
Preference Aggregation in Group Recommender Systems
for Committee Decision-Making

Jacob P. Baskin
Google, Inc.

jbaskin@google.com

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

ABSTRACT
We present a preference aggregation algorithm designed for
situations in which a limited number of users each review a
small subset of a large (but finite) set of candidates. This
algorithm aggregates scores by using users’ relative prefer-
ences to search for a Kemeny-optimal ordering of items, and
then uses this ordering to identify good and bad items, as
well as those that are the subject of reviewer conflict. The
algorithm uses variable-neighborhood local search, allowing
the efficient discovery of high-quality consensus orderings
while remaining computationally feasible. It provides a sig-
nificant increase in solution quality over existing systems.
We discuss potential applications of this algorithm in group
recommender systems for a variety of scenarios, including
program committees and faculty searches.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Preference aggregation, Local search algorithms

1. INTRODUCTION
In situations such as conference program committees and

faculty searches, a group of people is tasked with reviewing
a large set of candidates, and then collaboratively identify-
ing which of these are suitable. This problem is within the
domain of group recommender systems, which aggregate in-
dividuals’ preferences to recommend the best items for the
group as a whole. Such systems present challenges that do
not face recommender systems designed for individuals [7];
in particular, they must both accurately and fairly aggregate
users’ individual preferences.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’09 , October 22–25, 2009, New York, USA.
Copyright 2009 ACM 978-1-60558-435-5 ...$10.00.

One of the simplest methods for aggregating user prefer-
ences is eliciting numerical ratings, and then assigning each
item a score that is a function of all the individual scores
it receives. While this is a viable technique for some sys-
tems [11], it fails within the context of committee decision-
making, for a number of reasons. First, different reviewers
may have different perceptions of how good or bad an item
should be to receive a particular score, obscuring each score’s
“meaning”. Second, some reviewers are universally negative
or universally positive. When every user does not express a
preference on every item, items will be considered differently
on the basis of who happens to have reviewed them. Third,
some reviewers may also, by chance or by inclination, re-
view only high-quality items or only low-quality items. This
situation is very hard to distinguish from that of univer-
sally positive or negative reviewers. Nonetheless, numerical
scores are appealing from a user-interface perspective: users
are accustomed to assigning numeric scores, or analogous
indicators such as a number of “stars”, as a means of pro-
viding preference information. But how can we glean more
dependable information from these numbers?

We propose a group recommender system that considers
only the relative preferences of each reviewer. If a given
reviewer gives a higher score to item A than to item B,
we take it as axiomatic that that reviewer prefers A to B.
Our system uses the preferences thus exposed to extract a
partial ordering of items from each reviewer’s score data,
and aggregates these orderings, in order to combine prefer-
ences elicited through standard numerical comparisons with-
out encountering any of the above problems.

To accomplish this, we use both a novel local-search al-
gorithm for aggregating individuals’ orderings into a single
consensus ordering, and a strategy for using these order-
ings to assist groups tasked with reviewing large numbers
of different items. Our algorithm produces better results,
on average, than any existing heuristics, and it solves most
smaller problems to optimality. We analyzed this recom-
mender system using anonymized data from various real-
world situations, such as academic conferences.

An extended version of this paper, with details of the algo-
rithms, their implementation, and evaluation, is available at
www.cs.brown.edu/research/pubs/techreports/reports/

CS-09-07.html. Our generated data sets are available at
www.cs.brown.edu/research/plt/dl/recsys2009/.

2. AGGREGATING ORDERINGS
In order to make use of reviewers’ relative preferences,

we must find a way to combine the disparate preferences of



reviewers together. Aggregating orderings—combining the
relative preferences of multiple people into a single “consen-
sus ordering” in as fair of a way as possible—is the very
same problem addressed by voting theory [1]. Kemeny [8]
proposed a rule whereby the consensus ordering should be
chosen to minimize the number of violations: the number of
triples (Ci, Cj , Rk) such that reviewer Rk prefers item Ci to
Cj , but the consensus ordering ranks Cj above Ci.

The Kemeny rule has a number of desirable properties as
a preference aggregation function [15]. However, it has a
number of less-desirable properties:

1. Finding the optimal Kemeny ordering is NP-hard. Ex-
act methods to find optimal rankings cannot handle
more than 80-100 items [3, 4]. Recommender systems
may have to deal with hundreds, thousands, or even
millions of different items.

2. There are mutliple Kemeny-optimal orderings, and any
given item’s position may vary widely between them.
Presenting any particular one as the “correct” ordering
of the items ignores this important issue.

3. A consensus ordering presents only a relative picture of
the items’ quality: we do not know whether the 15th-
best item is “good” or not, only that it is better than
the 16th-best, 17th-best, and so forth.

4. Almost invariably, final decisions are produced within
meetings, in which committee members consider some
subset of the items as a group. Thus, an ordering is
not the most useful output to provide. Instead, a rec-
ommender system should prune the total search space
in order to limit the number of spurious items the com-
mittee must consider together.

In order to address these issues, we use a local search
algorithm to quickly provide a near-optimal answer rather
than an exact solution; furthermore, we do not use this con-
sensus ordering directly, but rather use it as input to our
categorization system, described in section 4, which aims to
provide simple, useful, and dependable information based
on this ordering.

Using relative preferences allows us to provide robust in-
formation from scores. While scores are a common method
of eliciting preferences in group recommender systems [7,
11], they are not universal. Lorenzi et al. [10], for instance,
concieve of user preferences as a set of constraints, and at-
tempt to find recommendations that fit the constraints of all
the users. However, such systems tend to eliminate items
that would cause conflict, which is not the goal in scenar-
ios such as program committees and employee searches. We
should highlight conflict-causing items rather than penalizing
or eliminating them. Our ranking provides the additional
benefit of identifying conflict without ruling out conflict-
causing items.

3. ALGORITHM FOR
PREFERENCE AGGREGATION

In this section, we present a local search algorithm that
quickly determines optimal or near-optimal consensus rank-
ings according to the Kemeny criterion from sparse rank-
ing data. In our categorization algorithm below, we use

these rankings in concert with original scores to determine
whether items are good or bad, as well as to identify conflict.

We can use reviewers’ preference data to construct a weighted
directed graph G = (V, E), in which each vertex v ∈ V rep-
resents an item being reviewed, and the edge from vi to vj

has weight cij equal to the number of reviewers who prefer
i to j. Given this graph, finding the Kemeny-optimal or-
dering becomes an instance of the Linear Ordering Problem
(LOP), in which the goal is to find a total order >o that
minimizes L(o) =

P
i,j : i>oj cij .

3.1 High-Level Algorithm
Our algorithm is a variable-neighborhood search algorithm,

with the same structure as the algorithm described by Gar-
cia et al. [5]. We begin with a random ordering, and pro-
ceeds to a local maximum. At every iteration, we then try to
improve on that maximum by performing a series of succes-
sively larger “diversification” moves, followed by the finding
of another local maximum. Each diversification move at-
tempts to change the solution enough that the subsequent
search for a local maximum will find a maximum that is
distinct from the previously best-known order. If the best
local maximum we have found so far is close to a better max-
imum, it should take only a small change in our solution to
move us towards this higher point; however, if this does not
work, we try larger moves. This is the essence of variable
neighborhood search [5]. As soon as we reach a local maxi-
mum better than the one where we started, the series starts
all over again, with the smallest diversification moves.

We improve on Garcia et al.’s variable neighborhood search
algorithm in two places: we have a novel technique for find-
ing local maxima, and we modify the diversification step to
be more appropriate for sparse graphs. These techniques
result in major improvements, especially on the particular
problem instances encountered in rank aggregation.

3.2 Finding Local Maxima: “Cascade”
Most attempts to find good local maxima for the linear

ordering problem have used a BestFit search, in which the
algorithm repeatedly examines each vertex, and inserts that
vertex in the position that results in the most improvement
of the objective function. This continues until no moves can
be found that improve the result.

We improve upon BestFit with cascadeMoveUp (Fig-
ure 1) and the analogous cascadeMoveDown, which we
developed to exploit the structure found in sparse matrices.
We combine these two moves into a heuristic for finding
local optima: first, we go from vertex N − 2 to vertex 1,
performing cascadeMoveDown, and then from 2 to N −1
performing cascadeMoveUp. We repeat these two steps
until we achieve no further improvement.

In practice, we have found that this procedure works much
better than using simple BestFit. On the other hand,
it also performs significantly more slowly. But if we re-
member which vertices are “stuck”—already unable to move
further—and use this information to terminate the recursion
early, we can achieve a substantial speedup: with this opti-
mization, Cascade takes only 50-75% longer than BestFit,
as opposed to over 200% longer without it.

3.3 Diversification for Sparse Instances
Garcia et al. use a diversification step diversifyk which per-

forms k random moves in which a randomly-chosen vertex is



Figure 1: cascadeMoveUp procedure

procedure cascadeMoveUp(p)
po ← p
co ← 0
for i = p− 1 . . . 0 do

ci ←The cost of moving the vertex at p to i
if ci ≤ co then

co ← ci

po ← i
end if

end for
if po > 0 then

cascadeMoveUp(po − 1)
cascadeMoveUp(po)

end if
end procedure

placed in a randomly chosen position other than its own. k
begins at 1, and each time the algorithm fails to find a new
local maximum, k increases until it reaches kmax. We modify
this move by identifying, for a vertex v, the vertices pred(v)
and succ(v)—the closest vertices ordered lower than v and
higher than v, respectively, to which v is directly connected.
Our diversification step uses only random moves that switch
relative order of v and either pred(v) or succ(v), which im-
proves its effectiveness on the sparse matrices prevalent in
preference aggregation.

3.4 Computational Experiments
We evaluated our algorithm against real-world data ob-

tained from a departmental faculty search with roughly 350
applicants and 25 reviewers, against the instances in LOLIB [14],
and against a set of instances randomly generated to be simi-
lar to real-world rank aggregation instances. These instances
were generated by simulating k reviewers each ranking p of
n papers. Their rankings are each set initially to be identi-
cal, but are then each perturbed by m random moves. For
each of n = 300 and n = 400 we generated both “sparse”
instances (k = n/10, p = 30, m = 15) and “dense” instances
(k = n/5, p = 50, m = 20). We generated 10 each of these
4 types, for 40 instances in total. The dense instances are
called 300-D and 400-D and the sparse instances 300-S
and 400-S. There are two data sets from the faculty search:
one is called Potential, corresponding to reviewers’ ratings
on a “Faculty Potential” scale; the other Fit, corresponding
to their ratings on a “Goodness of Fit” scale.

On each of these instances, we ran two different algo-
rithms. The first, VNS, comprised the variable-neighborhood
search algorithm with none of our modifications, as decribed
in [5]. The second, VNS-CD: was our variable neighbor-
hood search algorithm with the Cascade heuristic and the
modifications to the diversification step.

For these algorithms, we set kmax = 20, while Garcia et
al. set kmax = 10; we found that using a high kmax, allowing
our search to diverge farther from previous local maxima,
improved solutions for rank-aggregation problems in partic-
ular. We ran each algorithm for the same amount of proces-
sor time, rather than performing a set number of iterations;
this allowed us to determine whether the additional time
taken by the Cascade heuristic is put to better use than it
would be by simply adding more iterations.

Figure 2: Average Distance from Best Result

All algorithms were executed for 5 seconds of processor
time on an Intel Pentium M processor at 1.4GHz.

On LOLIB instances, each algorithm reached the optimal
solution for every problem, with the exception of VNS-CD,
which returned a solution 2 below optimal on one instance,
be75np. We hypothesize that this was just a poor run caused
by the effects of randomness.

For the random rank-aggregation instances, our algorithm
produced significant improvements in most cases; however,
it was marginally worse on the “300 sparse” set. For the
problems encountered from real-world faculty-search data,
our algorithm provides a real improvement over “standard”
VNS. Thus, our VNS-CD algorithm is an improvement
over the state of the art in the domain of rank aggregation.

4. CATEGORIZATION ALGORITHM
While the VNS-CD algorithm yields a good ordering of

the vertices, just finding a consensus ordering is not enough.
To improve the quality and utility of our information, we
use a categorization algorithm that incorporates both the
original scores and the consensus ordering.

We first attempt to reduce variability by gaining infor-
mation about unconstrained vertices. This is accomplished
by using the succ(p) and pred(p) functions defined in sec-
tion 3.3. Since moving a vertex to any position in the order
between its predecessor’s position and its successor’s would
not affect the cost, a vertex’s position within that range is
arbitrary. Thus, we create Oh, an order sorted by succ(p)
which we use to look for good vertices, and Ol, an order
sorted by pred(p), to use when looking for bad vertices.

The next step is anchoring the consensus ordering to the
initial scores. We computing a moving average of items’
average scores, in order to figure out approximately which
numerical score is equivalent to which position in the sorted
order without re-introducing the same biases we have set out
to correct. Starting with the highest vertex in Oh, we label
all vertices as “good” until the moving average of scores first
falls below some user-supplied cutoff values cgood; similarly,
we label vertices as “bad” in Ol until the moving average of
scores rises above some cbad.

The final step is identifying vertices that are “in conflict”.
To accomplish this, we look at all “good”vertices v ∈ G, and
calculate the percentage of preferences that compare v and
some non-“good” vertex u in which u is ranked above v:

conflict(v) =

P
u �∈G cuv

P
u �∈G cuv + cvu

If this value exceeds the cutoff value cconflict, v is labelled as
“good but conflicted”. A similar technique is used to identify
“bad but conflicted” vertices.



Real-World Effectiveness
We evaluated our algorithm using data from a number of
small conferences that used the “Identify the Champion”
(ItC) system for scoring [12]. In this system, reviewers score
papers from A to D, where A signifies that the reviewer will
“champion” the paper by arguing for its acceptance, and D
signifies that the reviewer will argue for the paper’s rejection.
B and C are intermediate values signifying views not strong
enough for the reviewer to actively argue for or against.

We found that our algorithm (which produced optimal
consensus orderings within five seconds on commodity hard-
ware for all conferences) was slightly worse at identifying
which papers would be accepted than ItC. While we never
identified an accepted paper as“bad”, we occasionally identi-
fied as “good” papers that would go on to be rejected. How-
ever, our algorithm labeled more papers as “good” or “bad”
than were given definitive recommendations by ItC, which
is designed so that papers with all As but no Ds should
be accepted, and all Ds but no As should be rejected. For
papers with no As or Ds, our algorithm correctly identi-
fied which papers would go on to be accepted 80% of the
time, which provided an improvement over the minimal in-
formation otherwise available. Moreover, it is worth noting
that these small conferences, each having between 10 and
36 submissions, do not represent the target environment for
our recommender system.

5. OTHER RELATED WORK
Cook et al. have previously examined the problem of cre-

ating a consensus ranking from those of individual review-
ers; a branch-and-bound algorithm is proposed that results
in very fast optimal solutions for low-noise instances with
up to 60 elements [4]. By using a heuristic local-search algo-
rithm, we sacrifice the ability to obtain an optimal solution
for increased scalability. Our categorization system provides
information about conflict, while addressing the problem of
unreliable consensus rankings, allowing us to provide more
complete and dependable information. Lastly, the proce-
dure designed by Cook et al. is meant to be used in concert
with their allocation scheme for peer reviews, which is not
practicable in all domains.

Other local search algorithms for the Linear Ordering Prob-
lem have been proposed, using various metaheuristics [2, 6,
9, 13]. However, most of these algorithms were designed
for instances such as those encountered in the Triangulation
Problem for Input-Output Matrices in economics; indeed,
the popular LOLIB library of sample instances for the linear
ordering problem are derived entirely from this source, and
tend to be both smaller (60 elements or fewer) and denser
than the problems encountered in our domain.

6. FUTURE WORK
Much more empirical data is required to give a good as-

sessment of the efficacy of this recommender system in com-
parison to less-sophistocated methods; this data will be cre-
ated as the algorithm is implemented and used in various
recommender systems. Additionally, finding better ways
of reducing the variability of consensus rankings—perhaps
identifying and extricating disconnected components of the
preference graph, for instance—could result in algorithms
that are much more robust against conflicting reviews. In
general, using relative preference data to provide feedback

that is richer than a “mere” consensus ranking may prove
to be a fruitful direction for future group recommender sys-
tems and may be the key to providing accurate, stable and
unambiguous ways of separating good choices from bad.

Acknowledgements
We thank Meinolf Sellman, Claire Mathieu, Warren Schudy,
and David Laidlaw for their helpful comments on our sys-
tem, Arjun Guha for his help testing and supporting it, and
Pascal Van Hentenryck for his assistance optimizing the lo-
cal search algorithm. This work is partially supported by the
NSF. Baskin’s work was conducted at Brown University.

7. REFERENCES
[1] K. J. Arrow. Social Choice and Individual Values. Yale

University Press, second edition, September 1970.

[2] V. Campos, M. Laguna, and R. Mart́ı. Scatter search
for the linear ordering problem. New Ideas in
Optimization, 1999.

[3] I. Charon and O. Hudry. A branch-and-bound
algorithm to solve the linear ordering problem for
weighted tournaments. Discrete Applied Mathematics,
154(15), 2006.

[4] W. D. Cook, B. Golany, M. Penn, and T. Raviv.
Creating a consensus ranking of proposals from
reviewers’ partial ordinal rankings. Computers &
Operations Research, 34(4), 2007.

[5] C. G. Garcia, D. Pérez-Brito, V. Campos, and
R. Mart́ı. Variable neighborhood search for the linear
ordering problem. Computers and Operations
Research, 33(12), 2006.

[6] G. Huang and A. Lim. Designing a hybrid genetic
algorithm for the linear ordering problem. In Genetic
and Evolutionary Computation Conference, 2003.

[7] A. Jameson. More than the sum of its members:
challenges for group recommender systems. In
Advanced Visual Interfaces, 2004.

[8] J. Kemeny. Mathematics without numbers. Daedalus,
88, 1959.

[9] M. Laguna, R. Marti, and V. Campos. Intensification
and diversification with elite tabu search solutions for
the linear ordering problem. Computers and
Operations Research, 26(12), 1999.

[10] F. Lorenzi, F. Santos, J. Paulo R. Ferreira, and A. L.
Bazzan. Optimizing preferences within groups: A case
study on travel recommendation. In Brazilian
Symposium on Artificial Intelligence, 2008.

[11] J. F. McCarthy and T. D. Anagnost. MusicFX: an
arbiter of group preferences for computer supported
collaborative workouts. In Computer Supported
Cooperative Work, 1998.

[12] O. Nierstrasz. Identify the champion. Pattern
Languages of Program Design, 4, 2000.

[13] J. Petit. Experiments on the minimum linear
arrangement problem. Journal of Experimental
Algorithmics, 8, 2003.

[14] G. Reinelt. LOLIB, 1997. http://www.iwr.uni-
heidelberg.de/groups/comopt/soft/LOLIB/.

[15] D. Saari and F. Valognes. Geometry, voting, and
paradoxes. Mathematics Magazine, 71(4), 1998.


