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Abstract

Prompted weak supervision (PromptedWS) applies pre-trained large language
models (LLMs) as supervision sources in a weak supervision setup to efficiently
distill information from LLMs and obtain labeled datasets at scale. We further
extend the use of LLMs to address one of the key challenges in weak supervision:
learning the dependency structure among noisy supervision sources. In this work,
we highlight the challenge of structure discovery in PromptedWS. We propose
a Structure Refining Module, a simple yet effective first approach based on the
similarities of the prompts by taking advantage of the intrinsic structure in the
embedding space. At the core of our method are Labeling Function Removal (LaRe)
and Correlation Structure Generation (CosGen). Compared to previous methods
that learn the dependencies from weak labels, our method finds the dependencies
that are intrinsic in the embedding space. We show that Structure Refining Module
improves the PromptedWS by up to 12.7 points on benchmark tasks.

1 Introduction
Distillation from computationally intensive large language models (LLMs) is a valuable technique for
mitigating the high costs of running LLMs directly. However, if the LLM outputs used for distillation
are noisy or biased, the distilled model might underperform the original model. Recent research
[1, 2] in prompted weak supervision (PromptedWS) aims to integrate efficient distillation from LLMs
with robust denoising strategies from programmatic weak supervision [3, 4]. In programmatic weak
supervision, multiple noisy sources of labels are combined to infer probabilistic labels by resolving
the agreements and disagreements. This is usually accomplished with a probabilistic label model. The
probabilistic labels are then used to train an end model to solve the task. However, the sources can
exhibit spurious correlations, resulting in a label model that cannot accurately resolve their conflicts.
To address this issue, structure discovery methods for weak supervision aim to learn the statistical
relationships among sources in the absence of ground truth labels [5, 6].

In PromptedWS, prompted LLMs are the sources of supervision. Unlike traditional sources that are
usually written in code, prompts can be correlated due to sharing an underlying LLM and computa-
tionally expensive at the scale of distillation. These issues make existing structure discovery methods
challenging to apply to PromptedWS. Nevertheless, prompted LLMs offer a unique opportunity to
solve the weak supervision structure discovery problem: LLMs provide rich internal structure within
their embedding space. The key idea lies in leveraging the internal representations of prompts to
discover the underlying structures among them. Our findings suggest that the similarity between
these prompt representations can serve as a predictor of potentially harmful correlations. Moreover,
structure discovery using the embedding space can also bring significant advantages in computa-
tional efficiency. In light of these observations, we highlight the problem of structure discovery in
PromptedWS as an important challenge for efficient and effective distillation of LLMs.

In this paper, we present Structure Refining Module, a simple yet effective first solution to this
novel problem (see Figure 1). Our approach allows the end users to quickly and accurately discover
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Figure 1: Prompted weak supervision workflow showing the Structure Refining Module as a plugin.

the correlations while significantly reducing the computational cost for both structure learning and
label modeling. Structure Refining Module serves as a plug-in for existing PromptedWS workflows.
To summarize, our main contributions are three-fold: (1) We propose a novel method for efficient
structure learning in prompted weak supervision by leveraging similarity in the embedding space
of prompted labeling functions. (2) We demonstrate the effectiveness of our proposed method by
showing that it outperforms the prompted weak supervision baseline by an average of 5.9 points while
saving significant computation. (3) We conduct comprehensive ablation and analysis experiments.
We validate the core assumptions and analyze the contribution of each component of our method.

2 Background & Related Work
Programmatic weak supervision As an alternative to costly manual labeling, programmatic weak
supervision [7, 3, 4] estimates the accuracy of weak sources without any labeled data. In programmatic
weak supervision, users encode various weak supervision sources such as user-written heuristics
[3, 8, 9], knowledge bases [10, 11], pre-trained models [12–14, 1, 2], and third-party tools [15] into
labeling functions (LFs), which can either vote for a label or abstain.

Integrating LLMs into weak supervision Prompting is a powerful technique for many few-shot
and zero-shot applications with large language models [16]. Prompting has been used to create
and modify datasets in many ways [17–24]. Recent studies explored integrating prompting and
programmatic weak supervision [1, 2]. Prompting also offers a unique opportunity to relax rigid
code-based programmatic weak supervision sources.

Structure learning in weak supervision Multiple methods for learning statistical dependencies
among LFs have been proposed [5, 6, 25]. Bach et al. [5] and Varma et al. [25] learn dependency
structures from the votes of the LFs. Varma et al. [6] infer the structure through static analysis of
the code specifying the LFs, with additional assumptions that the LFs operate over domain-specific
primitives. With the dependency structure, many methods can then incorporate this information into
the label modelling process for improved label quality, either through factor functions [7, 26] or graph
structures [27–29].

Prompted weak supervision setup In a PromptedWS [1, 2] setup, given a dataset D =

{x1, x2,⋯, xn} of classification task with n unlabeled data points and each xi(i ∈ [n]) with
an unobserved true label yi ∈ Y , the goal is to infer the true label using weak supervision. We are
also given a small set of heuristics created manually for labeling the unlabeled data. For example, in
the case of labeling spam comments, we may find that many spam examples contains call to action,
for example, asking readers to subscribe to a YouTube channel. In PromptedWS, these heuristics
are expressed as natural language prompts, which can be fed into LLMs for answers. We then can
map the answer to a label according to the heuristics. Formally, by observing the features in the
development set, the SME could design a set of heuristics H = {h1,⋯, hm} as well as a label map
M ∶ S → Y ∪ {∅}. The heuristics are encapsulated by a prompt template. For example, the prompt
template could be

Does the following comment ask the reader to do something? [TEXT]
where [TEXT] is a placeholder for the text of each comment. By feeding this template to the pre-
trained LLM A, it returns a text: s = A(h, x) ∈ S , where S is the set of all possible strings that could
be returned from the LLM. Then the label map M maps the returned answer s to one of the class
labels within the label space λi ∈ Y to vote for a label or maps s to a special symbol ∅, indicating
abstaining and not voting for any label. For the above example, the label map would map positive
responses such as YES and True to the SPAM label and all the other responses to abstentions.
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Combining the above prompt template and label map together, we get a set of prompted labeling
functions: SLF = {M(A(h1, ⋅)),⋯,M(A(hm, ⋅))}. Applying the above m LFs to the unlabeled
dataset D = {x1,⋯, xn} would create a n×m label matrix L. The rest of the workflow remains the
same as a standard weak supervision framework: a label model is used to aggregates the votes in
L to produce probabilistic estimates of the true label. While many label modeling methods assume
conditional independence among the LFs given the latent label [7, 3], recent label models may
consider user-specified dependency structures [28]. Finally an appropriate end model is trained by
minimizing the expected empirical risk with respect to the probabilistic estimates of the true labels.

3 Approach
Our method contains two sequential components: Labeling function Removal (LaRe) and Correlation
Structure Generation (CosGen). LaRe is designed to remove heavily correlated LFs while balancing
performance and efficiency. We also introduce CosGen to estimate the dependency structures for the
prompted LFs. Pseudocode of our method can be found in Appendix Section B

LaRe The goal of LaRe is to remove redundant prompted LFs in order to reduce computation need
while maintaining labeling accuracy. To begin, the user may decide how many LFs should be removed
by examining the similarity matrix among the prompted LFs set SLF. Higher concentrations in the
similarity matrix indicate higher correlations or possibility of redundant LFs to be removed. In
addition, more LFs could lead to more redundant LFs to be removed when the labeling function
set SLF is large. After deciding how many labeling functions to be removed, potentially redundant
LFs are then identified, removed based on their similarity matrix M . Next is to rank the pairwise
similarities for each LF pair. Then at each step, we find the LF pair that has the largest similarity and
remove the LF with a larger index to keep our algorithm deterministic. Removing the redundant LF

results in a new set of LFs S
′

LF, where ∣S
′

LF∣ = m −mr and mr is the total number of LFs removed.

CosGen CosGen aim to estimate the dependency among LFs based on the correlations indicated in

the similarity matrix M
′

, which contains only the correlation information of the refined LF set S
′

LF.

One key intuition is to construct dependency for highly correlated LFs indicated by M
′

. However, the
structure directly estimated from this method may be non-identifiable and cannot be used for label
modeling. In order to guarantee the structure to be identifiable, we first find two LFs that have the
smallest correlation and assume these two to be mutually independent while at the same time, also to
be independent with all the other LFs. Then we find the rest dependencies by assigning edges to LFs
with high similarity. The hyperparameter for CosGen is the number of edges (me) in the graph and
it dictates the sparsity of the graph. In practice, we can also replace this parameter to a percentage
threshold on the total number of possible edges. Note that me ≤

(m−2)⋅(m−3)
2

. The structure inferred
from our similarity matrix can be then passed to the label model.

4 Experimental Results
Dataset We evaluate on three datasets: YouTube [30], SMS [31], and Spouse [32]. (Please refer to
the summary of the datasets in Appendix Section D.) We follow the prompted labeling functions
(LFs) from [1], which are translated from LFs from WRENCH [33].

Baselines We empirically evaluate the our method against three baselines: (1) the standard weak
supervision with LFs in WRENCH [33]. (2) PromptedWS [1] (3) PromptedWS with weak supervision
structure learning (WSSL) [25] by passing the structure learned from WSSL to the label model in the
PromptedWS) We use the evaluation metrics specified by WRENCH [33] for the three datasets.

Setup We follow the conventional workflow of programmatic weak supervision. For each dataset
in our analysis, we assume the training splits are unlabeled, the LFs (either prompted LFs in
PromptedWS or code-based LFs from WRENCH) are applied to the unlabeled training splits to
generate weak labels. Throughout our experiments, we use T0++ [34]. In all of our experiments,
unless otherwise specified, we use FlyingSquid [28] as our label model to combine and denoise the
labelers’ votes into probabilistic labels, which are then used to train a RoBERTa[35]-based end-model.
We pick the hyperparameters with the validation split provided by WRENCH. More details about the
experiments can be found in Appendix Section E.

Results Table 1 outlines the performance of the 3 baselines. On average, our method improves 13.7
points compared to WRENCH, 5.9 points compared to PromptedWS and 1.1 points compared to
PromptedWS+WSSL. Experimental results demonstrate that our Structure Refining Module can
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Table 1: Performance mean and standard error of the 4 approaches with 5 random seeds.
YouTube(Acc) SMS(F1) Spouse(F1)

WRENCH [33] 94.6(0.5) 93.5(0.7) 25.5(1.8)
PromptedWS [1] 94.8(1.2) 90.0(4.1) 52.1(1.3)
PromptedWS + WSSL [25] 93.0(1.3) 94.5(1.7) 63.9(0.9)
PromptedWS + Structure Refining Module 95.6(0.4) 94.2(1.4) 64.8(0.2)

significantly improve the performance over the vanilla PromptedWS. PromptedWS in complementary
with our method can achieve superior performance, outperforming the WRENCH in all the three
datasets used in our experiment. Additionally, our method outperforms or achieves comparable result
to the state-of-the-art structure learning method WSSL [25].

5 Ablation and Analysis
Similarities reveal correlations Our goal is to learn more expressive correlations that are invariant
to data. We formulate experiments to validate the idea that if two labeling functions (LFs) are
correlated, removing one may not significantly harm the model’s performance. We show that after
removing one of the most correlated LFs, the result either improved or slightly dropped below
the baseline. This further suggests that the similarity matrix can reveal information about the real
correlations of LFs. For details about this ablation, please refer to Appendix Section F.

Removing LFs can improve performance In practice, the number or portion of removal should be
more fine-grained and tailored to the total number of labeling functions for better performance. We
conduct experiments to compare the performance of LaRe under different removal rates and exam
the effect of LFs removal. Our experiments (See Appendix Section G) show that using LaRe alone
could improve the performance.
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Figure 2: Performance on different removal rate. Dashed
lines are PromptedWS without any removal. Showing results
of removing 10%, 30%, 50%, 70% of the LFs.

Performance v.s. efficiency One ben-
efit of removing redundant LFs is ef-
ficiency: when the total number of
labeling functions is reduced, we are
prompting less examples to the LLMs
and therefore save more computations
and time. Our experiments show that
it is not always a trade-off but some-
times could be a win-win with Struc-
ture Refining Module.

Correlation structure generation We compare the CosGen module of our Structure Refining
Module with weak supervision structure learning (WSSL) [25], a state-of-the-art structure learning
for programmatic weak supervision that learns a sparse structure from data. We evaluate and analyze
both methods in terms of performance and efficiency. The detailed performance comparisons are
given in Table 8 and Appendix Section H. The time and computational cost for CosGen is negligible
while the time of learning structures using WSSL depends on the data and the number of LFs.

Table 2: WSSL runtime for inferring
LFs structures.

YouTube SMS Spouse
time(s) 0.11 24.76 0.15

As shown in Table 2, structure learning with WSSL takes
around 0.1s for YouTube and Spouse dataset and around
24s to learn a structure of SMS for WSSL. In contrast,
CosGen produces a structure that is as effective as WSSL,
but with negligible computation time.

6 Conclusion
In this paper, we propose Structure Refining Module, a novel approach for efficient structure discovery
and management in prompted weak supervision setup. Our approach asks large language models for
information beyond the inference output, leveraging similarities in the embedding space to detect
redundant LFs and learn the dependency structures among prompted LFs. We demonstrate the
effectiveness of our approach through extensive experiments and provide comprehensive ablation
analysis for Structure Refining Module. We believe that the Structure Refining Module is a valuable
tool for weak supervision practitioners who wish to optimize their workflow for both efficiency and
performance. In future work, we plan to further investigate scalable and robust integration of Large
Language Models into Programmatic Weak Supervision workflows.
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A Code and Extended Experiments

Please find the code of the preliminary experiments included in this paper from https://github.
com/BatsResearch/su-bigdata23-code. For more extensive experiments and analysis, please
refer to our 2023 IEEE BigData Paper [36].

B Pseudocode

Our method contains two sequential components: Labeling function Removal (LaRe) and Correlation
Structure Generation (CosGen). LaRe is designed to remove heavily correlated LFs while balancing
performance and efficiency. It can be especially helpful when the total number of LFs is very large.
In addition to LaRe, we introduce CosGen to estimate the dependency structures for the prompted
LFs. We describe the pseudocode in 1.

Algorithm 1 Pseudocode for Structure Refining Module

1: Input: Similarity matrix M , original Prompted LF set SLF, number of LF to be removed: mr,
number of edges in the graph: me.

2: Sr = ∅, E = ∅
3: // Labeling function removal (LaRe)
4: for t ∈ [mr] do
5: (i, j) = argmaxMi,j

6: k = max{i, j}
7: Sr ← Sr ∪ {k}
8: Mk,∶ ← 0,M∶,k ← 0
9: end for

10: S
′

LF ← SLF/Sr

11: // Correlation structure generation (CosGen)

12: Let M
′

be the similarity matrix of LFs in S
′

LF

13: (i, j) = argminM
′

i,j

14: M
′

i,∶ ← 0, M
′

∶,i ← 0, M
′

j,∶ ← 0, M
′

∶,j ← 0
15: for t ∈ [me] do
16: (i, j) = argmaxM

′

i,j

17: E = E ∪ {(i, j)}
18: M

′

i,j ← 0,M
′

j,i ← 0
19: end for
20: return Refined labeling function set S

′

LF, edges in the graph E

C Extended Related Work

Programmatic Weak Supervision: Manually labeling training data is prohibitively expensive and
time-consuming. A common alternative is to use weak supervision sources. Estimating the accuracy
of multiple sources is well studied in many areas such as crowd sourcing[37, 38], boosting [39–41],
and co-training [42]. In this paper, we focus on programmatic weak supervision [7, 3, 4], which
estimates the accuracy of weak sources without any labeled data. In programmatic weak supervision,
users encode various weak supervision sources such as user-written heuristics [3, 8, 9], knowledge
bases [10, 11], pre-trained models [12–14, 1, 2], and third-party tools [15] into labeling functions
(LF), which can then give votes on the true labels of the unlabeled data.

Integrating LLMs into Weak Supervision: Prompting is a powerful technique for many few-shot
and zero-shot applications with large language models [16]. Prompting has been used to create and
modify datasets in many ways [17–24]. Recent studies explored integrating prompting and weak
supervision [1]. Prompting also offers a unique opportunity to relax rigid code-based programmatic
weak supervision sources. In this work, we aim to make the integration of LLMs into weak supervision
more effective by mitigating the downside of hazardous correlations among the prompted LFs.
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Structure Learning in Weak Supervision: It can be highly beneficial to capture the statistical
dependencies among LFs during label modeling since model misspecification can lead to incorrect
estimates of the true labels [43]. Multiple methods for learning such dependencies have been proposed
[5, 6, 25]. Bach et al. [5] and Varma et al. [25] learn dependency structures from the votes of the
LFs. Varma et al. [6] infer the structure through static analysis of the code specifying the LFs, with
additional assumptions that the LFs operate over domain-specific primitives. With the dependency
structure in hand, many methods can then incorporate this information into the label modelling
process for improved label quality, either through factor functions [7, 26] or graph structures [27–29].
The structure obtained by our Structure Refining Module can be incorporated into any such method.

D Dataset Details

Table 3: Summary statistics for text classification dataset used in our experiments. P(positive) is the
class balance of the positive label calculated by the relative frequency of all gold labeled splits with
standard error in the parentheses. Note that since we focus on PromptedWS, all the labeling functions
we refer to here are prompted LFs as defined in [1].

Name Task Class P(positive) #LFs #Augmented LFs Train Valid Test
YouTube Spam Detection HAM,SPAM 0.488(0.02) 10 20 1586 120 250

SMS Spam Detection HAM,SPAM 0.132(< 0.01) 73 146 4571 500 500
Spouse Relation extraction NOT SPOUSE, SPOUSE 0.074(< 0.01) 11 22 22254 2811 2701

In our experiments, we evaluated three datasets: YouTube [30], SMS [31], and Spouse [32]. The
datasets are obtained and loaded using the WRENCH benchmark for weak supervision [33]. Table 3
provides summary statistics.

E Experimental Details

The approaches we compared to are:

1. WRENCH benchmark [33]: The original WRENCH code-based LFs are released as part
of the benchmark. Here, we use Majority vote as the label model since it performed best
when using RoBERTa as the end model.

2. PromptedWS [1]: The prompted versions of WRENCH LFs, where the code-written LFs
are replaced with prompts.

3. PromptedWS with WSSL [25]: The structure learning method we compared to is called
Weak supervision structure learning (WSSL) [25], which is a robust PCA based algorithm
for learning dependencies. This structure learning algorithm takes weak labels as inputs
and return a graph representing the dependencies among LFs. Here, we input the weak
labels from PromptedWS to get a graph and pass this dependency graph to the label model
Flyingsquid.

4. PromptedWS with Structure Refining Module: The same framework as PromptedWS but
with refining module (proposed in our paper) to refine the LFs and return the dependency
structure. The dependency graph is then passed to the label model FlyingSquid.

For baselines involving PromptedWS, we use T0++ [34] as the large language model, which is a
free, publicly available 11B parameter model based on T5 architecture [44]. T0++ is trained using a
large dataset of supervised tasks transformed into instruction prompted training data and can achieve
a better zero shot classification performance that often matches or exceeds GPT-3, which is much
larger. Note that, 4 WRENCH datasets (IMDB, Yelp, AG News, TREC) were used for training T0++,
we therefore exclude them from our analysis. The T0++ model requires 42 GB of GPU to efficiently
run locally without parameter offloading. We use 2 NVIDIA A100 GPUs for inference.

Evaluation Metrics: We report default metrics specified in the WRENCH benchmark [33] for direct
comparison: for YouTube dataset, we report accuracy and for SMS and spouse dataset, we report F1.
Our performance metrics are reported as the mean and standard error of 5 independent runs using
different random seeds.
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E.1 Prompted Labeling Functions

The prompted labeling functions used in PromptedWS are illustrated in Table 4 (YouTube and Spouse)
and Table 5 (SMS) respectively. They are taken from Smith et al. [1]. Note that when using Google
translator to create the augmented labeling functions, there might be some labeling functions that
are wrongly translated or some labeling functions that are the same after translation, we didn’t do
any human intervention about this because we expect our method to be robust enough to these cases.
Denote the labeling function set provided in WRENCH as SLF, after augmenting, total number of
LFs is doubled as 2 ⋅ ∣SLF∣.

Table 4: Prompted labeling functions for YouTube and Spouse datasets. The YouTube dataset has
class labels HAM and SPAM, and the dataset has class labels NOT SPOUSE and SPOUSE. The label
map transforms the answer “yes” to the value denoted by the label column(either HAM or SPAM for
YouTube dataset and either NOT SPOUSE or SPOUSE for spouse dataset) and we consider other
answers as abstain. The original (not augmented) labeling functions are from Smith et al. [1].

Dataset Template Label

YouTube LFs

Does the following comment talk about a song?\n\n[TEXT] HAM
Is the following comment fewer than 5 words?\n\n [TEXT] HAM
Does the following comment mention a person’s name?\n\n [TEXT] HAM
Does the following comment express a very strong sentiment?\n\n [TEXT] HAM
Does the following comment express a subjective opinion?\n\n [TEXT] HAM
Does the following comment reference the speaker’s channel or video? \n\n [TEXT] SPAM
Does the following comment ask you to subscribe to a channel?\n\n [TEXT] SPAM
Does the following comment have a URL?\n \n[TEXT] SPAM
Does the following comment ask the reader to do something?\n\n [TEXT] SPAM
Does the following comment contain the words "check out"? \n\n [TEXT] SPAM

Spouse LFs

Context: [TEXT]\n \n Are [PERSON1] and [PERSON2] family members? NOT SPOUSE
Context: [TEXT]\n \n Is [PERSON1] said to be a family member? NOT SPOUSE
Context: [TEXT]\n \n Is [PERSON2] said to be a family member? NOT SPOUSE
Context: [TEXT]\n \n Are [PERSON1] and [PERSON2] dating? NOT SPOUSE
Context: [TEXT]\n \n Are [PERSON1] and [PERSON2] co-workers? NOT SPOUSE
Context: [TEXT]\n \n Is there any mention of "spouse" between the entities [PERSON1] and [PERSON2]? SPOUSE
Context: [TEXT]\n \n Is there any mention of "spouse" before the entity [PERSON1]? SPOUSE
Context: [TEXT]\n \n Is there any mention of "spouse" before the entity [PERSON2]? SPOUSE
Context: [TEXT]\n \n Do [PERSON1] and [PERSON2] have the same last name? SPOUSE
Context: [TEXT]\n \n Did [PERSON1] and [PERSON2] get married? SPOUSE
Context: [TEXT]\n \n Are [PERSON1] and [PERSON2] married? SPOUSE

Table 5: Prompted labeling functions for the SMS dataset. The template asks whether there are
certain keywords in the text and the label map transforms the answer “yes" to the value denoted by
the label column (either HAM or SPAM) and we consider other answers as abstain. The original (not
augmented) labeling functions are from Smith et al. [1].

Template Does the following text message contain the words "[KEYWORDS]"?\n \n [TEXT] Label

[KEYWORDS]

??1.50, ??500, ??5000, call for offer, cash prize, chat date, chat to, childporn, credits,
dating call, direct, expires now, fantasies call, free phones, free price, free ringtones,
free sex, free tone, guaranteed free, guaranteed gift, hard live girl, important lucky,
inviting friends, latest, latest offer, message call, new mobiles, no extra, password,
please call, sms reply, unlimited calls, urgent award guaranteed, urgent prize, voucher
claim, welcome reply, win shopping, winner reward, won call, won cash, won cash
prize, won claim

SPAM

I, I can did, I it, I miss, I used to, adventuring, amrita, can’t talk, did u got, do you,
fb, goodo, hee hee, i’ll, jus, link, maggi, mine, my kids, noisy, praying, shit, should I,
thanks, that’s fine, thats nice, u how 2, we will, where are, wtf, your I

HAM

F Extended Analysis: From Labeling Function Similarities to Correlations
Table 6: Toy experiment of removing one of the most correlated LFs. The first row is the result of
PromptedWS without moving any LFs, and the second and third rows are the result of PromptedWS
after removing one LF from the most correlated LFs pairs.

YouTube SMS Spouse
PromptedWS 94.8(1.2) 90.0(4.1) 52.1(1.3)

Remove most correlated LF 94.7(0.7) 93.0(0.8)↑ 53.0(1.2)↑
95.3(0.3)↑ 91.4(2.2)↑ 52.3(1.8)↑

Previous work [5, 25] characterizes LFs correlation structures based on their output, which can
be sensitive to the data and can result in spurious correlations. We aim to learn more expressive
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correlations that are invariant to data. To achieve this, we focus on finding correlations intrinsic to the
LFs. Here We may consider each LF as a task and capture their correlations through their respective
task embeddings. We use T0++ [34] to embed each LFs with last layer embeddings and compute
cosine similarities matrix. The heatmap visualization of the similarity matrix for the YouTube dataset
is given in Figure 3.

HAM SPAM

HAM

SPAM

Labeling Function Similarity

HAM SPAM

HAM

SPAM

Double Faults

60% 70% 80% 1% 5% 8%

Figure 3: Visualization of the similarity matrix
for labeling functions in the YouTube dataset com-
pared with double faults, i.e., examples on which
both labeling functions make a mistake.

The similarity information has significant over-
laps with the correlated errors among LFs,
which can be used to remove the most corre-
lated LFs and still achieve good performance.
We construct a toy experiment to further exam
our assumption. Our toy experiment is based
on the idea that if two labeling functions (LFs)
are correlated, removing one may not signifi-
cantly harm the model’s performance. Remov-
ing the most correlated LF leads to more accu-
rate weights assigned to each LF, resulting in a
more accurate end model. Our toy experiment
results align with the assumption. As shown in
Table 6, after removing one of the most corre-
lated LFs, the result either improved or slightly

dropped below the baseline. This further suggests that the similarity matrix can reveal information
about the real correlations of LFs.

G Extended Analysis: Effect of Labeling Function Removal

In this subsection, we exam the contribution of LaRe in our Structure Refining Module. The core
idea for LaRe is that when LFs are highly correlated and redundant, removing some can improve
performance and efficiency. To extensively understand effect of LFs removal, we only consider the
LaRe by setting me = 0 for our Structure Refining Module. We examined the impact of removing
LFs based on correlation by conducting experiments where we removed 10%, 30%, 50%, and 70%
of labeling functions.

Table 7: We documented the number of labeling functions removed as well as accuracy or F1 metric
for each experiment. We report the mean and standard error with 5 random runs and the best results
are indicated in bold. We highlight results that outperform PromptedWS with arrows. We also
estimate the total number of token saved when running with Train/Test/Valid splits.

Estimated number of saved tokens
Performance(Acc/F1) #(LF removed) # (prompts saved) Train Test Valid

Youtube

PromptedWS 94.8 ± 1.2 0 0 0 0 0
removing 10% 95.3 ± 0.3 ↑ 1 1586 70900 11369 5186
removing 30% 90.5±1.7 3 4758 212700 34107 15558
removing 50% 87.5±1.9 5 7930 354500 56845 25930
removing 70% 83.1±0.5 7 11102 496300 79583 36302

SMS

PromptedWS 90.0 ± 4.1 0 0 0 0 0
removing 10% 94.2± 1.4 ↑ 7 31997 1343069 144984 147903
removing 30% 93.5± 0.8 ↑ 22 100562 4221074 455664 464838
removing 50% 88.6±3.4 36 164556 6907212 745632 760644
removing 70% 88.7±3.1 51 233121 9785217 1056312 1077579

Spouse

PromptedWS 52.1 ± 1.3 0 0 0 0 0
removing 10% 53.0± 1.2 ↑ 1 22254 1980962 234659 249159
removing 30% 58.5± 1.3 ↑ 3 66762 5942886 703977 747477
removing 50% 55.4±1.1 ↑ 6 133524 11885772 1407954 1494954
removing 70% 0±0 8 178032 - - -

As shown in 4, compared to PromptedWS, using LaRe alone could improve the performance. Even
though labeling functions used in PromptedWS are carefully selected to avoid correlation and facilitate
weak supervision, remove 10% of the labeling functions (on YouTube and SMS) and remove 30% of
the labeling functions (on Spouse) still improve the results, suggesting that there still could be some
redundancies with manually selected LFs. Note that our experiments are relatively coarse by setting
the removal rate to be 10%, 30%, 50%, 70% for all the dataset because the total number of labeling
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functions varies from 10 to 146 for the six group experiments, so the effects of “removing 70%"
could be different on different dataset based on the total number of LFs as well as the redundancies
of the total LFs set.

Overall, the experiments show that the LaRe in our Structure Refining Module could help to improve
the performance. Note that whether the performance improve or drop depends on the trade-off
between the performance gain by handling the dependencies and the performance drop due to the
reduced information from removing labeling functions, so the performance plot over removal isn’t
perfectly concave. Also, we should not only care about the point that achieves the best performance,
but all the points where the performance are better or equivalent to the PromptedWS (namely, the all
the points above or near the dashed line in Figure 4), since these are points indicating an improved
efficiency without negatively affect performance.
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Figure 4: Performance on different removal rate. Dashed
lines are PromptedWS without any removal. Showing results
of removing 10%, 30%, 50%, 70% of the LFs.

Performance and efficiency: trade-
off or win-win? One benefit of re-
moving redundant LFs is efficiency:
when the total number of labeling
functions is reduced, we are prompt-
ing less examples to the LLMs and
therefore save more computations and
time. When weighing performance
and efficiency, it’s important to con-
sider the feasibility of removing LFs
in terms of the influence on performance. However, as our experiments show, it is not always a
trade-off but sometimes could be a win-win in PromptedWS with our Structure Refining Module. In
Figure 4, for YouTube dataset, removing 10% of the labeling functions improves the performance
compared to not removal, while saving more computations. The only trade-off comes down to if the
users want to further remove LFs to save more resources. For SMS, removing 10% or 30% both
improve performance, and users can choose based on their priorities. Sacrificing some performance
can help save more computational costs by removing 50% or even 70% of labeling functions. By
removing 70% of the labeling functions, though the performance drops 1.3 points, it reduces 51
labeling functions, and saved in total of 233121 prompts. For the Spouse dataset, removing 30%
of LF is a win-win scenario, both improving performance and saving computational resources. We
demonstrate this trade-off (or potentially win-win) in Table 7.

H Extended Analysis: Analyzing Correlation Structure Generation

Table 8: Comparison of CosGen, weak supervision structure learning(WSSL) and without structures.
YouTube SMS Spouse

PromptedWS 94.8(1.2) 90.0(4.1) 52.1(1.3)
PromptedWS + CosGen 94.2(0.5) 93.4(1.2) 64.6(0.5)
PromptedWS + WSSL 93.0(1.3) 94.5(1.7) 63.9(0.9)

Another core component of our Structure Refining Module is Correlation Structure Generation
(CosGen). The main output of CosGen is the estimated structure E , which contains all the labeling
function pairs that are considered as correlated. In this subsection, we compare the CosGen module
of our Structure Refining Module with weak supervision structure learning (WSSL) [25], a state-
of-the-art structure learning for programmatic weak supervision that learns a sparse structure from
data. We compare, evaluate and analyze both methods in terms of performance and efficiency. The
performance comparisons are given in Table 8.

Table 8 shows that compared to PromptedWS without any consideration of correlations, passing
the structure is extremely effective on Spouse dataset, improved 12.5 F1 score with CosGen and
improved 11.8 F1 score using the WSSL. For SMS dataset, passing the structure also improves
the results, boosting 3.4 Acc score and 4.5 Acc score using CosGen and the structure from WSSL
respectively. Although both the structure from our refining module and the structure learned from
data help to deal with dependencies and can effectively improve the performance, CosGen is much

12



more efficient than WSSL. The time and computational cost for CosGen is negligible while the time
of learning structures using WSSL depends on the data and the number of LFs.

As shown in Table 9, structure learning with WSSL takes around 0.1s for YouTube and Spouse
dataset and around 24s to learn a structure of SMS for WSSL. Note that running a label model
without any structures for SMS dataset only takes less than 1s. Compared to the label model run time,
24s for computing the structure alone should be considered as expensive and should not be ignored.

Table 9: WSSL runtime for inferring
LFs structures.

YouTube SMS Spouse
time(s) 0.11 24.76 0.15

The same holds for both YouTube and Spouse dataset:
when using WSSL to learn a structure, the time spend on
obtaining the structure is longer than label model runtime.
In contrast, CosGen produces a structure that is as effective
as WSSL, but with negligible computation time.
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