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Abstract
We test whether visually grounded meaning repre-
sentations for words can be improved by ground-
ing to sketches rather than to natural images. Intu-
itively, sketches encode higher-level abstract rep-
resentations of the concepts to which words refer.
We test empirically whether such abstractions are
beneficial for the purposes of grounded represen-
tation learning. We evaluate our representations
in terms of correlations with human inferences
about the semantic and visual similarity between
concepts. Our results suggest that grounding to
sketches yields better representations than does
grounding to other visual representations.

1. Introduction
Recent years have seen significant advancements in combin-
ing visual and textual information to learn grounded repre-
sentations of concepts. The problem of learning to ground
language is central to semantic understanding, and has been
studied within areas such as semantic parsing (Zettlemoyer
& Collins, 2012), video understanding (Feng & Lapata,
2010), and multimodal concept-learning (Johns & Jones,
2012). While there are several theories of what it means
to know a concept (Laurence & Margolis, 1999), they are
all unified in that they require some grounded notion of
what the object is in the real world i.e., what it does, what
it looks like, and what interactions it affords. Recent work
in multimodal NLP, specifically targeted towards lexical
semantics, has operationalised such notions with grounded
distributional models (Bruni et al., 2014; Silberer & Lapata,
2014; Lazaridou et al., 2015) which have achieved mea-
surable success when evaluated against human similarity
judgements of concepts.

Most past work has represented visual information either
in the form of manually specified attributes (represented
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Figure 1. Figure shows sample photos paired with human-drawn
sketches from the Sketchy dataset.

as sparse binary feature vectors) or as densely pixelated,
coloured photographs. In this paper, we propose to use hu-
man drawn sketches to learn grounded representations. Intu-
itively, sketches—in comparison to natural images—encode
higher-level abstract representations of the essential compo-
nents concepts to which words refer. From very young ages,
children use drawings as graphical representations to encode
their understanding of concepts in a visible format (Long
et al., 2018). Furthermore, the extraneous background infor-
mation and artifacts present in natural photos are often not
required by humans for comprehension (Das et al., 2017)
and can be exploited by statistical models (Agrawal et al.,
2018; Tommasi et al., 2017) to improve performance with-
out forming a satisfying representation of the concept in
question.

This paper therefore addresses the following question: does
grounding to sketches rather than other visual representa-
tions (e.g., natural photos or discrete visual attributes) yield
better meaning representations of lexical concepts? We com-
pare performance of our learned representations in terms of
correlations with human judgments of visual and semantic
similarity and in terms of categorisation of new visual input.
We observe that tasks that condition on visual information
in the form of sketches outperform those which use natural
photos by more than 4 points on average when compared to
human similarity judgements on a Spearman’s correlation
scale.
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2. Experimental Design
The goal of our experiments is to test whether visually-
grounded representations trained using sketch representa-
tions of concepts perform better than those trained using
natural images or discrete visual attributes. To maintain a
controlled comparison, we use the bimodal architecture in-
troduced by silberer2014learning which receives two inputs:
a visual component and a textual component. Our experi-
ments vary the representation of the visual component in
order to ascertain which of the three visual representations
allow learning of the best meaning representations. Specif-
ically, the visual component of the model receives natural
photos as input and is trained to represent this photo such
that it can predict one of three visual elements: a reconstruc-
tion of the natural photo itself, a sketch of the photo, or a
vector of discrete attributes describing the photo.

2.1. Data

We use the Sketchy dataset (Sangkloy et al., 2016); currently
the only dataset that contains natural photos paired with
sketches drawn for each photo, allowing us to run closely
controlled experiments. Other, larger sketch datasets (Ha
& Eck, 2017; Eitz et al., 2012) do not contain one-to-one
mappings between sketches and photos. To obtain attributes
for concepts, we use the VisA dataset (Silberer & Lapata,
2012) which tags each concept with visual attributes from
a taxonomy of 636 attributes (e.g., the concept dolphin has
attributes such as has jaws and has flippers).

For our experiments, we take the intersection of classes
contained in the VisA dataset and the Sketchy dataset, which
gives us 69 categories and 299 total attributes. The Sketchy
dataset gives us more than a 100 natural photos paired with
5 sketches per photo. To ensure all models are trained on
the same amount of data, we sample one sketch per photo.
We represent each image using the last 4096-dimensional
fully connected layer of a CNN pretrained on ImageNet (we
use VGG16 (Simonyan & Zisserman, 2014)). We hold out
5 images from each class to evaluate models on and train on
all remaining images. As input to the textual component, we
use fixed 300-dimensional GloVe representations for each
class label. This means, that each class gets the same text
input i.e., the pretrained GloVe vector for that class, but a
unique visual input i.e., features for the image.

2.2. Model

We follow silberer2014learning and use a bimodal autoen-
coder to learn grounded representations. However, our setup
differs from theirs in that our model takes as input a raw
RGB image whereas their model takes as input a visual de-
scription of the image in the form of sparse attributes. In our
setup, each training sample consists of a a 224×244 dimen-

sional natural image and a label (e.g., one of the 69 classes)
represented as a pretrained GloVe vector. These serve as
input to the visual and textual components respectively.

Figure 2. Our model architecture. Blue and orange correspond to
textual and visual encoders respectively. Red depicts the predic-
tion loss that predicts the class to which the latent representation
belongs. This figure shows the Sketch+Text model, while the
Photo+Text and Attr+Text models share the exact same architec-
ture where the decoder (in orange) reconstructs either the photo or
attribute vector.

The architecture of both the visual and textual components
consists of 3 linear encoding layers followed by ReLU acti-
vations. We use a dropout of 0.2 at each encoding layer. We
concatenate the visual and textual encoded representations
and apply another linear transformation to obtain a latent
representation of 69 dimensions. Each of these stacked lay-
ers form the visual and textual encoder respectively. Our
decoders contain the exact same configuration as the en-
coders, in reverse order i.e., we apply a linear transform to
the 69-dimensional latent representation, split it into visual
and textual components and transform each with three de-
coding layers to reconstruct both visual and textual features.
We use an L1 loss to compare the reconstructed output to the
ground truth. We furthermore impose a supervised criterion
on the latent representation as in (Silberer & Lapata, 2014)
to classify the input, by applying a softmax layer over the
69 dimensional representation, to predict the class that the
input image belongs to. The model therefore learns both
from the feature representations of the visual and textual
components that learns to reconstruct, as well as from the
label that it tries to predict.

For our experiments, we perform comparisons of three set-
tings (Figure 2). Each variant takes the same input (natural
photo and word vector). We vary the visual component that
the autoencoder aims to reconstruct, specifically: the natural
photo (Photo + GloVe), the sketch (Sketch + GloVe), or
the attributes (Attribute + GloVe). For comparison, we also
evaluate unimodal variants of our model i.e., an autoencoder
with only visual input in three settings (Sketch, Photo, At-
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tributes). In all configurations, the latent representation
serves as the meaning representation that we evaluate.

2.3. Evaluation

We evaluate the representations based on their correlation
with human judgments of semantic and visual similarity
between concepts. We use the dataset of human judgements
collected by silberer2012grounded which are similarity rat-
ings obtained for pairs of words on a scale of 1-5. For
example, the concepts chicken and owl have a high seman-
tic similarity of 4.25 but lower visual similarity of 3.00.
We use the cosine distance as a measure of similarity be-
tween representations, and compute correlation with human
judgments using Spearman’s ρ. We compare these to corre-
lations obtained from unimodal representations for text and
images i.e., 300 dimensional word representations (GloVe),
299 dimensional k-hot attribute representations, 4096 di-
mensional image representations obtained from a pretrained
CNN (VGG). It is important to note that the GloVe and
attribute representations are not obtained over the same test
set but are fixed representations for each concept. All other
representations (e.g., Sketch + Photo) are obtained by using
each trained model on test images and averaging representa-
tions from all images in the class.

3. Results
Table 2 shows correlation coefficients of model predic-
tions against human visual and semantic similarity rat-
ings. For comparison, we list the results reported in sil-
berer2014learning, although we note that their models were
trained and tested on different input and are not directly
comparable. Consistent with prior work, we see that the
bimodal autoencoders consistently outperform the unimodal.
More interestingly, our results show that in both cases (uni-
modal and bimodal), models trained using sketches outper-
form those that use natural photos or attributes in terms
of semantic similarity. In the bimodal case, sketches out-
perform photos on visual similarity as well, and perform
equally to attributes. While the text-only representations
(GloVe and Attributes) are more highly correlated with hu-
man judgements, they are not directly comparable — their
use is limited in learning grounded representations that taken
in different images as input every time.

While there is only a slight gain in performance from the
model that conditions on sketches, qualitative analysis of
the predictions made by models on test images gives us use-
ful insight into the differences in the three visual elements.
These predictions are obtained by applying a softmax acti-
vation over the latent representation and then ranking the
classes. Figure 3 shows examples of the top three predicted
categories for the each of the three bimodal autoencoders.
We see that in unusual cases (e.g., an airplane that is not

Input Output Sem Vis

Photo + Text Sketch + Text 0.71 0.69
Photo + Text Photo+ Text 0.67 0.64
Photo + Text Attr. + Text 0.68 0.69
SAE Attr. + Text *0.70 *0.64

Photo Sketch 0.44 0.40
Photo Photo 0.39 0.42
Photo Attributes 0.43 0.40

VGG 0.51 0.54
Word (GloVe) 0.79 0.64

Attributes 0.78 0.69

Table 1. Correlation with human judgments of semantic and visual
similarities. Top section shows bimodal models. SAE results are
copied from those reported in silberer2012grounded and are not
directly comparable. Second section shows unimodal (vision-only)
models; VGG and Glove represent SOTA unimodal representa-
tions. Attributes (bottom row) can be viewed as a weak upper
bound, as they reflect similarities derived from explicit, human-
coded attributes of concepts that our learned representations will
implicitly capture.

outdoors, but in a museum) the photo model conditions
heavily on artifacts and misclassifies the image (as e.g.,
saxophone, trumpet) possibly by virtue of the colour and
background of the image, while the sketch and attribute
models predict more sensible classes (e.g., helicopter, air-
plane). We note that while sketches are harder to obtain
than natural images, related work that explores generative
models to draw sketches (Ha & Eck, 2017) can be used to
augment data to allow building of better visually grounded
representations. A direction to explore in future work, is
whether automatically-generated sketches can substitute for
human-drawn ones.

4. Related Work
Previous work on grounded representations has used nat-
ural images (Lazaridou et al., 2015) or discrete attributes
(Silberer & Lapata, 2012) to learn representations of con-
cepts using both visual and textual information. Specifically,
autoencoders have been used to derive representations for
concepts (Silberer & Lapata, 2014) by combining visual
and textual modalities. We build directly on the work by
silberer2014learning, which uses stacked bimodal autoen-
coders.

Previous work dealing with sketches has largely been fo-
cused on tasks like sketch-based image retrieval (Eitz et al.,
2012; Sangkloy et al., 2016), 3-D shape-retrieval (Wang
et al., 2015) and cognitively motivated analyses of human-
drawn sketches (Long et al., 2018; Eitz et al., 2012). Other
work has focused on training recurrent neural networks to
draw stroke based representations of categories (Ha & Eck,
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Figure 3. Example ranked predictions made by models. Top: all
models perform well. Middle: photo model is biased by back-
ground information. Bottom: sketch model to be biased by the
sketch outline.

2017). Our work draws on the core idea of using sketches
and combines this with methods that attempt to learn se-
mantic meaning representations. Specifically, we attempt
to map between visual information in the form of sketches
and textual information in the form of dense word vectors
to learn grounded meaning representations for words.

Psychological work on inferring representations from be-
havior has concluded that human similarity judgments cap-
ture stimulus generalization behavior (Shepard, 1987) and
have been shown to encode the complex spatial, hierarchi-
cal (Peterson et al., 2018), and overlapping (Shepard &
Arabie, 1979) structure of human representations, around
which numerous models of categorization and inference are
built (Goldstone, 1994; Nosofsky et al., 1992; Nosofsky,
1987). If we can capture similarity judgments, we will have
obtained a considerably high-resolution picture of human
psychological representations. Our approach draws from
such techniques and uses human similarity judgements to
evaluate representations to test the information they encode.

5. Conclusion
We presented a method that learns visually grounded rep-
resentations of concepts by making use of human-drawn
sketch representations. Our evaluation shows that an ap-
proach that requires a model to reconstruct visual informa-
tion (as sketches) and textual information (as dense word em-
beddings) allows learning of representations that are more
correlated with human judgements. This outperforms a
model that replaces sketches with natural photos, highlight-

ing the information gained from sketch representations.

Looking forward, we believe that sketch representations
are worth studying both qualitatively (e.g., analysing ren-
derings of different concepts from different humans) and
quantitatively (e.g., analysing the effect of training models
to condition on such representations). Our analysis and
evaluation on a small dataset of photos paired with sketches
suggests that this is a promising direction for future explo-
ration.
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