
following proposition.

Proposition 4. Given I ⊆ [n], and n labelers hav-
ing error rates ~ε and differences D, the worst-case er-
ror of the majority vote of of the labelers in I, i.e.,
maxS∈S(~ε,D) ε(λI ◦ ~̀S), is the solution of (5).

We point out that if ~ε and D are the true values of re-
spectively the error rates and the pairwise differences
of a set of labelers S = {`1, . . . , `n}, then the linear
program (5) always has a feasible solution, as the val-
ues p~a determined by S must be a solution.

We can now apply the above technique in parallel to
all the subset of S to compute the best subset:

min
f∈M

max
S∈S(~ε,D)

ε(f ◦ ~̀S) =

min
I⊆[n]:|I| is odd

max
S∈S(~ε,D)

ε(λI ◦ ~̀S)

For large numbers of labelers, it may be impractical
to solve the linear program for all subsets of S, even
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in parallel. However, as we show in our experimental
results, we achieve high accuracy even when we restrict
the search to the majority function on small subsets of
S. A particularly efficient solution is considering only
subsets of 3 labelers. In that case we have a closed
form solution to the linear problem:

Proposition 5. Let I = {i, j, k}. Let q be equal to

q =
1

2
max{εi + εj −Di,k −Dj,k, εj + εk −Di,j −Di,k,

εi + εk −Di,j −Dj,k, 0}

Then, we have that

max
S∈S(~ε,D)

ε(λI ◦ ~̀S) = εi + εj + εk

−Di,j + Dj,k + Di,k

2
− 2q

Proof. In the appendix.

The proposition above is of independent interest as it
clearly shows the behaviour of the worst-case majority
vote depending on the error rates and the pairwise
differences. To simplify, assume that the three labelers
in I in the statement of the previous proposition have
same error rates ε and difference d. We have that:

max
S∈S(~ε,D)

ε(λI ◦ ~̀S) = 3

(
ε− 1

2
d

)
− 2 max{ε− d, 0}

That is, if d ≤ ε, then maxS∈S(~ε,D) ε(λI ◦ ~̀S) = ε+ 1
2d,

else maxS∈S(~ε,D) ε(λI ◦ ~̀S) = 3
(
ε− 1

2d
)
.

In particular, we can see that maxS∈S(~ε,D) ε(λI ◦~̀S) ≤
ε if and only if d ≥ 4

3ε.

This result reinforces our intuition that the labelers
need to significantly differ from one another if we want
to improve upon the best-performing labeler in the
worst case.

4.2 Labelers’ Output Distribution

Up to now, we have shown that the pairwise differ-
ences can be effectively used in order to find ways to
aggregate the output of the labelers with error guar-
antees. Most importantly, the pairwise differences can
be approximated with only unlabeled data. As there
are only O(n2) pairwise differences, the computation
of these values require a limited amount of data if n is
small. A natural question is whether there are other
quantities that require more unlabeled data to be es-
timated, but provide further knowledge on the set of
labelers.

The second quantity that we will use together with the
error rates to characterize the effectiveness of our set

of labelers is the distribution of the output of the la-
belers. We will show that this approach always yields
a tighter accuracy than using pairwise differences, but
it requires more unlabeled data in order to obtain ac-
curate estimates.

For any ~o ∈ {0, 1}n, we can estimate the probability
that a set of labelers S output ~o. In particular, let
q~o

.
= Px∼D(~̀S(x) = ~o) be this probability for any

~o ∈ {0, 1}n. Let Q be the collection of the values
q~o. We remark that Q can be estimated by only using
unlabeled data.

Let ~ε = (ε1, . . . , εn), and let Q be defined as above. We
define Ŝ(~ε,Q) as the family of all possible set of label-
ers {`1, . . . , `n} such that ε(`i) = εi for i = 1, . . . , n,
and the output of the labelers follows the distribution
described by Q. To identify the optimal classification
function subject to ~ε and Q, we need to evaluate for
each I ⊆ [n] the worst-case error of the majority vote
of the labelers in I, that is:

max
S∈Ŝ(~ε,Q)

ε(λI ◦ ~̀S) . (6)

It is important to note that Q provides more infor-
mation on the behaviour of the output of the labelers
than the pairwise differences. Given Q, it is easy to
compute the pairwise differences D between the label-
ers, but the opposite is not possible. It immediately
follows that Ŝ(~ε,Q) ⊆ S(~ε,D), which implies

max
S∈Ŝ(~ε,Q)

ε(λI ◦ ~̀S) ≤ max
S∈S(~ε,D)

ε(λI ◦ ~̀S)

Given the error rates ~ε, and the distribution of the
output of the labelers described by Q, it is possible
to compute the value (6) for I = {i1, . . . , ik} ⊆ [n]
through a linear program. The strategy is the same
used while working with the pairwise differences, and
in particular let p~a be defined as in (4). Again, the
values p~a for ~a ∈ {0, 1}k are the variables of the lin-
ear program. The only change is that we replace the
constraints on the pairwise differences with the con-
straints on the output of the distribution of the la-
belers. In order to formalize the latter constraints,
it is convenient to introduce some notation. For any
~a ∈ {0, 1}k, let r (~a = (a1, . . . , ak)) = (b1, . . . , bk) be
the function that flips every bit in a vector of k bits,
i.e., bj = 1 − aj for j = 1, . . . , k. For any ~o ∈ {0, 1}k,
let h~o be the probability that for an element x ∼ D,
the vector (`i1(x), . . . , `ik(x)) is equal to ~o. The val-
ues h~o can be computed from Q by marginalizing the
distribution of the output of the labelers; in particular
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we have that:

h~o = Px∼D((`i1(x), . . . , `ik(x)) = ~o)

=
∑

~u∈{0,1}n:oj=uij

for j=1,...,k

q~u .

In this case, the formulation of the linear programming
is the following:

max
S∈Ŝ(~ε,Q)

ε(λI ◦ ~̀S) = max
∑

~a∈{0,1}k:|~a|1<k/2

p~a (7)

(a)
∑

~a∈{0,1}k:aj=0

p~a = εij for j = 1, . . . , k

(b) p~a + pr(~a) = h~a + hr(~a) for ~a ∈ {0, 1}k

(c)
∑
~a

p~a = 1

(d) p~a ≥ 0 ∀~a

The constraint (b) now requires the values p~a to satisfy
the distribution of the output of the labelers instead
of the pairwise differences. This linear program has
O(2|I|) variables and O(2|I|) constraints.

Proposition 6. Given I ⊆ [n], and n labelers having
error rates ~ε, and distribution of their outputs follow-
ing Q, the worst-case error of the majority vote of the
labelers in I, i.e. maxS∈Ŝ(~ε,Q) ε(λI ◦ ~̀S), is the solu-

tion of (7).

The same algorithmic extensions used with the previ-
ous linear program can be used in this setting to find a
subset of labelers whose majority vote has low error in
the worst case. We remark that if there is enough un-
labeled data to accurately estimate Q, this approach
yields a tighter bound than the one obtained with the
previous linear program.

4.3 LP with Greedy Extensions

The previous approaches are practical only for small
numbers of labelers, since we need to consider

(|S|
|I|
)

possible majority functions on subsets of |I| label-
ers. While our method performs well in many set-
tings, even with majority functions of only 3 labelers,
there are scenarios in which a small number of label-
ers cannot provide enough information. Therefore, we
develop extensions of the LP approach that considers
larger subsets of labelers combined in a greedy fash-
ion. Starting from every labeler i ∈ S, we repeatedly
add the two labelers that minimize the worst-case er-
ror rate of the majority vote (computed either using
the method of Section 4.1 or Section 4.2) until there is
no more improvement. The output of this algorithm is
the subset that minimizes the worst-case error found.

The pseudocode of the algorithm is reported in the
appendix. This algorithm captures more information
from the original set of labelers compared to the pre-
vious method. In particular, this algorithm outputs a
subset that is at least as accurate in the worst case as
any small size (≤ 3) subset.

5 EXPERIMENTS

We demonstrate the performance of our methods on 45
image classification tasks. We compare our linear pro-
gram approaches with crowdsourcing, semi-supervised
learning, and weakly supervised learning approaches.
The selection of the three labelers minimizing the
worst-case error computed using the closed formula
in Proposition 5 is denoted as PGMV (Performance-
Guaranteed Majority Vote). Our algorithmic exten-
sions in Section 4.3 are denoted by PGMV-P and
PGMV-D, where P denotes using labelers’ pairwise
differences and D denotes using labelers’ distributions
to compute the worst-case errors. The code for the
experiments is available online.1

Table 1 illustrates that our methods are on average 1
percentage point more accurate than a state-of-the-art
weakly-supervised approach and 5 percentage points
more accurate than the Dawid-Skene model on tasks
that have inaccurate weak labelers. Our methods are
within 1 percentage point of the state-of-the-art al-
ternative’s accuracy and achieves 2 percentage points
higher than Dawid-Skene’s accuracy when labeler ac-
curacies are high. In addition, none of the alternative
methods provide theoretical guarantees without any
assumptions on the joint distribution of labeler out-
puts and true labels.

5.1 Baselines and Related Algorithms

We describe the various baselines and existing algo-
rithms to which we compare our methods.

Majority Vote (MV): Majority vote predicts the
most common label among the labelers’ outputs. This
method performs well on tasks that have weak label-
ers with conditionally independent outputs but poten-
tially fails when there are complex dependencies.

Majority Vote with Flips (MV Flip): Since our
methods require that each weak labeler has an error
ε < 0.5, we flip the votes of any labeler with estimated
accuracy less than 50%. We consider the resulting
majority vote with flipped labelers to understand the
impact of this flipping on the resulting accuracies.

Dawid-Skene Estimator (DS): The Dawid-Skene

1https://github.com/BatsResearch/
mazzetto-aistats21-code

https://github.com/BatsResearch/mazzetto-aistats21-code
https://github.com/BatsResearch/mazzetto-aistats21-code
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Table 1: Comparison of our methods and benchmarks on various image classification tasks. Numbers are
accuracy percentages reported as mean ± standard error, computed over 5 random seeds. The fraction after cp
represents the group of tasks when sorted by committee potential.

Dataset MV MV Flip DS ALL PGMV PGMV-P PGMV-D

AwA2 (cp 1
5 ) 55.9± 2.7 79.1± 1.1 80.0± 1.8 84.2± 0.9 82.0± 1.1 85.5± 0.9 84.3± 1.3

AwA2 (cp 2
5 ) 81.4± 1.7 90.0± 0.7 94.7± 0.4 93.5± 0.5 93.7± 0.4 93.7± 0.5 94.1± 0.4

AwA2 (cp 3
5 ) 88.6± 1.1 92.3± 1.0 96.7± 0.3 95.5± 0.5 95.4± 0.3 95.9± 0.3 96.3± 0.2

AwA2 (cp 4
5 ) 93.7± 0.9 94.2± 0.6 96.8± 0.2 93.8± 0.8 96.8± 0.2 97.0± 0.3 96.8± 0.2

AwA2 (cp 5
5 ) 97.3± 0.9 97.6± 0.6 99.0± 0.2 96.3± 0.7 97.5± 0.3 98.3± 0.3 98.8± 0.2
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Figure 1: Comparison of our algorithms and other existing methods when varying the amount of labeled data
of the AwA2 dataset. The left graph is averaged over the first group of AwA2 tasks when sorted by committee
potential less, while the right graph is averaged over the fifth group. Accuracies are computed over 3 splits of
labeled and unlabeled data, and the error bars are the standard error. The rightmost point is the values in Table
1 and is averaged over 5 seeds.

estimator (Dawid and Skene, 1979) is a standard
crowdsourcing method to learn a weighting for each of
the weak labelers. However, this approach makes the
independence assumption, so the weighting may not
be accurate in dependent cases. This is also the de-
fault aggregation method in the Snorkel system (Rat-
ner et al., 2017). We use a semi-supervised version,
so the labeled training data available is also used for
learning.

Adversarial Label Learning (ALL): Adversarial
Label Learning (Arachie and Huang, 2019) is a weakly
supervised learning approach that trains a model in an
adversarial fashion. This process is similar to our work
since it uses bounds on the accuracies of weak super-
vision sources to constrain the solution space of the
adversary. In our experiments, ALL trains a one-layer
neural network on the outputs of the weak lablers,
which is a more complex hypothesis class than what
our methods consider (majority vote). Note that ALL
does not provide any theoretical guarantees about its
performance or the termination of its training process.

5.2 Tasks

Animals with Attributes 2 (Xian et al., 2018) is a com-
mon benchmark for zero-shot learning, which we refer
to as AwA2. It consists of 37,322 images of 50 ani-
mals classes that are split into 40 seen and 10 unseen
classes. Each animal class is annotated with a feature
representation consisting of 85 attributes.

We perform binary classification on each of the pairs
of unseen classes to create 45 tasks. For all of our
45 image classification experiments, we split our data
into train and test data with an even 50-50 split. We
use the train data to evaluate the accuracies of our
weak labelers, and use the weak labelers’ outputs on
the test data to select our model and to perform eval-
uation. We group the 45 different tasks by the quality
of the weak supervision sources, which we measure by
committee potential (Berend and Kontorovich, 2015).
High committee potentials correspond to more poten-
tial improvement from aggregation if the independence
assumption is true, and heuristically captures the dif-
ficulty of the problem by looking at labeler accuracies
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as a group. We sort the tasks by increasing committee
potential and group them into 5 equally sized bins of
9 tasks to report our results. The bins contain ranges
of committee potential scores of [1, 5.5], [6.5, 12], [12,
16.5], [18, 24.5], and [25, 61] respectively.

5.3 Creating Weak Supervision Sources

To create weak supervision sources for our various clas-
sification tasks, the seen classes are used to train at-
tribute detectors. These classifiers try to detect at-
tributes like stripes, flippers, quadruped, etc. Each
detector is a pre-trained ResNet-18 (He et al., 2016)
with two fine-tuned linear layers. We perform clas-
sification on the unseen classes using the detected at-
tributes. These attribute detectors must transfer high-
level concepts of attributes from seen classes to unseen
classes. For example, one tries to transfer the knowl-
edge of humpback whales and other seen classes hav-
ing flippers to different classes such as seals having
flippers.

5.4 Varying Amounts of Labeled Data

We also perform experiments on varying amounts of
labeled data. When labeled data is very limited, there
is a greater chance of having bad estimates of weak la-
beler accuracies. For our method, when weak labeler
accuracies are very inaccurate, the constraints on the
linear program are sometimes not satisfied for differ-
ent subsets of labelers. In these cases, the worst case
bound cannot be computed for a subset of weak label-
ers, so our algorithm ignores these subsets.

Again, we report our results as groups of AwA2 pairs
by committee potential, as in Table 1 above. We omit
the MV and MV Flip results on our figures as their
performance remains relatively constant with more la-
beled data and are almost uniformly beaten by our
methods, DS, and ALL. Figure 1 contains the perfor-
mance of our methods on the first and fifth groups
of AwA2 tasks, as we increase the amount of labeled
data to make our labeler estimates. We include the
graphs for the other groups in the appendix; these
other groups illustrate similar results but contain less
extreme committee potential values.

On tasks with inaccurate labelers, which is represented
by the left graph, our methods outperform the semi-
supervised DS baseline, achieving 15 percentage points
higher on average over each amount of labeled data.
On tasks with accurate labelers, which is captured by
the right graph, our approaches are within a half per-
centage point of DS and outperform ALL by 3 percent-
age points, when averaged over all ranges of labeled
data.

6 CONCLUSION

Our work provides theoretical guarantees for learning
to combine weak labelers in an inductive setting, with-
out placing any assumptions on the distribution of the
labelers’ errors, such as independence. We devise a lin-
ear program based approach to analytically compute
a worst-case error bound of a set of labelers’ major-
ity vote given their accuracies and the distribution of
their agreements. We provide greedy algorithms to ef-
ficiently scale our approach to larger subsets of label-
ers. Our experiments show that our methods match
or outperform alternative approaches, while providing
worst-case error bounds on the majority vote of label-
ers for weak supervision.
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Supplementary Materials: Appendix

7 MISSING PROOFS

Proof. (Proposition 1) We will define a set of n labelers with error rates ε, a distribution D over the domain
X , and a binary classification y of X that achieve an error rate for f∗ equal to 2εn/(n + 1). Number the
labelers from 0 to n − 1. The domain X can be partitioned in n + 1 subsets A and B0, . . . , Bn−1 so that
Px∼D(A) = 1− 2nε/(n+ 1) and Px∼D(Bi) = 2ε/(n+ 1) for i = 0, . . . , n− 1. For each x ∈ D, labeler j outputs
1 if and only if x ∈ Bi, for i ∈ {j mod n, j + 1 mod n, . . . , j + (n − 1)/2 mod n}. The labelers output 0 for
each x ∈ A. For each x ∈ A, we have that y(x) = 0 hence all labelers are correct, and the function f∗ clearly
agrees with the output of the labelers. For each x ∈ B0 ∪ . . . ∪Bn−1, we have that y(x) = 0. By the definitions
of the subsets B0, . . . , Bn−1, we can observe that for each subset Bi there are exactly (n + 1)/2 labelers that
output 1 and (n − 1)/2 labelers that output 0. Hence, for all these subsets, the function f∗ returns 1. This
implies that for each region Bi, the labelers that output 1 are wrong. Since each labeler outputs 1 in (n+1)/2 of
these subsets, each labeler is wrong in a subset of the domain that has probability 2ε

n+1 ·
n+1
2 = ε. Also, for each

x ∈ B0∪ . . .∪Bn−1, the function f∗ fails to provide the correct answer, therefore f∗ is incorrect with probability
2εn/(n+ 1). This concludes the proof.

Proof. (Proposition 2) Suppose (w.l.g.) that ε1 ≤ . . . ≤ εn. For i = 1, . . . , n, let Wi be the subset of the
domain where the i-th labeler is wrong, i.e. Wi = {x ∈ X : `i(x) 6= y(x)}. We choose the labelers in a way such
that W1 ⊆ W2 ⊆ . . . ⊆ Wn. For any i = 1, . . . , n, the labelers from i to n are wrong in Wi, hence n − i + 1
labelers are wrong in Wi. Hence, the majority vote is wrong for any x ∈W(n+1)/2, and the statement follows as
Px∼D(x ∈W(n+1)/2) = ε(n+1)/2

Proof. (Proposition 3). We will prove the statement by showing that the left side of the equality is both greater

or equal and less or equal than the right side. It is straightforward to see that maxS∈S(~ε) minf∈F ε(f ◦ ~̀S) ≤
min{ε1, . . . , εn}, as we can just copy the output of the most accurate labeler.

We now show the other inequality. Consider a set of function S = {`1, . . . , `n}, and without loss of generality
assume that the labelers are in non-decreasing order based on their error rates. For i = 1, . . . , n, let Wi =
{x ∈ X : `i(x) 6= y(x)} be the subset of the domain where the labeler i is wrong. We choose S so that the
following holds W1 ⊆ . . . ⊆ Wn. Moreover, let y(x) = 1 if and only if x /∈ W1. Let ~1n be a vector of n bits

all set to 1. We have that Px∼D(y(x) = 1 ∧ ~̀S(x) = ~1n) = Px∼D(x ∈ (X −Wn)) = 1 − εn ≥ 1/2, and that

Px∼D(y(x) = 0 ∧ ~̀S(x) = ~1n) = Px∼D(x ∈ W1) = ε1. Hence, any function in F that maps the vector ~1n to 0
has error at least 1 − εn, and any function that maps the same vector to 1 has error at least ε1. Therefore, we
have shown that there exists a scenario where any function in F has error at least min{ε1, 1 − εn} = ε1. This
concludes the proof.
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Proof. (Proposition 5) For convenience, renumber the labelers to 1, 2 and 3. Observe that the linear program
(5) has 7 equality constraints and 8 variables. If we fix the value of the variable p000 = x, these constraints
impose a unique solution for the other variables. In particular, we have that:

p111 = 1− x− D1,2 + D1,3 + D2,3

2
p011 = (D1,2 + D1,3 − ε2 − ε3)/2 + x

p101 = (D1,2 + D2,3 − ε1 − ε3)/2 + x

p110 = (D1,3 + D2,3 − ε1 − ε2)/2 + x

p100 = (ε2 + ε3 −D2,3)/2− x
p010 = (ε1 + ε3 −D1,3)/2− x
p001 = (ε1 + ε2 −D1,2)/2− x

With this assignment, the objective function of (5) is equal to
∑
i 6=j(εi + εj − Di,j)/2 − 2x. Therefore, the

objective function is maximized by picking the least x that yields a feasible solution. The assignment above is
feasible if and only if each variable is ≥ 0. By setting these constraints, we obtain the following lower-bounds
for x:

p000 ≥ 0 ⇐⇒ x ≥ 0

p100 ≥ 0 ⇐⇒ x ≥ (ε2 + ε3 −D2,3)/2

p010 ≥ 0 ⇐⇒ x ≥ (ε1 + ε3 −D1,3)/2

p001 ≥ 0 ⇐⇒ x ≥ (ε1 + ε2 −D1,2)/2

These lower-bounds on x can be equivalently stated as x ≥ q. By setting x = q, we conclude the proof.

8 ALGORITHM OF SECTION 4.3

Here, we report the pseudocode of the algorithm presented in Section 4.3. The pseudocode uses the method of
Section 4.1 to compute the worst-case error of set of labelers. Alternatively, the method of Section 4.2 can also
be used.

Algorithm 1 GreedySelection(~ε,D)

1: best-eps ← 0
2: best-I ← ∅
3: for i = 1, . . . , n do
4: I ← {i}
5: curr-eps ← εi
6: while minP⊆[n]/I:|P |=2 maxS∈S(~ε,D) ε(λI∪P ◦ ~̀S) < curr-eps do

7: P ← argminP⊆[n]/I:|P |=2 maxS∈S(~ε,D) ε(λI∪P ◦ ~̀S)
8: I ← P ∪ I
9: curr-eps ← maxS∈S(~ε,D) ε(λI ◦ ~̀S)

10: end while
11: if curr-eps < best-eps then
12: best-eps ← curr-eps
13: best-I ← I
14: end if
15: end for
16: return (best-I,best-eps)



Alessio Mazzetto, Dylan Sam, Andrew Park, Eli Upfal, Stephen H. Bach

9 ADDITIONAL FIGURES

We provide the additional figures for other groups of AwA2 tasks as we vary the amount of labeled data used to
make estimates of the labeler accuracies.
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Figure 2: Additional figurs for the comparison of our algorithms and other baselines when varying the amount of
labeled data. The upper left graph is averaged over the AwA2 tasks are the second group of tasks when sorted
by committee potential, and the upper right graph contains the third group of tasks. The bottom graph is the
fourth group of AwA2 tasks. Accuracies are reported as in the main text, computed across 3 different splits of
labeled and unlabeled data, and the error bars represent the standard error. The rightmost point is the values
from Table 1 and is averaged over 5 seeds.


