Lowering: A Static Optimization Technique for
Transparent Functional Reactivity *

Kimberley Burchett

Gregory H. Cooper

Shriram Krishnamurthi

Department of Computer Science
Brown University

{kburchet, greg, sk}@cs.brown.edu

Abstract

Functional Reactive Programming (FRP) extends traditional
functional programming with dataflow evaluation, making it
possible to write interactive programs in a declarative style.
An FRP language creates a dynamic graph of data dependen-
cies and reacts to changes by propagating updates through
the graph. In a transparent FRP language, the primitive op-
erators are implicitly lifted, so they construct graph nodes
when they are applied to time-varying values. This model
has some attractive properties, but it tends to produce a
large graph that is costly to maintain. In this paper, we
develop a transformation we call lowering, which improves
performance by reducing the size of the graph. We present a
static analysis that guides the sound application of this op-
timization, and we present benchmark results that demon-
strate dramatic improvements in both speed and memory
usage for real programs.

Categories and Subject Descriptors D.3.2 [Program-
ming Languages]: Language Classifications—dataflow lan-
guages

General Terms Languages, performance

Keywords Reactive programming, FRP, FrTime, lifting,
lowering, functional programming, Scheme, static analysis,
optimization

1. Introduction

Functional Reactive Programming (FRP) [8, 15, 20] is a
modern extension of traditional dataflow concepts to a dy-
namic and higher order setting. FRP programs appear to be
stateless functional specifications, but they compute over
values that may change over time. The language reacts to
changes by automatically recomputing and propagating val-
ues through the program, according to its data dependen-
cies. As aresult, FRP offers the expressive power of functional
programming in a reactive setting, taking care of the onerous
task of propagating changes and ensuring the consistency of
values.

* Work partially supported by NSF grant CCF-0447509.

For several years now, we have been developing FrTime [5],
an embedding of FRP in DrScheme [9]. FrTime differs in sev-
eral ways from, and offers certain advantages over, previous
FRP implementations. Evaluating an expression in FrTime
results in the construction of a fragment of dataflow graph
that precisely captures the expressions’s data dependencies.
A dataflow engine reacts to events in the environment by
traversing the graph and recomputing the values of affected
nodes.

FrTime induces construction of the dataflow graph by re-
defining operations through an implicit lifting transforma-
tion. Lifting takes a function that operates on constant val-
ues and produces a new function that performs the same
operation on time-varying values. Each time the program
applies a lifted function to time-varying arguments, it builds
a new node and connects it to the nodes representing the
arguments. Core Scheme syntactic forms are redefined to
extend the graph when used with time-varying values.

Dynamic dataflow graph construction permits incremental
development of reactive programs in, for instance, a read-
eval-print loop (REPL). The implicit lifting allows program-
mers to write in exactly the same syntax as a purely func-
tional subset of Scheme. Because lifting is conservative, Fr-
Time programs can reuse Scheme code without any syntactic
changes, a process we call transparent reactivity.

Unfortunately, this implicit graph construction can be very
inefficient. Every application of a lifted function may create
a new dataflow node, whose construction and maintenance
consume significant amounts of time and space. As a result,
large legacy libraries imported into FrTime may be slowed
down by two orders of magnitude or more. In one experi-
ment, for example, we attempted to reuse an image library
from PLT Slideshow [10], but the result was unusably slow.

This paper presents an optimization technique designed to
eliminate some of the inefficiency associated with FrTime’s
evaluation model, while still giving programmers the same
notion of transparent reactivity. The technique works by col-
lapsing regions of the dataflow graph into individual nodes.
This moves computation from the dataflow model back to
traditional call-by-value, which the runtime system executes
much more efficiently. Because this technique undoes the
process of lifting, we call it lowering. Of course, lowering
must not alter the semantics of the original program or sac-
rifice the advantages of FrTime’s evaluation strategy. We
present a static analysis that determines when the optimizer
can safely lower an expression. Our lowering analysis and
its implementation yield a significant reduction in time and
space usage for real programs.

(define (planet dist speed)
(make-point
(x dist (cos (/ speed (current-seconds))))
(* dist (sin (/ speed (current-seconds))))))
(define persephone (planet 97 0.0166))
(define whitefall (planet 148 0.0273))
(define dist-between-planets
(distance persephone whitefall)))
(define updater
(new timer
[interval 10]
[callback
A0
(set! persephone (planet 97 0.0166))
(set! whitefall (planet 148 0.0273))
(set! dist-between-planets
(distance persephone whitefall)))]))

Figure 1. A program to calculate distance between two
planets.

2. Background
2.1 Functional Reactive Programming

Programs written in a stateless, declarative style are often
easier to understand and more likely to be correct than pro-
grams written in an imperative style. However, substantial
difficulties arise when trying to integrate a declarative pro-
gram with the arrival of asynchronous I/O events from the
outside world. Similarly, the use of mutable state internal to
a program tends to undermine the advantages of declarative
programming. We view these problems as special cases of a
more general problem: that of programming over values that
change over time.

For example, consider a simple program that calculates the
distance between two planets orbiting a sun along circular
orbits at different rates; we show such a program in Fig. 1.
The first six lines compute this distance for a given point
in time. The complexity increases, however, when we try to
keep this value up-to-date as time changes. In traditional
languages, programmers register callbacks that respond to
change by re-evaluating dependent expressions and imper-
atively updating variables. This explicit mutation, required
by the callback mechanism, destroys the functional model
and introduces subtle opportunities for error.

The problem is more difficult than it first appears. For
example, if the call to current-seconds in Figure 1 merely
returns the current system time, then the program may
compute a planet’s x and y coordinates with respect to
different times. Such a glitch can be fixed by changing the
planet function so that it calls current-seconds only once
and stores the result in a temporary local variable. However,
even that does not ensure that the relative positions of
different planets will be consistent, since their computation
occurs in different function calls. Fixing such interprocedural
inconsistencies requires more invasive changes.

Functional Reactive Programming (FRP) [8, 15, 20] is an
attempt to bridge the gap between declarative programming
and time-varying values. In FRP each output value is defined
as a function of its inputs, but the inputs (and hence the
outputs) may change dynamically. Whenever an input value

(define (planet dist speed)
(make-point

(x dist (cos (/ speed)))
(* dist (sin (/ speed)))))

(define persephone (planet 97 0.0166))
(define whitefall (planet 148 0.0273))
(define dist-between-planets

(distance persephone whitefall))

Figure 2. Functional reactive program to calculate dis-
tance between two planets.

changes, the language automatically updates all dependent
output values. These time-varying values are called signals.

To redo the preceding example with signals, we reuse the
definition of the distance function almost verbatim (Fig. 2).
The main difference is that we replace the call to current-
seconds with a reference to the signal seconds (boxed). As
seconds changes, the language automatically recomputes the
result. We no longer need callbacks because the language
responds to changes and updates values automatically.

The FRP model is not new; spreadsheets have been using a
similar computation model for decades. Indeed, the massive
popularity of spreadsheets shows that the concept of FRP is
both intuitive and useful for solving real-world problems.

2.2 A Brief History of FrTime

FrTime (pronounced “father time”) is an implementation of
FRP in the language of DrScheme [9]. FrTime differs from
earlier FRP systems by upholding the following design goals:

1. It supports incremental program construction in an in-
teractive read-eval-print loop (REPL), so the programmer
can interleave program construction, evaluation, and ob-
servation.

2. It reuses the Scheme evaluator and provides a conser-
vative extension of Scheme. It permits reuse of legacy
(purely functional) Scheme library code, and expressions
that do not use its reactive features evaluate exactly as
they would in Scheme.

FrTime is implemented in Scheme as a collection of syntac-
tic abstractions (“macros”) [13] and value definitions. The
standard Scheme primitives are replaced with versions that
support being called with signals as well as plain Scheme
values. It thus presents the programmer with the seamless
illusion of a Scheme-like language where values that change
over time automatically propagate through the program.

Evaluation in FrTime proceeds in two stages: initialization
and update. During initialization, the FrTime program runs
under a standard Scheme evaluator in a carefully defined
environment, which we describe below.

For example, suppose the programmer enters the expression
(4 3 seconds) at the FrTime REPL. Scheme primitives such
as + only operate on ordinary numbers, so evaluating this
expression in Scheme would ordinarily yield a type mismatch
instead of the desired dataflow semantics.

FrTime is nonetheless able to reuse Scheme’s evaluator be-
cause it redefines all such primitive operators with lifted ver-
sions. Lifting wraps a function with code that checks for
signal arguments and, if there are any, returns a new sig-

(+ 3 seconds)

N

3 seconds

Figure 3. Dataflow graph for (+ 3 seconds).

nal that depends on those arguments. The lifted primitives
thus cause the program’s execution to build a graph of its
dataflow dependencies. Nodes correspond to the values of
expressions, and arcs indicate the flow of values.

For example, consider FrTime’s implementation of +, which
could be defined as follows in Scheme:*

(define frtime:+
(M (a b) A A
(if (or (signal? a) (signal? b))
(make-signal (X () (+ (project a) (project b)))

ab
(+ a b))

Within the FrTime language, all references to + are auto-
matically redirected to this extended implementation. In (+
3 seconds), the second argument is a signal, so the above
conditional selects the first branch. This calls make-signal,
which constructs a new signal from a thunk (nullary proce-
dure) and any number of dependencies; Figure 3 shows the
resulting dataflow graph. FrTime calls the thunk to com-
pute the signal’s value, first at creation-time and again each
time any of the dependencies changes. The thunk projects
the current values of the summands and applies the original
Scheme + to them.

This evaluation strategy applies to all expressions, even
those free of signals. For example, in (+ 3 4) neither of the
arguments is a signal, so the conditional takes the second
branch and computes the constant 7 without constructing
any dataflow nodes.

FrTime programs can arbitrarily nest and mix computations
involving constants and signals. For example, if we write
(+ (+ 1 2) seconds), the (+ 1 2) evaluates as in Scheme,
reducing to the constant 3, after which evaluation proceeds
exactly as above for (+ 3 seconds). Only one signal is
created, and the resulting dataflow graph is identical to the
one shown in Fig. 3.

After graph construction, the FrTime engine makes the pro-
gram react to events by propagating changes through the
dataflow graph. For example, once every second, a timer
triggers a change in seconds, which triggers recomputation of
every signal that depends on seconds, such as (+ 3 seconds)
in our example. To ensure that updates always compute over
up-to-date values, the algorithm processes the graph in topo-
logical order. This of course requires an acyclic graph, so
programs with cyclic dependencies must use special combi-
nators (e.g., delays) to break direct dependency cycles.

In addition to supporting syntactic reuse of legacy Scheme
code, FrTime’s evaluation model has the benefit of working
naturally with an interactive read-eval-print loop (REPL).

1For simplicity, we treat + as a binary operator. The actual
version supports a variable number of arguments.

Because it constructs a new signal object for each primi-
tive operation, it supports dynamic creation of new signals,
allowing for incremental program construction.

The signals we’re concerned with in this paper have a well-
defined value at every moment during the program’s execu-
tion. FRP systems can also model transient phenomena, such
as keystrokes and button clicks. In FrTime (as in other FRP
systems), the programmer processes these events through a
set of special operators. Since these do not involve implicit
lifting, we do not consider optimizing them in this paper.
While the ideas may generalize to events, we have yet to
explore such an extension.

2.3 Lifting and Projection

We have already mentioned that FrTime works by replacing
Scheme primitives with lifted versions. We have also men-
tioned the project operation, which takes a signal and re-
trieves its current raw Scheme value. Formally, these two
operations have the following types:

Lft + (t1...tn — u) — (sig(t1) .. .sig(tn) — sig(u))

project sig(t) — ¢

In these definitions, t and u are type variables that can stand
for any base (non-signal) type, and sig(t) is either a base
type t, or a signal of base type t. That is, t is a subtype of
sig(t). This means that lifted functions are polymorphic with
respect to the time-variance of their arguments, so they can
consume an arbitrary combination of constants and signals.
Likewise, projecting the current value of a constant simply
yields that constant.

Lift and project are related through the following identity:
(progect ((lift f) s ...)) = (f (project s) ...)

In words, at any point in time, the current value of the
application of a lifted function is equal to the result of
applying the original, unlifted function to the projections
of the arguments.

Throughout the rest of the paper, we will refer to constants
and signals as inhabiting separate layers. Specifically, we will
talk about constants as belonging to a lower layer, and we
will underline the names of lower functions, which can only
operate on constants. In contrast, we will say /t&at signals

belong to an upper layer, and we will put a hat over the
names of upper functions, which can operate on signals.

Since lifting generalizes the behavior of raw Scheme func-
tions, it is always safe to substitute a lifted function for its
lower counterpart. FrTime does exactly this, so program-
mers rarely need to worry about accidentally applying lower
functions to signals. (The exception is when they import
raw Scheme libraries, whose procedures must be explicitly
lifted.) In the next section, we shall see that this extreme
conservatism takes a toll on performance, and we shall ex-
plore ways of avoiding it when possible.

3. Static Optimization

Every application of a lifted function to time-varying argu-
ments results in a new dataflow graph node. For example,
Fig. 5 (left) shows the dataflow graph for the relatively sim-
ple function in Fig. 4. To evaluate this function, six signal
objects must be allocated on the heap and connected to-
gether: one for each —, +, sqr (square), and sqrt (square

(define distance
(A (21 yI z2 y2)

(sart (F (57 (= w1 22))
(53 (= u1 42)))

Figure 4. Definition of distance function.

root) in the expression. Each signal object requires nearly
one hundred bytes of memory on the heap.

Whenever one of the inputs to the distance function changes,
FrTime has to update the four signals along the path from
that input to the root. (If multiple inputs change simulta-
neously, then it must update everything along the union of
their paths.) Each update requires 1) extracting the node
from a priority queue, 2) retrieving the current value of its
input signals, 3) invoking a closure to produce an updated
value, 4) storing the new value in the signal object, and 5)
iterating through a list of dependent signals and /erﬁueueing

them for update. Thus every invocation of the distance func-
tion introduces a significant cost in three different areas: the
time required to initially comstruct the dataflow graph, the
amount of memory required to store the dataflow graph, and
the time required to propagate changes along the dataflow
graph.

Figure 6 shows another definition of the distance function,
this time with the upper and lower layers made explicit.

Note that each of the functions called by distance is actually
a lifted version of the lower function by the same name.
In other words, they are just lower functions that FrTime
has wrapped (like how frtime:+ wrapped the primitive +
function, above). When lifted functions are composed to
form expressions, every intermediate value is lifted to the
upper layer, only to be immediately projected back to the
lower layer by the next function in line.

Our goal is to reduce the use of the expensive dataflow evalu-
ator by eliminating some of the intermediate nodes from the
dataflow graph. The key observation is that in many cases it
is unnecessary to use the dataflow mechanism for every step
of the computation. For example, if a large expression only
applies lifted primitives to a collection of signals, then we can
replace its graph with a single node that projects the inputs
once, performs the whole computation under call-by-value,
and lifts the result. We call this transformation lowering,
since it undoes the effect of intermediate lifting.

By moving computation from the dataflow model back into
a call-by-value regime, lowering eliminates the overhead of
repeatedly transferring values between the upper and lower
layers. It also allows the use of the call stack to transfer
control and data, which is much more efficient than using
the dataflow graph for the same purpose.

In the distance example above, lowering can collapse the en-
tire graph into a single node, yielding an order of magnitude
improvement in both speed and memory usage. Section 4
shows experimental results on substantial programs.

3.1 Dipping and Lowering

We introduce a new syntactic form called dip. Dip is like
lift and project in that it bridges the two layers, but it does
so in a different way.

(define sqrt (lift sqrt))
(define sqr (lift sqr))
(define T (lift 1))
(define = (lift —))
(define distance

(A (ﬁl\ yl z2 y2)

(sqrt (+ (3qr (= =1 22)))
sqr (— y1 y2)))))

(sqr (
Figure 6. Definition of the distance function with upper
and lower layers made explicit.

Dip operates on two syntactic entities: a list of variables
whose values are assumed to be signals, and an expression
which is assumed to be lower code. Dip expands into an
expression that, at runtime, projects the variables, evaluates
the code, and lifts the resulting value. In this way dip allows
an entire subexpression of lower code to be embedded inside
a section of upper code; whereas lift operates on functions,
dip operates on expressions.

(dip (z...)) = ((Lift (A (z...) €)) z...)

Each time a dip expression is evaluated, it adds a single
node to the dataflow graph that depends on all the variables.
Note that the list of variables is a co-environment for the
dip’s body; it contains all the free variables to which the
expression actually refers.

In order to optimize a program, we dip as many subexpres-
sions as possible. To dip a subexpression, we extract its set
of free variables and replace the code with its lower coun-
terpart. To perform this translation, the optimizer needs to
know the lower counterpart of each function it calls.

The lower counterpart of each lifted primitive is simply the
original (unlifted) primitive. Initially, primitives are the only
functions with known lower counterparts, but as the opti-
mizer processes the program, it may discover user-defined
functions that also have lower counterparts. In general, an
expression has a lower counterpart if the operation is purely
combinatorial and all of its subexpressions have lower coun-
terparts. Our optimizer maintains an explicit mapping be-
tween functions and their lower counterparts; we denote en-

tries in this mapping by (ﬁ;c, unc).
Not all functions have lower counterparts. For example, the

function @/, which time-shifts a signal’s value, needs to
remember the history of its changing input signal. It cannot
do anything useful if it is called afresh with each new value
the signal takes. In general, any function that depends on
history has no meaning in the lower layer of constant values.
For expressions that involve such functions, it is critical that
the optimizer not erroneously dip them, as the resulting
program would behave incorrectly.

In the following sections, we will distinguish between lower-
ing, which replaces an upper expression with a correspond-
ing lower expression, and dipping, which takes values from
the upper layer to the lower layer and back, with some com-
putation in between. The following summarizes the three
varieties of code that result from these transformations:

Lower code consists entirely of pure Scheme expressions.
All the functions it calls are lower versions, so it cannot
operate on time-varying values.

- (Az)? + (Ay)?

RN

x1 x 1 y2

Figure 5. Left: Unoptimized dataflow graph for the distance function. Right: optimized equivalent. Various stages of
optimization are shown in-between. Inter-procedural optimization can improve the result even further. Each box is a heap-

allocated signal object.

upper code upper code

(lift
)

(dip (x ...)

lower code

(it)
(ift)
(ift)
) (i)

upper code
(dip(xyz..)

Figure 7. Allowed containment rela-
tionships for code.

Upper code is standard FrTime. Each primitive operation
constructs a dataflow node that recomputes its value
whenever its input values change.

Dipped code is observationally equivalent to upper code,
but operates very differently. Instead of producing many
dataflow nodes, each of which performs one primitive
operation, dipped code produces one dataflow node that
evaluates a complex expression involving many primitive
operations.

Figure 7 shows the allowed containment relationships for
these different varieties of code. At the top-level, the pro-
gram consists of upper code (we assume that it actually
involves signals). This code can refer to lifted functions and
dipped expressions, but not to bare lower code. The lifts
and dips wrap lower code with logic that protects it from
time-varying values. In contrast, lower code never contains
upper code of any form (including lifted functions or dipped
expressions), since it has no need to process signals.

Figures 8 and 9 illustrate the goal of optimization. Figure 8
represents unoptimized FrTime code. In it, the upper pro-
gram refers to a large number of small fragments of lifted?
code. In comparison, Figure 9 represents code of the sort
that we would like the optimizer to produce. The fragments
of dipped code have been combined into a small number of
larger blocks, reducing the overhead associated with con-
structing and maintaining a signal for each atomic opera-
tion.

2Because the application of a lifted primitive yields the same
result as dipping, we could just express everything in terms of dip.
However, lifting is an established term within the FRP community,
so we use it for clarity.

Figure 8. Unoptimized FrTime code.

Figure
code.

9. Optimized FrTime

3.2 The Lowering Algorithm

The optimization algorithm works by dipping subexpres-
sions in a bottom-up fashion. It begins with variables and
constants, then proceeds to their parent expressions, their
grandparent expressions, and so on.

Formally, the algorithm is guided by a set of rewrite rules.
We write ' - e ~ (dip (Z) €') to indicate that €’ is the
dipped version of e, where the environment I' associates
function names with the names of their lower counterparts,
and ¥ is the set of all signals on which the value of e may
depend. For example, dipping of literals ¢ simply involves
wrapping them in a dip expression. Since the value of a
literal is always a constant, its dipped equivalent does not
depend on anything:

Fc~ (dip () ¢)

We treat identifiers similarly, but since they may refer to
signals, we include them in the list of dependencies:

Fid ~ (dip (id) id)

For example, in the case of the distance function, the opti-
mizer arrives at the identifiers z1 and z2 and applies this
rule, resulting in the following expression:

(define distance
(A (21 y1 22 y2)
(sqrt (+ (57 (

Z (dip (z1) z1)
(dip (22) 32))))

(5q7 (= y1 y2)))))

The optimizer proceeds by combining dipped subexpressions
into larger code fragments. In the case of function applica-
tions, it computes the union of the arguments’ dependencies
and replaces the lifted function with its lower counterpart:

FHET Threi~
't (fei...)~

(dip (&) ¢})
(dip (& ...) ([e}...)

Continuing the distance example, one application of this rule
produces the following result:

(define distance
O (al y1 22 92)
(sqrt (+ (sqr (dip (21 22) (= 1 22)))
(sqr (= y1 y2))))))

Applying this rule once more produces:

(define distance
(A (21 yl x2 y2)
(sqrt (+ (dip (a1 22) (sqr (= @1 22)))
(5q7 (= y1 ¥2)))))

Next, the optimizer dips the second argument to +, which
is transformed identically to the left branch:

(define distance
) (zl yl =2 y2)
(sqrt (¥ (dip (z1 2) (sqr
(dip (y1 y2) (sar

r (= z1 z2)))
r (= yl y2)))))))

Since dipping does not change the observable semantics of an
expression, it is safe to stop optimizing at any time. In this
case the bottom-up traversal will continue until it reaches
the A, at which point it must stop because of subtleties
involved with lambda abstractions (explained below).

The final optimized result contains only a single dip expres-
sion, which means that when evaluated, it creates only a
single dataflow graph node instead of the six nodes required
for the original function. We show the final dataflow graph,
along with some intermediate graphs, in Fig. 5. The final
code is as follows:

(define distance
(A (=1 y1 22 y2)
(dip (21 22 y1 y2)
(sart (£ (sqr (= =1 22)))
(sar (= yI y2))))))

Though the above example does not contain any let ex-
pressions, dipping them is also straightforward. The newly-
introduced binding (id) is excluded from the body’s depen-
dency list (@) because it is guaranteed to be subsumed by
the bound value’s dependency list (27).

'k v~ (dip (z3) v') ke~ (dip (£2) €)

I'F (let ((id v)) €) ~ (dip (2, U (22 \ id)) (let ((id v')) €'))

The following subsections describe the details of optimizing
several different constructs.

3.3 Lambda Abstractions

Dipping a A expression is somewhat subtle. For example,
suppose the optimizer encounters the following expression:

(A (2) (+23)

So far, we have dipped expressions by wrapping their low-
ered counterparts in the dip form. If we do that, we get:

(dip () (A (2) (£ 2 3)))

This is clearly unsafe, because if the resulting closure were
applied to a signal, the lowered + operator would cause a
type error. To prevent such errors, we dip only the body
instead of the whole \ expression. In this case, the result is:

(A () (dip (z) (+ z 3)))

In general, the rule is as follows:

T'Fe~ (dip (%) €)
L' (A (V) e) » (A (9) (dip (£) €))

If the optimizer never lowered function bodies, then user-
defined functions could never be assigned lower counter-
parts. This would make the analysis purely intraprocedural,
greatly reducing the opportunities for optimization.

To allow interprocedural optimization, we take advantage
of the fact that a dip expression’s body is the original
expression’s lower counterpart. Therefore, if the optimizer
successfully dips a function, then it knows that function’s

lower counterpart. We write T' F e 2 (dip (%) €') to
indicate not only that e’ is the dipped version of e, but
that in addition e is a lambda expression whose body can
be lowered:

'k e~ (dip (%) €)
T+ (A (9) e) < (dip (Z\7) (A

(@) €))

References to variables bound by the lambda’s argument list
are removed from the list of dependencies, since in a lower
context they cannot be signals.

When the < transformation applies, the optimizer adds a
top-level definition for the lower counterpart of f, called f,
and remembers the association (f, f):

LU (LE)F e~ (dip (7) ¢)

TU{ff) e~ (dip () ")

F (deﬁne?e) ~ (begin (deﬁne?(d
(define f e’

ip (7) €))
)

The above rule expands the scope of the optimization to
include interprocedural optimization. On the other hand, if
a definition does not have a lower counterpart then only the
dipped version is defined:

FAF e ~ (dip (Z) ¢€)
LU {78 e (dip ())
'+ (define fe) ~ (define f (dip (%) ¢'))

If a program contains a sequence of definitions, each defini-
tion is dipped separately:

Tk i ~ (dip (7) ¢})
't (begine;...) ~ (dip (z;...) (begin €} ...))

For concision and clarity, the above judgements do not de-
scribe the full mechanism for interprocedural optimization.
Adding this would be straightforward but would increase
the size of the judgements considerably.

3.4 Conditionals

The criterion for dipping if expressions is the same as for
all other expression types: all of their subexpressions must
have lower counterparts. Moreover, the consequence is also
the same, namely that the resulting node depends on the
union of the subexpressions’ dependencies.

'k c~ (dip (z))
't~ (dip (73) t')
Tk~ (dip () f')

Tk (ifct f) ~ (dip

Conditional evaluation in FrTime is relatively expensive, so
dipping conditionals can improve performance significantly.
Moreover, dipping of conditionals is necessary in order to de-
fine lower counterparts for recursive functions, which makes
it possible to collapse a potentially long chain of graph frag-
ments into a single node.

3.5 Higher Order Functions

Higher order function applications, which evaluate a closure
passed as an argument, cannot be dipped using only the
strategy defined in this paper. For example, consider the
type of map:

map : sig(sig(t) — sig(u)) x sig(list(t)) — sig(list(u))

map’s first argument is a signal, which can be called to
produce another signal. That is, the choice of which function
to apply can change over time, as can the result of applying
the function. Dipping only removes the first kind of time
dependency, not the second. If (map, map) were a valid
upper/lower pair, then the type of map would have to be:

map : (sig(t) — sig(u)) x list(t) — list(u)

Clearly this could cause a problem at runtime, since the
actual map doesn’t support functions that may produce
signals. In order to avoid this problem, we ensure that the
optimizer never associates a lower counterpart with a higher
order functiowr the built-in higher order functions such

as map and apply, we just omit them from the optimizer’s
initial mapping. However, this still leaves the question of
higher order functions written by users.

The only way a user-defined function can be assigned a lower
counterpart is if its body can be completely lowered; how-
ever, no higher order function can satisfy this requirement,
since at some point it must call the closure passed as an
argument. Lexical scoping guarantees that the function’s
arguments will have fresh names, so the optimizer cannot
possibly know of a lower counterpart for the argument clo-
sure. Since the function makes a call with no known lower
counterpart, the body is not lowerable.

We could address this weakness by using a static dataflow
analysis to identify closures that have known lower coun-
terparts. However, we have not yet found a need for such
an extension, and, in any case, it is always safe to assume
the absence of lower counterparts. It just means we cannot
optimize certain expressions.

3.6 Data Constructors

If the upper version of a function that allocates memory

(such as cons or a@d) is defined by lifting the lower
version, then the resulting upper function will be forced to
reallocate a new segment of memory every time any of its
input signals change. For large or recursive data structures
this can be a tremendous waste of time, as well as an
unnecessary burden on the garbage collector. For example,
imagine a list of 10,000 integers being recreated from scratch
whenever one of those integers changed.

In order to avoid this inefficiency, FrTime defines custom
versions of these functions. These work by allocating a single
segment of memory at node construction time. They later
update the memory in place whenever any of the input sig-
nals change. This reduces pressure on the garbage collector,
and in applications where signals are changing rapidly it
can lead to a significant speedup. This in-place updating is
safe because the dataflow engine is (assumed to be) the only
entity that uses mutation (the FrTime application should
in general be purely declarative). A complication does arise
from operators such as delay, which must now explicitly
copy any value that might be overwritten before it is needed
again.

We must be careful when optimizing expressions that call
these hand-crafted functions. If the expression is blindly
dipped, then all the performance consequences of frequently
reallocating memory will immediately reappear. In order to
prevent that from happening, we do not allow the optimizer
to lower allocating functions. Thus, expressions that con-
struct data structures are not optimizable. However, acces-
sor functions such as car and cdr are still lowerable.

3.7 Inter-Module Optimization

DrScheme’s module framework makes it easy to write the
optimizer in such a way that it processes each module
individually. An unfortunate consequence of this approach
is that the associations between user-defined functions and
their lower counterparts is not shared between modules.
Unless the optimizer can recover these associations, it will
lose many opportunities for optimization. It will be unable
to optimize any expression containing a call to a function
whose entry was forgotten, even if that call is in a deeply
nested subexpression. For commonly used functions such as
those that manipulate low-level data types, this can have a
significant domino effect.

In order to recover the lost associations, the FrTime opti-
mizer uses a consistent naming convention to identify the
lower counterpart of an upper function (Scheme doesn’t un-
derstand the underlines and overlines we have been using
in this paper, so we must perform some name mangling
anyway). Because of this naming convention, the optimizer
can recover the forgotten assocations simply by inspecting
a module’s list of exported identifiers. This allows the opti-
mizer to perform inter-module optimization.

The flexibility of this mechanism provides an additional
usability benefit: it allows the programmer to define a hand-

coded lower counterpart for any function that the optimizer
was unable to lower automatically.

3.8 Macros

Since macros must be fully expanded before runtime, they
can have no time-varying semantics. They are therefore easy
to support; the optimizer simply expands all macros before
attempting to apply the lowering optimization.

3.9 Pathological Cases

In most cases, lowering reduces execution time and memory
requirements, but there are instances in which it can have
the opposite effect. The reason is that lowering combines
several small fragments of code, each depending on a few
signals, into a large block that depends on many signals.
For example, consider the following simple expression:

(exzpensive-operation (quotient milliseconds 10000))

Though milliseconds changes frequently, the quotient changes
relatively rarely. If run under the standard FrTime evalua-
tor, the quotient node will stop propagation when its result
doesn’t change, thus short-circuiting the recomputation of
the expensive-operation most of the time. However, in the
“optimized” version, this whole computation (and perhaps
more) is combined into a single node, which must recompute
in its entirety each time milliseconds changes.

As discussed in Section 3.3, interprocedural optimization re-
quires that the optimizer produce two versions of each low-
erable procedure definition: one that is merely dipped, and
one that is actually lowered. Lowering thus has the potential
to double the size of a program’s code. We have so far chosen
not to worry about this because the optimized code is static
and, in most cases, accounts for a relatively small fraction
of a program’s overall dynamic memory usage. However, for
large programs, this may become a concern. In particular,
recent versions of DrScheme employ a just-in-time compiler,
which generates native code for each executed procedure
body. Since native code occupies considerably more space
than expression data structures, lowering has the potential
to increase a program’s memory usage significantly.

4. Evaluation

In this section we present the impact of optimization on
several FrTime benchmarks. We also discuss the impact on
the usability of FrTime.

4.1 Performance

We employ four different benchmarks to evaluate the effect
of our optimization on the resource requirements of various
programs. Other than the Count microbenchmark, none of
these applications were written with lowering in mind, so we
expect the findings to be broadly representative.

Table 1 summarizes the performance results.® Size denotes
the program’s size measured by the number of expressions
(“parentheses”). The oriy and op: subscripts denote the orig-
inal and optimized versions. Start is the initial graph con-
struction time, while Run is reaction time, i.e., the time for

3Measured on a Dell Latitude D610 with 2Ghz Pentium M
processor and 1GB RAM, running Windows XP Pro SP2 with
SpeedStep disabled. The numbers are the mean over three runs
from within DrScheme version 360, restarting DrScheme each
time.

Count Needles S’sheet TexPict

Size (exprs) 7 62 2,663 13,022
Startorg (sec) 9.5 89.0 9.2 35.2
Startop (sec) | <0.1 35.3 11.8 28.9
Memor, (MB) | 2047 5814 348 170.7
Mem,,: (MB) 0.2 240.5 50.9 119.4
Shrinkage (ratio) 971 2.4 0.7 1.4
Runorig (sec) 4.8 5.6 19.3 273.4
Runp: (sec) <0.1 2.0 20.5 3.5
Speedup (ratio) | 16,000 2.8 0.9/ 78.1

Table 1. Experimental benchmark results.

a change to percolate through the graph. Times <0.1 are too
small to be measurable. Mem denotes memory footprint be-
yond that of DrScheme (which is 72MB). Speedup denotes
the ratio between the unoptimized run-time and the opti-
mized run-time, and Shrinkage denotes the analogous ratio
for memory usage.

The Count microbenchmark consists of a function that takes
a number, recursively decrements it until reaching zero, and
then increments back up to the original number, i.e., an ex-
tremely inefficient implementation of the identity function
for natural numbers. The purpose of the benchmark is to
quantify the potential impact of lowering for code that in-
volves a large number of very simple operations (in this case
only addition, subtraction, comparison, and conditionals).
The results are unsurprisingly dramatic: for inputs around
600, the original version takes several seconds to start and
then takes nearly five seconds to recompute whenever the
input value changes. In contrast, even for inputs in the hun-
dreds of thousands, the optimized version starts immediately
and uses less than a tenth of a second to recompute.

The Needles program (due to Robb Cutler) displays a 60x 60
grid of unit-length vectors. Each vector rotates to point to-
wards the mouse cursor, and its color depends on its distance
from the mouse cursor. The main effect of optimization is
to collapse the portions of the dataflow graph that calculate
each vector’s color and angle. Since these constitute the ma-
jority of the code, optimization has a significant effect. The
optimized version runs nearly three times faster and uses
just about half as much memory.

The Spreadsheet program implements a standard 2D spread-
sheet. Formulas are evaluated by calling Scheme’s built-in
eval procedure in the FrTime namespace. The startup phase
has several calculations for drawing the grid, setting the size
of scroll-bars, etc., which are optimized. We were somewhat
surprised to see that the “optimized” spreadsheet requires
more time and space than the original version. One reason-
able explanation is that, because the spreadsheet was de-
signed from the beginning to run in FrTime, its dataflow
graphs already work efficiently under the default FrTime
evaluator. Also, as explained in Section 3.9, there are cer-
tainly cases where lowering can make programs less efficient.
In most cases this inefficiency is more than outweighed by
the corresponding reduction in dataflow evaluation, but ap-
parently not in this case.

TexPict is the image-compositing subsystem of Slideshow,
which initiated this project by its abysmal performance
as a transparently reactive FrTime program. As can be
seen from the results of our experiments, lowering yields
a speedup of almost two orders of magnitude. The result
is still significantly slower than a pure Scheme analog, but

fast enough to make it usable for many applications. This
offers strong evidence in support of our hypothesis that large
dataflow graphs arising from implicit, fine-grained lifting can
lead to a significant slowdown. Moreover, it demonstrates
that with lowering, transparent reactivity becomes feasible
for real legacy programs.

The TexPict benchmark is also interesting because it fre-
quently uses higher order functions. Since our first order
analysis yields a dramatic improvement even in this case,
we posit that our current approach is sufficient for a broad
range of applications, even those that use higher order func-
tions extensively.

4.2 Usability

In DrScheme, any collection of syntax and value definitions
can be bundled into a module that comprises a “language”.
For example, the FrTime language is a set of lifted prim-
itives, along with special definitions for certain syntactic
forms (e.g., conditionals). The optimized language is defined
similarly, except that it defines a syntax transformer for a
whole FrTime program. FrTime programmers enable opti-
mization simply by changing the module language decla-
ration from frtime to frtime-opt. The optimizer will be
shipped with the next standard DrScheme release, so no ad-
ditional installation or configuration is necessary.

Even though the FrTime optimizer works by performing a
source-to-source transformation, it does not adversely affect
the programmer’s ability to understand the original pro-
gram. In particular, the optimizer preserves source location
information within the transformed code, so the runtime sys-
tem reports errors in terms of the original source code [7, 11].
Furthermore, if optimization fails for some section of code
(perhaps due to the use an unsupported feature, or even due
to a bug in the optimizer itself), the optimizer will silently
fall back to using the original code, and continue the opti-
mization at the next top-level definition.

Users can discover whether or not a particular piece of code
was optimized by examining the fully expanded result; un-
optimized code will be preceded by a literal string explaining
what went wrong during optimization. On the other hand,
code that was optimized will stand out because the names
of upper functions will have been replaced with the mangled
names of their lower counterparts.

The overhead of the optimization pass is quadratic in the
nesting depth of function definitions and linear in the size of
the code base. This makes it practical to apply optimization
to large systems, such as the TexPict benchmark presented
above. Furthermore, an optimized module can be precom-
piled so that the overhead of static analysis does not need
to be repeated when the module is used later.

5. Related Work

Deforestation [18] and listlessness [17] are optimization tech-
niques that eliminate intermediate data structures from
functional programs. Their purpose is analogous to that
of lowering, which eliminates intermediate nodes from a
dataflow graph. Although the mechanics of these trans-
formations are quite different from those of lowering, for
stream-based FRP implementations [8, 12], we imagine that
deforestation and listlessness could have an effect similar
to lowering: namely, the weaving of multiple stream itera-
tors into a single processing loop. FrTime, however, seems

to require more special techniques because of its imperative
implementation.

Most other FRP implementations [6, 15, 20, 21] do not at-
tempt to provide transparent reactivity through implicit lift-
ing. A notable exception is Fran [8], which provides a sub-
stantial set of lifted primitives and might therefore benefit
from the sort of optimization we’ve presented. The other sys-
tems leave the decision of when to lift up to the programmer.
In Haskell, the static type system ensures that an unlifted
function cannot be applied to signals, but the programmer
chooses the granularity of lifting.

Yampa [15] implements a dynamic optimization that achieves
essentially the same effect as lowering. When it evaluates a
composition of pure signal functions, it replaces them with
a single signal function that computes the composition of
the original functions. In FrTime, such a dynamic opti-
mization would be difficult to implement without loss of
sharing. Specifically, without examining the program’s syn-
tactic structure, we cannot determine which intermediate
signals can escape their context of creation, in which case
they must exist as separate nodes.

Nilsson [14] explores the use of generalized abstract data
types (GADTs) to support optimizations in Yampa [15]. The
idea is to use GADTs to define special cases of signal proces-
sors, such as constants and the identity function, and im-
plement special, optimized logic for them in the evaluator.
In particular, Nilsson’s implementation performs constant-
propagation and automatically eliminates calls to the iden-
tity function, yielding measurable improvement in various
benchmarks. Moreover, the GADT-based optimizations can
be applied to networks of stateful signal processors, which
our approach cannot handle.

Real-time FRP (RT-FRP) [21] is an implementation of FRP
that shares certain similarities with FrTime, such as the
explicit connection to an underlying host language with a
collection of base primitives. The goal of RT-FRP is not to
produce highly efficient code so much as to establish prov-
able bounds on the time and space required by each round
of execution. The language achieves these bounds through
a conservative static analysis, but it does not perform any
optimizing program transformations.

Event-driven FRP (E-FRP) [22] is a modification of RT-FRP
designed to support compilation to efficient imperative code.
E-FRP adds some crucial restrictions to RT-FRP that make
such compilation possible. Primarily, it takes away the abil-
ity to perform dynamic switching, thereby making the pro-
gram’s data dependencies static. It also requires that only
one external event can stimulate the system in any given
update cycle. As in RT-FRP, the language performs no op-
timizing program transformations; rather, it uses a syn-
tactic restriction to guarantee limits on the program’s re-
source requirements. In forbidding dynamic switching, E-
FRP more closely resembles traditional synchronous dataflow
languages, such as Lustre [4], Esterel [3], and Signal [2].
These languages have a common goal of compiling to ef-
ficient straightline code, which they achieve by design. This
is in contrast to FrTime, whose primary goal is to provide
expressive power, often at the expense of performance.

6. Conclusions and Future Work

We have presented a novel optimization technique for func-
tional reactive languages, specifically those that use implicit

lifting to achieve transparent reactivity. Our technique works
by processing the source program in a bottom-up fashion,
recursively combining calls of lifted primitives into larger
dipped expressions. This has the effect of shifting significant
computation from the dataflow mechanism back to the un-
derlying (in this case) call-by-value evaluator. Though our
analysis is still unable to handle certain language features,
such as higher order functions, experimental results indicate
that the technique can achieve a significant reduction in a
program’s time and space needs, making transparent reac-
tivity a viable approach for realistic systems.

The notion of lowering applies outside of FRP, for example to
any monad [19] where the lift operator distributes over func-
tion composition. Specifically, wherever (lif¢t g) o (lift f) =
lift (go f), and lift is expensive, it is beneficial to rewrite
to reduce the number of lifts. Lowering may therefore be
useful in general for languages that use monads extensively.
For example, the Glasgow Haskell Compiler [16] optimizes
code by rewriting expressions according to such identities.

One limitation of the technique described here is that if a
subexpression has no lower counterpart, then the expression
containing that subexpression cannot be lowered either. This
limitation could be avoided by hoisting the problematic
subexpression out and storing its result in a temporary
variable; however, in a call-by-value language like Scheme,
such a transform must take care not to affect evaluation
order. Translating to continuation-passing style would make
evaluation order easier to deal with, but would make it more
difficult to identify dippable subexpressions.

For languages that support runtime code generation, it
would be possible to explicitly build the dataflow graph first,
and then collapse nodes into call-by-value subexpressions.
This approach would trivially support inter-procedural op-
timization, and would be able to collapse arbitrary nodes
in the dataflow graph, whether or not they contained un-
lowerable subexpressions in the original program text. This
approach would depend on the ability of the runtime envi-
ronment to compile dynamically-generated subexpressions
into efficient code.

Finally, we plan to apply the lowering optimization to Flap-
jax [1], a new functional reactive language designed for writ-
ing modern Web applications. Since the language provides
transparent reactivity and employs a FrTime-like evaluation
model, we expect to achieve similar results.

Acknowledgements

We thank Phil Wadler for providing valuable insight on
related work in Haskell, and we are especially grateful to
Henrik Nilsson for his detailed feedback on the content of the
paper. We also thank the anonymous reviewers for advice on
the presentation.

References
[1] The Flapjax programming language.
http://flapjax-lang.org/.

[2] A. Benveniste, P. L. Guernic, and C. Jacquemot. Syn-
chronous programming with events and relations: the SIG-
NAL language and its semantics. Science of Computer
Programming, 16(2):103-149, 1991.

[3] G. Berry. The Foundations of Esterel. MIT Press, 1998.

[4] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUS-
TRE: A declarative language for programming synchronous

(5]

(10]

(11]

(12]

(13]

(15]

[16]

(17]

18]

(21]

22]

systems. In ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 178—188, 1987.

G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In European Sympo-
sium on Programming, pages 294-308, 2006.

A. Courtney. Frappé: Functional reactive programming in
Java. In Practical Aspects of Declarative Languages, pages
29-44. Springer-Verlag, March 2001.

R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic
abstraction in Scheme. Lisp and Symbolic Computation,
5(4):295-326, Dec. 1993.

C. Elliott and P. Hudak. Functional reactive animation. In
ACM SIGPLAN International Conference on Functional
Programming, pages 263-277, 1997.

R. B. Findler, J. Clements, C. Flanagan, M. Flatt,

S. Krishnamurthi, P. Steckler, and M. Felleisen. DrScheme:
A programming environment for Scheme. Journal of
Functional Programming, 12(2):159-182, 2002.

R. B. Findler and M. Flatt. Slideshow: Functional
presentations. In ACM SIGPLAN International Conference
on Functional Programming, pages 224-235, 2004.

M. Flatt. Composable and compilable macros. In
ACM SIGPLAN International Conference on Functional
Programming, pages 72-83, 2002.

P. Hudak. The Haskell school of expression: learning
functional programming through multimedia. Cambridge,
2000.

E. E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. F.
Duba. Hygienic macro expansion. In ACM Symposium on
Lisp and Functional Programming, pages 151-161, 1986.

H. Nilsson. Dynamic optimization for functional reactive
programming using generalized abstract data types. In
ACM SIGPLAN International Conference on Functional
Programming, pages 54-65, 2005.

H. Nilsson, A. Courtney, and J. Peterson. Functional
reactive programming, continued. In ACM SIGPLAN
Workshop on Haskell, pages 51-64, 2002.

S. L. Peyton Jones. Compiling Haskell by transformation:
a report from the trenches. In Furopean Symposium on
Programming, pages 18-44, 1996.

P. Wadler. Listlessness is better than laziness. In ACM
Symposium on Lisp and Functional Programming, pages
45-52, 1986.

P. Wadler. Deforestation: Transforming programs to
eliminate trees. Theoretical Computer Science, 73:231—
248, 1990.

P. Wadler. The essence of functional programming. In
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1-14, January 1992.

Z. Wan and P. Hudak. Functional reactive programming

from first principles. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages
242-252, 2000.

Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In
ACM SIGPLAN International Conference on Functional
Programming, pages 146-156, 2001.

Z. Wan, W. Taha, and P. Hudak. Event-driven FRP. In
Practical Aspects of Declarative Languages, pages 155172,
2002.

