In-Flow Peer Review

Dave Clarke

Uppsala Universitet
dave.clarke@it.uu.se

Matthias Hauswirth

University of Lugano
Matthias.Hauswirth@usi.ch

Ville Tirronen

University of Jyviskyld
ville.e.t.tirronen@jyu.fi

Abstract

Peer-review is a valuable tool that helps both the reviewee, who
receives feedback about his work, and the reviewer, who sees dif-
ferent potential solutions and improves her ability to critique work.
In-flow peer-review (IFPR) is peer-review done while an assignment
is in progress. Peer-review done during this time is likely to result
in greater motivation for both reviewer and reviewee. This working-
group report summarizes IFPR and discusses numerous dimensions
of the process, each of which alleviates some problems while rais-
ing associated concerns.

1. In-Flow Peer-Review

Peer-review has been employed for various reasons in Computer
Science courses [61]. It is a mechanism for having students read
each others’ work, learn how to give feedback, and even to help
with assessment. Indeed, of the six major computational thinking
skills listed in the current draft of the AP Computer Science Prin-
ciples curriculum [13], the fourth is:

P4: Analyzing problems and artifacts

The results and artifacts of computation and the computa-
tional techniques and strategies that generate them can be
understood both intrinsically for what they are as well as
for what they produce. They can also be analyzed and eval-
uated by applying aesthetic, mathematical, pragmatic, and
other criteria. Students in this course design and produce so-
lutions, models, and artifacts, and they evaluate and analyze
their own computational work as well as the computational
work that others have produced.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

Copyright © ACM [to be supplied]. .. $15.00.
http://dx.doi.org/10.1145/

Tony Clear

Shriram Krishnamurthi

Brown University
sk@cs.brown.edu

Kathi Fisler

Auckland University of Technology WPI
tony.clear@aut.ac.nz

kfisler@cs.wpi.edu

Joe Gibbs Politz

Brown University
joe@cs.brown.edu

Tobias Wrigstad

Uppsala Unviersitet
tobias.wrigstad@it.uu.se

Students are expected to:
* Evaluate a proposed solution to a problem;
* Locate and correct errors;
* Explain how an artifact functions; and

* Justify appropriateness and correctness.

Peer review clearly has a role to play in developing each of these
skills. Students must read and evaluate proposed (partial) solutions,
try to at least locate (if not offer corrections to) errors, offer their
explanations for what an artifact is doing (especially if it does not
match the expectations set by the problem), and justify their views
on the appropriateness and correctness of presented solutions. Giv-
ing authors the ability to respond to reviews further reinforces the
quoted principles.

Peer review has uses beyond merely evaluating programs. Writ-
ing benefits from peer review (Topping’s review lists several exam-
pes [61, page 261]), as do other artifacts that aren’t just programs,
like design diagrams, test suites, formal models, documentation,
and presentations. All of these artifacts are also fair game for peer
review in computer science courses and more, and peer review ad-
dresses similar underlying learning goals of evaluation and expla-
nation of existing work.

This working group explored a particular variant of peer-review
called in-flow peer review [47] (IFPR). In this model, peer review
occurs while an assignment is in progress, before students submit
their work for final grading. Performing peer-review in-flow has
several potential benefits:

* It helps students better understand the problem specification.
If the work they see others doing is inconsistent with their
understanding, one or the other (or both!) might be confused.
It is better to discover this while the assignment is in progress
rather than after it is over.

* Students are motivated to read feedback they get since it can
affect their performance on the current assignment. In contrast,
feedback given when the assignment is over may get less atten-
tion if students have moved on to other assignments.

* Students can apply what they learn from seeing examples of
one another’s work, and also learn to exercise judgment when

evaluating existing solutions. When a student sees another’s
work, she does not know the quality of the work she sees: it
could be better than her own work, but it could also be worse.
This takes some potential problems with plagiarism and turns
them into a part of the learning process.

It further emphasizes the comparative examination of work
against a student’s own.

It helps students develop skills in a standard component of
industrial software development.

Several challenges arise with this model, including figuring out
how to decompose assignments for meaningful reviews, how to
prevent students from gaming the process to avoid doing their
own work, how to minimize the extra time this takes to complete
homeworks, and how to help students not be led astray by weak or
inaccurate reviews. Considering the potential learning objectives of
IFPR, these challenges seem worth tackling.

This report summarizes activities of a working group on the
promises and pitfalls of in-flow peer-review in computer science
classes. The group members represented several countries and
taught various courses at different levels (though the majority
taught courses related to programming, programming languages,
or other aspects of software development). We arrived at several
different learning objectives an instructor might have for using peer
review in a course that drove our discussion. In addition,
prior to the group’s in-person meeting, each group member created
two assignments for in-flow peer-review. These case studies, which
are summarized in two figures (figure [2] figure 3), also helped to
form the basis of many of our discussions.

Several assumptions and decisions scoped our work. We viewed
IFPR as a mechanism for achieving certain learning goals, not
as a way to scale grading (which is a use of peer-review in
MOOC:s [36]). We focused on person-to-person reviewing, rather
than consider automated assessment tools that also provide a form
of in-flow feedback to students. The members wanted to understand
the benefits of writing reviews, a task which automated feedback
tools eclipse. We also focused on peer feedback rather than peer
assessment; Liu and Carless [38] describe the latter as targeting
grading while the former targets collaboration.

2. AnIFPR Roadmap

IFPR is a mechanism open to many policies. These policies are a
function of a course’s goals, student maturity, cultural context, and
more. Therefore, an instructor who chooses to use IFPR will have to
make several decisions about exactly what form they will employ.
This section briefly outlines some of these decision points, with
references to the rest of the document for more details.

2.1 The IFPR Process

IFPR follows a particular process for assignments. In order to have
an in-flow component, the assignment requires at least one review-
able submission that occurs before the final deadline of the assign-
ment. This requires thinking through a few procedural questions
that all in-flow assignments must address:

* The choice of submissions. How should an assignment be bro-
ken down into multiple stages? Even in a programming assign-
ment, there are many choices: tests before code; data struc-
tures before tests; design documents and architectural specifica-
tions before code; multiple iterations of code; and so on. Some
choices raise more concerns regarding plagiarism, while others
only work under certain assumptions about software develop-

ment methodologies. (Section 5.1)

* The distribution of reviewing. Should reviewing be distributed
in order of submission? Randomly? Between students of similar
or opposite attainment levels? Synchronizing review across stu-
dents enables more policies on reviewer assignments, but incurs
overhead for students and staff through more course deadlines.

(Section 5.2)

The manner in which reviews are conducted. This includes the
choice of review “technology”: should reviewing be mediated
by a computer application or should it be done face-to-face (per-
haps as a small group meeting around a table)? This also in-
cludes the use of rubrics: On the one hand, rubrics for reviewing
guide the reviewer and may result in more concrete, actionable
outcomes. On the other hand, a rubric can result in less con-
structive engagement and may result in important issues being

missed. (Section 5.3.1))

2.2 Issues Surrounding IFPR

There are a number of other cross-cutting issues that inform the
choices made in the in-flow process, and affect the appropriateness
and effectiveness of IFPR in particular contexts:

* The role of anonymity. When, if ever, should authors and re-
viewers know about each others’ identity? Using single- and
double-blind reviewing systems introduces trade-offs between
protecting students’ identity, creating the potential for abuse,
and introducing students to norms of professional behavior, all
of which need to be taken into account. Anonymity may enable
more students to participate comfortably, at the cost of missed
opportunities for creating cultures of collaboration and profes-
sional working behavior. (Section 6.3)

The role of experts. Experts can play any number of roles: be-
ing entirely hands-off and treating this as an entirely student-run
process (presumably after introducing the process and its pur-
pose); intervening periodically; or constantly monitoring and
even grading the responses. These roles set different tones be-
tween students regarding expertise and authority, but also define

standards while students are new to the process. (Section 6.4)

Suitability for non-majors. While IFPR is easy to justify for ma-
jors because of its correspondence to industrial practice (code-
reviews), the industrial argument makes less sense for non-
majors. Objectives around collaboration and creating standards
of evaluation, however, seem to apply to both majors and non-

majors. (Section 6.5)

2.3 Terminology

Throughout this report, we use the following terminology for the
various artifacts, roles, and aspects of IFPR (figure[I]illustrates these
terms and their dependencies graphically):

* An exercise is a problem set or assignment associated with a
course; it may consist of multiple independent subproblems.

A stage is a problem or task within an exercise that will be sent
out for peer review.

A piece of work on which a student will be reviewed is called
a submission: this could be a piece of code, a paper, a presenta-
tion, or any other work on which peers will provide feedback.

The author of a submission is the student who did the work
associated with the submission (and who presumably would
receive any grade associated with the submission, as well as
any reviews about the submission).

A review is written by a reviewer and responds to a specific
submission.

Exercise

R ——
Author {

Submission

Reviewer {

Review

Respondent {

Meta-Review

Figure 1: Illustration of Key Terminology

* A meta-review contains feedback on a review: this could be a
grade of a review produced by course staff, feedback from the
original submission author back to the reviewer, or any other
commentary on the contents of a review. The provider of a
meta-review is called a respondent.

* A reviewing assignment indicates which reviewers are expected
to produce reviews for each submission.

The figure loosely shows their temporal ordering, with time in-
creasing both downward and rightward. The diagram is intention-
ally ambiguous about the overlap of some events because differ-
ent configurations of IFPR engender different temporal orders of re-
viewing events across students. The boxes labeled . ..” mean there
are one or more of the box immediately to the left.

3. Educational Goals of IFPR

Both peer review and the in-flow variant target a complex and in-
teresting set of educational goals, some student-focused and some
instructor-focused. Working group members were surprised at the
subtleties that these goals brought to questions about how to config-
ure IFPR. Indeed, many found discussions of the educational goals
(and their impacts) the most thought-provoking aspect of our dis-
cussions. We lay out the goals here, referring back to them as we
discuss configurations of IFPR throughout the report.

3.1 Student Learning Objectives
Fundamentally, IFPR fosters collaborative learning in which stu-
dents can practice several critical skills:
* Assessing whether another’s work satisfies problem require-
ments
* Providing actionable, useful, and appropriate feedback to others
* Extracting high-level design choices from another’s work

* Comparing others’ high-level design choices and practices to
one’s own

* Deciding whether to adopt or ignore particular feedback or
ideas

* Learning to value and grant authority to feedback from peers
The first two items arise primarily in students’ role as review-

ers, and are common to all forms of peer-review. The last two tasks
arise more in students’ roles as recipients of reviews, and have

more urgency in an in-flow context. The middle two arise in both
roles. In the context of Bloom’s taxonomy [5], these skills move
students beyond “remember,” “understand,” and “apply” to “eval-
uate”. They engage students in reflection and meta-cognitive think-
ing about their own work, while also requiring students to be able
to communicate technical issues clearly to others.

Beyond these goals, regular comparison of one’s own work to
that of others can help students calibrate their abilities. In particular,
it should provide means for students to gain confidence and self-
efficacy in their work, and in discussing the works of others.

The extent to which IFPR targets these goals depends signifi-
cantly on the artifacts students are asked to review, the criteria or
rubrics through which they produce reviews, the means through
which students are expected to respond to reviews, and the feed-
back students receive on their reviews. Some configurations of peer
review, particularly those designed simply to scale grading, natu-
rally and necessarily de-emphasize some of these goals.
explores these tradeoffs in detail.

The emphasis on collaboration in these goals illustrates that
IFPR is an example of a Contributing Student Pedagogy (CSP),
a pedagogy in which students (1) contribute to the learning of
others and (2) value the contributions of other students. A 2008
ITiCSE working group report describes various facets of such ped-
agogies [24]. IFPR targets the second criterion (valuing the contri-
butions of other students) more than traditional, post-submission
peer review. Various parameters in implementations of IFPR affect
the extent to which students contribute to the learning of others in
practice: shallow reviews, for example, arguably meet the letter but
not the intent of a CSP. Separately, IFPR has goals beyond CSP:
writing reviews offers benefits to the reviewer as much as the revie-
wee, and often the learning goals that inspire IFPR (and peer-review
in general) are more focused on the reviewer than the reviewee.
Nonetheless, many of the theoretical underpinnings of CSPs also
apply to IFPR, and thus affect the ideas in this report.

Of course, IFPR also has the potential to interfere with student
learning. Reviewing asks students to switch between very differ-
ent tasks (programming and reviewing); depending on the timing
of reviewing, this could affect students’ cognitive load. Careful de-
sign of exercises is important: allowing students to share parts of
their solutions through reviewing can, for example, affect whether
students stay in their zones of proximal development [67].

3.2 Instructor Goals

From an instructor’s perspective, IFPR can target several objectives,
including:

1. Emphasizing the importance of writing in technical contexts

2. Providing human feedback more scalably and more timely than
with only expert assessment

3. Providing an additional perspective on how students perceive
course material, since students express their understanding in a
different medium than their assignment submissions

4. Increasing social interaction within computing and program-
ming, addressing a common misconception about working in
the discipline

5. Fostering engagement of and interaction between students from
different cultures

6. Helping students improve performance and learning while ac-
tively engaged with course material

7. Re-examining plagiarism issues by casting the re-use of class-
mates’ ideas and code in a positive light, and including grading
mechanisms that take this into account

The first three objectives arise in most forms of peer-review. The
next two arise in general peer-review, though the immediacy of the
in-flow context likely enhances their impact. The last two are more
directly associated with IFPR.

All of the working group members were interested in IFPR more
as a way to enhance students’ learning than as a way to scale grad-
ing. Indeed, most members were open to (if not already) investing
additional staff resources in making sure students were learning re-
viewing skills from a peer-review process. The members were in-
terested in the insights they could gain as instructors from reading
students’ reviews (as per the third objective), though none believed
that grading all of the reviews was scalable or cost-effective.

The group also coalesced around the social benefits of peer re-
view, seeing this as an important aspect of developing competent
professionals. Many of our discussions about giving review feed-
back and whether reviewing should be anonymous revolved around
the impacts these issues could have on collaboration and socializa-
tion through peer review.

4. Examples of IFPR

The case studies from working group members covered a variety
of student levels and course types. More interestingly, they var-
ied widely in the kinds of artifacts and processes that they sug-
gested for IFPR. Figure 2] and figure [3] summarize the key pa-
rameters of the case studies: the former covers introductory-level
courses and the latter covers upper-level courses. The table lists the
name and level of the course, describes the assignment in which
IFPR was used, describes the submissions that were reviewed, and
describes the review criteria for submissions. Assignments with
[*] after their descriptions have been used in actual courses; the
rest are hypothetical uses proposed by working group members,
based on exercises in their current courses. The descriptions of
the case studies are available at https://github.com/brownplt/
iticse-in-flow-2014/tree/master/in-flow-assignments.

5. The In-Flow Process

Several steps are part of any in-flow assignment, as illustrated in
figure[T] This section lays out the process of submissions, reviews,
and meta-reviews in more detail, along with the design decisions
that the group identified for each activity. continues by
discussing issues that cross-cut the process.

5.1 Stages and Submissions

As the case studies in figure 2]and figure [3] show, IFPR can be used
with many different kinds of submissions. Even once an instructor
has identified the general class of artifacts to review (such as papers
versus code), she can choose different ways to use IFPR to build up
to final versions. The group identified four broad choices in the
artifacts to be reviewed:

* Multiple iterations of the same specific deliverable: This ap-
proach is the most similar to existing peer grading approaches,
where an entire deliverable is presented for review. This mirrors
common practice in courses where students do peer review of
written work, which is well-studied in contexts other than com-
puter science [8, 61]. Little extra work in assignment design
is required to have students review drafts, so this provides a
low-friction way to adapt an existing assignment for IFPR. One
consideration is that plagiarism can be more of a problem in
programming tasks that are the same across students than in
writing tasks where goals are less objective and more variance
is expected. We discuss plagiarism (and mitigations) more in

Case studies 6, 9, and 12 included submission steps that were
prototypes or drafts of the final product.

Multiple iterations of an evolving deliverable: Some projects
don’t have drafts as much as an evolving set of specifications
and deliverables. For example, in a long-term software engi-
neering project, the demands of the system may change over
time as new requirements are discovered. This is distinct from
multiple iterations of the same deliverable because the goal it-
self changes along with the submission. Both high-level feed-
back on the direction of the project and low-level implementa-
tion feedback can be helpful in this setting.

Case studies 10, 12, 13, and 15 have elements of this approach,

where the deliverable’s nature changes more over time, and in
response to review.

Separate deliverables that build on each other: Often, pro-
gramming assignments can be broken down into several sub-
problems, often expressed via decomposition into helper func-
tions or separate classes. If the assignment naturally fits this
kind of breakdown, a natural strategy for using in-flow review
is to review individual pieces, to catch mistakes in the com-
ponents before composing them into a final solution. This ap-
proach lends itself well to detailed evaluation, because the sep-
arate components can be assessed in isolation, in both their pre-
review state and their state after final submission. Also, if the in-
structor (rather than the students) decides on the decomposition,
they have a lot of control over the path students take through the
assignment, which can inform decisions about rubrics and feed-
back guidance.

Case studies 1, 2, 5, 7, 8, and 15 use this approach.

Incremental views of the same deliverable: Programming
problems can have a number of distinct artifacts associated with
them beyond code: They have documentation, tests, specifica-
tions, underlying data representations, measurable behavior like
time and memory complexity, visualizations, and more. Having
students produce different views on the same problem, with re-
view in between, is another way to break up the assignment. For
example, an assignment might proceed with a test-first or test-
last approach, with review before or after a test suite is writ-
ten. This focuses students on different aspects of the problem in
their different stages of review.

https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments

|Course and Level |Exercise Submissions Review Criteria
Computing for Cluster data on voting records |Code and tests for Provide scores from 0 to 100 on each of
' | Social Sciences and (US Senate) to identify instructor-defined subsets of (a) whether tests meaningfully capture
Humanities senators with similar overall functionality the assignment purpose, and (b)
(undergrad ideology|[1ink] whether code performs the
non-majors) corresponding computation correctly
CS1 Write code and assertions for | Work so far on subset of functions |Rate readability and correctness;
2 various components of a designated by instructor additional free-form comments
pinball game | [1ink]
Advanced CS1 with |Design a data structure for Datatype definition with instances |Indicate whether (a) data structure can
3 |Data Structures incremental and functional of the data, test cases, complete support required operations within time
updates on trees [*]|[1ink] programs bounds, (b) interesting examples of data
are missing, (c) tests offer good
coverage and are correct
Programming In-class clicker assignment to | CFGs for code snippets (drawn Provide yes/no assessment of whether
4 Fundamentals 2 explai trol-flow th h |th h cust ft kage) |CFGi t
plain control-flow throug rough custom software package is accurate
(2nd semester if-statements [*] [1ink]
undergrad)
Imperative and OO |Implement a program that Description of learning goals Instructor-provided template on choice
5 Programming satisfies a student-selected set |covered by program, program of goals, whether program satisfied
Methodology (2nd | of learning goals [1ink] code, and give presentation on how |them, and presentation quality
year) program achieves goals
Imperative and OO |Implement simple Pong game | Tests, two draft implementations, | Questions about whether key
6 Programming in model-view-controller and a final implementation components are present; whether tests
Methodology (2nd |style|[1ink] are reasonably complete and motivated;
year) whether good code practice followed
(i.e., naming, structure, indentation)

Figure 2: Summary of case studies: first-year, second-year and non-majors courses ([*] indicates use in an actual course)

Case studies 3, 6, 10, 13, 14, and 15 take this approach, where
submissions are different kinds of artifacts, but all contribute to
the understanding of a single artifact.

The nature of the reviewed submission naturally affects the
time required for review, as well as the amount of expert guid-
ance required (students will have more experience with evaluating
some artifacts over others). In turn, the course’s learning objectives
should guide the choice of artifacts: preparing students to partici-
pate in industrial code review, for example, will be better served by
using IFPR on code-based artifacts rather than written papers.

5.2 Assigning and Scheduling Reviews

The IFPR process requires building time into assignments for per-
forming review, and deciding how to assign reviewers to artifacts
for review. We discuss each in turn.

5.2.1 Scheduling Decisions

The major scheduling decision in IFPR is whether reviewing hap-
pens synchronously or asynchronously. Synchronous reviewing oc-
curs when all authors submit their work for review (and review-
ing commences) at the same time. Asynchronous reviewing occurs
when authors submit their work for review when it is ready, and
different students are in different stages of review at the same time.
The two scheduling modes have several tradeoffs:

* If all students are forced to submit before reviewing starts, there
is the full pool of reviews to draw from in any review assign-
ment strategy (section 5.2.2). In the asynchronous setting, stu-
dents can only review submissions that occurred before theirs,
which can skew the reviewing process if, for example, high-
achieving students tend to submit early.

* With intermediate deadlines, all students have the same time to
use review information. If there are no intermediate deadlines,

students who submit later have less time to use the information
from the review process before the deadline.

In the asynchronous setting, students who want to work at
their own pace can, and the process doesn’t discourage them
from continuing with their work while they await reviews. With
intermediate deadlines, a student cannot progress on her own
schedule.

If reviews are available and presented to students after they
submit, the problem is more likely to be fresh in their mind.
In the synchronous setting, there can be a longer gap between
submission and review. It’s not clear if one is particularly better
than the other: coming back to a problem after not thinking
about it for a while can be beneficial, but it also takes time to
recall the problem and re-load it into working memory in order
to perform review.

Synchronous reviewing requires extra scheduling overhead that
is likely to lengthen assignments for purely logistic reasons.
Asynchronous reviewing doesn’t require extra scheduling in the
assignment, it just changes the workflow that students follow.

With synchronous reviewing, there is an extra question of
whether there should be separate time set aside for reviewing in
between submissions (with a review submission deadline), or if re-
views can be completely in parallel with the next submission step.
This can affect the timeliness of reviews, which can affect how
useful the review is to the reviewee as they move forward with the
assignment.

5.2.2 Assigning Reviewers to Submissions

Whether reviewing is synchronous or asynchronous, there needs
to be a strategy for assigning students to review submissions. We
identified both a number of methods for assigning submissions to
students to review, and several miscellaneous modifiers that could

https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/krishnamurthi/asgn-1.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/clarke/asgn-1.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/politz/asgn-1.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/hauswirth/asgn-1.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/wrigstad/asgn-1.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/wrigstad/asgn-2.md

|Course and Level |Exercise Submissions Review Criteria
Introduction to Implement Boggle (find all Decomposition of overall problem |Check decomposition makes sense,
7| Functional valid words in 4x4 grid) into tasks (with QuickCheck presenting alternative if own differs
Programming [Iink] assertions), tests, code from reviewed one; try own test suite on
(upper the code being reviewed
undergrad/MS)
Advanced Software |Design and implement subset |Design documents so far Free-form comments on
8 Design (upper of a mobile app+server for a comprehensibility, quality of
undergrad/MS) game using iterative documentation, coverage of use cases,
development |[1ink] adherence to design principles, and
choice of subsystem to implement;
concrete examples required to illustrate
each point
Collaborative Collaboratively produce a Drafts of article Conference-paper reviewing rubric:

9 Computing (MS) research article [*] [1ink] questions on suitability for audience,
originality and demonstrated
knowledge in contribution, evidence for
arguments, methods, presentation, etc.

Software Security | Find ways to attack a Description of strategy to use in Free-form comments on
10 (upper web-based application attacking the application in comprehensiveness and appropriateness
undergrad/MS) (black-box, then white-box) | black-box fashion. of attack strategy
[Iink]
Software Modeling |Use model checking to find | Proposed model of the system Assess whether model conforms to
11 and Verification flaws in a protocol |[1ink] environment and desired problem and whether model
(upper properties that should (not) hold supports/masks the properties provided
undergrad/MS) under this model with the model; comment on good/bad
features of this model
Software Develop an extension to the | Proposed extension, prototypes, Comment on one thing they particularly

12" | performance (MS) |Jikes visual debugger|[1ink] |final artifact like and one aspect that could be
improved; evaluate prototypes
following in-class presentations by each
team; review final artifact for usability,
extensibility, and documentation

Logic for System Write a relational (Alloy) Model of data components, Comment on whether
13 Modelling (upper model of an elevator [*] description of desired properties of | components/properties are missing,
undergrad/MS) [1ink] model, initial model of elevator whether they are reasonable, and
operations whether model is suitably operational
or too declarative
Programming Provide a test suite and Tests first, implementations later Set of ~10 specific questions about test
14 Languages (upper |implementation for a type (submission deadlines not coverage, plus free-form comments on
undergrad/grad) checker [*]|[1ink] synchronized across students, but | style or organization of test suite; no
must occur in order per student) peer review on implementations
s Software Security | Implement simple online Initial program, attack trees, and Free-form comparison to what was

(MS)

web-app on a strict timetable,
then create attack trees for it
[1ink]

secured application along with
review of differences between
original and secured application
and results of using static analysis
and fuzzing tools on the
implementation

done in own solution

Figure 3: Summary of case studies: upper-level undergraduate and graduate courses ([*] indicates use in an actual course)

https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/tirronen/asgn-2.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/clarke/asgn-2.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/clear/asgn-1.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/fisler/asgn-1.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/fisler/asgn-2.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/hauswirth/asgn-2.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/krishnamurthi/asgn-2.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/politz/asgn-2.md
https://github.com/brownplt/iticse-in-flow-2014/tree/master/in-flow-assignments/tirronen/asgn-1.md

apply. We also note when a particular strategy is more or less
appropriate in synchronous or asynchronous settings.

* Random Assignment: Perhaps the most obvious and simple
method for reviewer assignment is random: each reviewer is
assigned one or more submissions at random to review. There
are of course many types of randomness; it is probably useful
to ensure that all submissions get the same number of reviews,
for example. In the asynchronous setting, the pool of reviewable
submissions will necessarily be smaller (since only a subset of
submissions have already come in); this skews the selection. In
this setting, random assignment also lacks temporal fairness:
the most recent submission isn’t guaranteed to be reviewed
first, which can weaken the benefit of quick feedback in the
asynchronous model.

Temporal Assignment: Reviews can also be assigned in the
order submissions were received. It’s not clear that this makes
much sense for synchronous review, where temporal order is
somewhat unrelated to motivations for assigning reviews. How-
ever, in the asynchronous case, assigning reviews in the order
submissions are received helps ensure that feedback happens as
quickly as possible (assuming that students complete reviews at
around the same rate). We also note that if students are aware
that temporal ordering is occurring, they can collude to time
their submissions in order to ensure or avoid particular review
pairings. Using a mix of randomness and temporal ordering
could alleviate this somewhat, at some minor cost to review
turnaround time.

By Metric: There are a number of metrics that could be used to
assign reviews with the goal of getting more effective feedback
for students. We identified:

= Achievement: Reviewers could be matched to authors with
similar or different levels of achievement on past assign-
ments (or, if the assignment can be evaluated automatically,
even on the current assignment). Existing research shows
that on group work, pairing weak and strong students can
help the weak students (though the strong students don’t do
as well either) [30]. The effects of such an assignment are
certainly course- and assignment-specific.

Prior Review Quality: If the course tracks review quality
through meta-reviewing (section 5.4), the system could as-
sign consistently strong reviewers to weak work in order to
maximize improvement (again, ‘“weak work” could be pre-
dicted by past achievement of students, or by an automatic
grading system).

Similarity Between Solutions: Reviewers may learn more
from reviewing a variety of solutions that are different from
their own. They may also be more able to review solutions
that are similar to their own. Depending on the assignment
and learning goals, it could be valuable to group students
based on solution approach or code similarity.

We expect that by-metric assignments work best synchronously,
because it is difficult to perform the assignment until the metric
can be measured for all students. Doing a by-metric assignment
of reviews asynchronously is possible if the metric is known
before submission (e.g. if only using past submission perfor-
mance), but it would result in some students waiting for their
assigned-by-metric reviewee to submit.

Student-chosen: Reviewers could also be involved in choos-
ing which submissions (including by which authors) they re-
view. For example, a simple model could have all submissions
go into a publicly-visible pool of submissions, from which stu-
dents choose submissions to review. The assignment could re-

quire that students perform some number of reviews, and re-
move submissions from the pool once they have been reviewed
enough times in order to avoid a small number of submissions
getting more reviews than others. This works with both asyn-
chronous and synchronous-style scheduling, but can be prob-
lematic if the limits are too rigid and some students submit very
late (leaving no submissions available to review for students
who submit early). A solution is to pre-seed the set of submis-
sions with some instructor-provided submissions in order to en-
sure enough supply.

Students could also choose partners to review independent of
particular submissions. It might be reasonable to switch to a
student-chosen partner approach after having assignments with
other review assignment strategies, once students have decided
they enjoy collaborating. This also works fine in both syn-
chronous and asynchronous styles: students may even arrange
to complete their work at a time convenient for their reviewer
in order to get the most prompt feedback.

Papadopoulos et al. explored different strategies for assigning
students in peer review in a computer science course on net-
working [45]. They find that students who select their peers
freely perform better (according to experts rating the utility and
clarity of reviews) than pairs where the students were assigned
(randomly) by the instructors beforehand.

All student-chosen strategies for review interact heavily with
choices about anonymity of the review process, which we dis-
cuss in more detail in[section 6.3

In addition to these strategies, there are a few other factors for

educators to consider in assigning reviews:

* Groups vs. individual: The review assignment strategies in this
section aren’t limited to only pairs of reviewers and reviewees.
It would be perfectly reasonable for a group of reviewers to cre-
ate a review together through discussion, whether online or in
person. The same parameters of randomness, temporality, and
so on apply. Anonymity is possible but more difficult when a
discussion among multiple students is involved. We discuss the
contents of reviews and review discussions more in[section 5.3}

Class-wide review: At the extreme end of group review is a
review that involves (potentially) the whole class. This could
be, for example, a presentation that the whole class comments
on immediately, or a collective review process as in a studio
art course, where work is presented and discussed publicly.
Using an online tool, work can even be published publicly but
anonymously, and allow for any interested class member to
comment.

Mutual reviews: Reviewer-reviewee pairs can be mutual or
disjoint — students may form pairs (or groups where every-
one reviews everyone else) that review one another, or there
may be only a one-way connection between reviewer and revie-
wee. Mutual reviewing could provide more concrete motivation
(other than abstract altruism or a grade), if students are helping
someone who is actively helping them in return. Mutual review-
ing can still retain anonymity.

Persistent review assignments: In an assignment with two or
more reviewed stages, reviewers can change at each stage, or
continue to be the same throughout the process. One study re-
ports that, for assignments with more than 4-5 stages, switching
authors at each stage made the reviewing burden onerous [47].
Continuing to review the same author’s work may have less-
ened this burden, since the comprehension effort from earlier
stages would carry over.

Other strategies for assigning reviewers to submissions exist.
‘We have assumed that the reviewers are drawn from within the class
(which may not be the case in a peer-mentoring situation [41]).
In a class where there are communication or language barriers
between students, it may also make sense to assign reviewers so that
communication is maximized or the challenge of communicating in
another language is maximized. It may also be useful to secretly or
not secretly assign instructors or TAs as reviewers and reviewees
sometimes in order to guide or monitor the process. We discuss

instructor and TA participation in reviews more in [section 6.4

5.3 Performing Review

Much of our discussion of how to conduct reviewing focused on re-
view rubrics, which can be used to focus student feedback on spe-
cific features of the assignment. We considered whether informa-
tion beyond submissions would help reviewers. We also discussed
several forms that reviews could take, noting that technology often
guides programming courses towards text-based feedback.

5.3.1 Review Rubrics

Rubrics serve two important goals in any form of peer review:
they communicate expectations to reviewers (serving as a form of
scaffolding), and they help foster a baseline of quality in all re-
views. While these goals suggest highly-structured rubrics, overly
structured rubrics can limit reviewers’ and authors’ attention to the
questions on the rubric. They can also provide too much scaffold-
ing, especially once students need to practice evaluating work from
scratch. The tradeoffs around designing rubrics must balance these
tensions.

Rubric design must consider the rubrics’ utility for the reviewer,
the author, and the instructor seeking to understand how students
are performing. These goals are not necessarily at odds with one
another, but may conflict incidentally when picking a particular
configuration of rubrics.

The working group identified several potential roles for rubrics:

* Rubrics as scaffolding for reviews: Rubrics help students
learn how to construct good reviews, especially for students
new to the process. A beginning student who is learning to both
read and write code might not know where to start in critiquing
a program. Prompting with specific questions helps in situa-
tions where students don’t yet know how to structure a review
from scratch.

Rubrics for focus: A rubric can focus reviewers’ attention on
different questions that reflect the goals of an assignment. For
example, it could prompt code-specific questions (“Is this code
well-documented?”, “Are all the type annotations correct?”,
etc.), problem-specific questions (“Is there a test for a list with
duplicate elements?”, “Does this program meet the problem
specification for input X?”, etc.), or questions that encourage
actionable feedback (‘“Provide a test case that this solution does
not pass.”). Students may also optionally ask for reviews with a
certain focus when offering submissions for review. This might
help ensure relevance of the review for the author.

Rubrics as an alibi: Rubrics can be used as alibis for reviewers
who fear criticizing works of others because of cultural values,
self-image, or other factors. For example, being asked to point
out one part which could be done better, or to identify errors
will shift the blame from the reviewer who found the bugs to
the instructor who provided the rubric.

Rubrics for reviews of good solutions: In at least one case of
using IFPR in the classroom, reviewers reported not knowing
what to write when reviewing good solutions [47]. A rubric
could explicitly prompt for feedback even on good work (e.g.

“What did you like about this submission?”, “List one thing
you would change, regardless of correctness”, “What should
the author not change in this solution?”’), so that reviewers don’t
simply sign off on a solution as good enough without reflecting
and providing some useful feedback.

Rubrics for conduct: Rubrics can guide reviewers towards a
professional and appropriate tone for giving feedback, and help
frame negative feedback in a constructive way. For example,
forcing a review to contain comments on the strengths of the
submission under review can soften other criticism. When ap-
propriate, rubrics can guide reviewers towards more construc-
tive language — for example, “This could be done differently”
vs. “This is wrong”.

Rubrics for time management: Open-ended review tasks
don’t make it clear how much time reviewers should spend
on them. Just having a specific rubric can make it easier for a
reviewer to identify when they are done (and estimate the time
themselves). A rubric could even specify the amount of time
that a reviewer should spend, and how much on each part of
the assignment, to ensure that reviewing does not take up more
time than intended.

Evolving rubrics across a course or curriculum may offer a good
balance between initial scaffolding (for reviewers and authors)
and eventual opportunities for both groups to demonstrate critical-
thinking skills. One model would evolve rubrics from having fairly
targeted questions to asking broad questions: this model gradually
removes scaffolding. Another model starts with concrete questions
(such as “Do these tests look correct”) and progresses to questions
on more abstract issues (such as “Do these tests cover the space of
possible inputs”) as students master more of the subject material.

A variation on evolving rubrics would allow different students
to work with different review forms, depending on their ability as
reviewers. This comment arose from the working group members’
experience as conference program-committee members: members
often found overly structured forms to be annoying, feeling they
interfered with how they wanted to convey issues with a work.
However, they also noted that early on in their paper reviewing
career, they appreciated the rubrics’ ability to get them past the
initial blank form.

A different form of variation might pose more questions to re-
viewers than are conveyed to authors. This situation could make
sense when the review is used to assess the reviewer’s understand-
ing of a work, or when too much information in a review might
distract the author from the critical information in a review.

Structure enables certain comparisons between reviews. Inex-
perienced authors may benefit from structure when aggregating the
feedback of multiple reviews: for example, structure could help au-
thors understanding that two or more reviews give contradictory ad-
vice. Two students discussing reviews (that they are making or have
received) may be similarly helped by an imposed structure. Cer-
tain kinds of structure can enable automated analysis of reviews,
which can provide useful diagnostics to both instructors and stu-
dents. Similarly, software tools have the potential to provide richer
dashboards when review comments are structured.

Discussing reviews and rubrics with the entire class is another
good example of using rubrics for communication. Students or ex-
perts might see common problems which should be communicated
to all, either by sharing sufficiently general comments with the en-
tire class or even adding an entry to a rubric which brings attention
to the issue in subsequent reviews.

5.3.2 Information Provided to Reviewers

In some cases, reviewers can be provided with information be-
yond the submission. When submissions are source code, for ex-

ample, reviewers could be given both the submission and informa-
tion about how the submission held up against an instructor-defined
test suite (whether or not that information is available to the sub-
mission’s author). On the one hand, information such as a test-suite
score may reduce the time burden of reviewing; on the other hand,
it could have the downside of reviewers only focusing on the is-
sues that auto-grading revealed, masking situations in which the
auto-grading missed something important (Politz et al. observed
cases in which reviewers were more negative than grades from an
instructor-provided test suite [46]).

Additional information for reviewers provides an implicit rubric,
subject to the same tradeoffs we discussed regarding rubric struc-
ture. Instructors should bear this in mind when considering whether
additional information is actually helpful to the overall process.

5.3.3 Forms of Reviews

Reviews can take various forms, from written documents to ver-
bal feedback, from paragraphs to small comments associated with
particular fragments of prose or code, and from individual to group-
wide feedback. For written reviews, the group noted the general ap-
plicability of plain text, but modern software tools (such as Github
and other graphical version-control tools) enable targeted com-
ments and conversations between authors and reviewers down to
the line number in a particular revision. These conversations have
more structure than untargeted comments about the entire submis-
sion.

In some situations, non-text artifacts can be effective, as not all
submissions need to be code. Code-architecture diagrams can be
critiqued and marked up with freehand annotations, pictures of the
state of a running program can be drawn, and code patches can
be used to convey comments. In these cases, however, technology
choices can become a limitation.

The Informa tool allows students to give live feedback on
problems with several interfaces that could also be useful for re-
view [28]. For example, during a Java program comprehension
task, students use a drawing tool to create a graphical represen-
tation of the heap at particular program points. Another example
had students highlight portions of code that exhibited certain be-
havior or had a certain feature. Both of these interfaces go beyond
simple text or scalar feedback, and can be used to provide richer
information in reviews.

Reviews can also be conducted face-to-face, whether solely be-
tween students or moderated by TAs or instructors. Moderation
can make arguments more constructive, guide discussion towards
relevant points, and make a face-to-face meeting less intimidat-
ing. Moderated review moves the process more towards a studio-
like setting, and may be appropriate especially for teaching stu-
dents what is involved in a constructive code review process. Hund-
hausen, Agrawal, and Agarwal discuss this kind of in-person re-
view, dubbed pedagogical code review, in early courses [31]. In
pedagogical code review, a small group led by a moderator use a
set of predefined coding practice guidelines to guide a group re-
view of student programs.

5.4 Review Feedback (Meta-Reviewing)

Any instructor using peer-review must choose whether to include
grading or feedback on the contents of reviews themselves. We use
the term meta-review to refer to any feedback on a review (because
feedback can be considered a review of a review). Feedback can
take many forms: the author who received a review could report
on whether the review was constructive or led to changes, course
staff could formally grade reviews and return comments to the
reviewer, or third parties could comment on the relative merits
across a set of reviews. Which model makes sense depends on
factors including the learning objectives for IFPR, features of peer-

review software, and course logistics (such as staff size relative to
student population). Many of the issues here apply to peer-review
in general, rather than only to IFPR.

According to Ramachandran and Gehringer [49], reviews con-
sist of (1) summative, (2) problem detection, and (3) advisory con-
tent. Meta-reviews can report on each of these three types of con-
tents, each of which is valuable in its own way. While summative
contents can reflect a reviewer’s understanding, problem-detection
content directly helps a student identify opportunities for improve-
ment, and advisory content points out ways in which students might
improve. Meta-reviews can include information on which parts of
a review were constructive, and which led to actual changes. Meta-
reviews written by authors of submissions can also include rebut-
tals to aspects of a review; in IFPR, such rebuttals can arise when
students are debating the requirements of an exercise through the
review process (a healthy outcome relative to the goals of IFPR).
With enough iteration of this form, IFPR more closely resembles
traditional collaboration rather than peer-reviewing of each others’
work.

5.4.1 Types of Meta-Reviewing

Around Ramachandran and Gehringer’s framework, there are sev-
eral ways to structure the information in meta-reviews, and provide
useful feedback to reviewers.

* Direct feedback from course staff: Feedback from instructors
or TAs can repair incorrect advice and reinforce good behavior
(case studies 1, 11, and 13 call out the importance of correcting
faulty reviews explicitly). Class size is clearly a factor here. If
someone wants to use peer-review to help scale human feed-
back in large courses, then giving expert feedback on reviewing
might not be feasible.

Feedback based on assessment of submissions: In situa-
tions where an expert evaluation of the assignment is available
(whether through auto-grading or by human TA) and reviews
are quantitative, it should be possible to automate a meta-review
that tells a reviewer something about the quality of work they
reviewed. For instance, if a student indicates in a Likert scale
that they “strongly agree” that a solution is correct, but the
grade for the assignment they reviewed is low, an automated
meta-review can indicate that this review likely mis-evaluated
the work under review.

Reporting correspondence among reviews: Reviewers could
be told about the correspondence between their evaluation of
a submission and those of other students. For example, the
SWOoRD tool for peer review of writing tells student reviewers,
on each criterion they reviewed, how they did relative to the
average of other students’ scores [8]. An example of feedback
that they show says “Your ratings were too nice for this set of
papers. Your average rating was 6.50 and the group average
was 5.23.” This hints to the reviewer that he may have missed
something in his review. This is related to Hamer et al.’s work
on identifying “rogue” students in peer assessment [26], which
is focused on identifying outliers’ impact on grades. This does
run into issues of calibration and opinion; just because a student
disagrees with the average, it doesn’t mean they are wrong! The
outlying reviewer may have understood something the other
reviewers didn’t, in which case comparing his review to an
expert’s, or to a trusted automated process, may be more useful
feedback.

Having students review submissions of known quality: In
CaptainTeach programming assignments, half the time students
are asked to review a known-good or known-bad solution (im-
plemented by the course staff) [47]. Students use a Likert scale

in each review to indicate whether they think the submission
under review is correct. If a reviewer gives a strong score to a
known-bad solution, or a weak score to a known-good solution,
she gets immediate feedback telling her of the discrepancy.

Existing research has explored ways to provide or assess meta
reviews. Nelson and Schunn describe a rubric for evaluating peer
feedback in writing assignments which includes criteria like the
concreteness and actionability of the review, and whether it was
generally positive or negative [43]. Swan, Shen, and Hiltz study
assessment strategies for comments in online discussion forums
used to discuss class content [59]. Though the discussions are not
necessarily critiques of student work—they are simply prompts for
questions and comments—they do have similar requirements to
reviews in relevance, accuracy, and focus.

The Expertiza peer review process contains an explicit review-
of-review phase for collaborative work [48], and a related Expertiza
tool attempts to give some more qualitative feedback automatically
by a natural-language analysis of student work [49].

In Aropd, each review is “an assignment in itself... Reviews
can thus be reviewed using all the facilities for normal assign-
ments” [25]. Based on this observation, Aropd’s main workflow
suggests two explicit kinds of meta-review. First reviewees can rate
their reviews, which gives feedback on the perceived review qual-
ity. Second, there is an explicit dispute phase, in which the revie-
wee can disagree with the content of a review and request that the
reviewer reconsider, after which the reviewer can submit revised
feedback. This review-dispute-revise loop is, in effect, an in-flow
review of the review, since the student writing the review gets feed-
back on multiple versions of the review.

5.4.2 Using Meta-Reviews

While one generally may prefer to eliminate low-quality contents
in reviews, in a pedagogical context receiving some low-quality re-
view contents can be beneficial. While in traditional educational
settings authors may trust all the feedback they receive from the
instructor, in IFPR authors have to learn to assess the value of the
reviews they receive. They will have to learn to separate review
comments into those they will act upon and those they will ignore,
then triage those they wish to act upon. Moreover, having a diver-
sity of reviews, maybe even contradictory ones, can be a starting
point for valuable discussions in class. Having to wade through re-
views can implicitly train reviewers that they, in turn, should not
submit “brain dumps” of everything they think of, but instead pro-
vide valuable and concise reviews. The important metric is action-
ability, not volume.

Instructors may seek to use meta-reviews to monitor the IFPR
process. Given the quicker turn-around times inherent to IFPR, such
monitoring benefits from tool support and structural elements of
meta-reviews. For example, asking authors to rate the reviews they
receive on a simple Likert scale makes it easy for an instructor to
focus on potentially problematic reviews without imposing undue
burden on the students. In some IFPR configurations, software tools
that include automatic grading could report partial information on
whether student performance improves following the review phase.
Such information would be most useful for identifying cases in
which poor work did not improve, prompting the instructor to check
on whether the author had received useful and actionable advice
through reviews.

Meta-reviewing incurs a cost. Whether meta-reviews are worth
that cost depends on the learning goals. If teaching how to review is
important, meta-reviews are essential; however if the learning goals
focus on artifact production or performance, and if the reviewers
are experienced, meta-reviews may be less essential. An alternative
to providing meta-reviews for each review is to provide a few
example reviews and their meta-reviews. To not tempt students to

simply reuse the best example review comments, these exemplar
reviews can come from an assignment that is different from the
current assignment.

A live demonstration of how to do a code review is a form
of scaffolding on the process-level, but does not drive content as
specifically as rubrics. Regardless of how reviewing is introduced
and scaffolded, it is important to allot time to deal with misconcep-
tions on how to create a review as part of the course design.

6. Parameters and Issues

Several issues and parameters cross-cut the stages of the IFPR pro-
cess discussed in[section 5] Questions about preventing plagiarism,
integrating IFPR with course-level grading, deciding where to use
anonymity, involving experts, making IFPR relevant for non-majors,
engaging students in the process, and identifying software needs
all guide one’s particular configuration of IFPR. We discuss each of
these issues in turn.

6.1 IFPR and Plagiarism

IFPR, like many course and assignment structures, requires careful
mechanism design to ensure that students aren’t incentivized to-
wards detrimental behavior that lets them get a good grade at the
cost of their (or others’) education.

One of the most immediate problems with IFPR is that, by defi-
nition, students are shown one another’s work while in the middle
of an assignment. Since the final submission happens after students
have been exposed to other students’ work, the IFPR educator must
determine how to account for this exposure when assigning a grade
to the final submission.

At the extreme, a student could submit an empty initial submis-
sion, copy what he sees during the reviewing phase, and submit the
copied solution as his own final solution. In less extreme cases, a
student may copy all or part of another solution into her own after
submitting an initial first try that she becomes convinced is incor-
rect. There are a number of course- and grading-design decisions
that can affect the degree to which copying is a problem:

* Variation in Assignments: One major factor in determining
whether copying is even a problem is how similar students’
submissions are expected to be. In many programming courses,
students implement to the exact same algorithmic specification;
other than coding-style issues, one implementation is just as
good as another. This is in contrast to other domains where peer
review is often used, like creative or critical writing, in which
students often write on different topics or choose different po-
sitions to represent on the same topic.

One approach is to provide variants of a programming problem
to different students. Zeller [74] gives each student a variation
on a theme to avoid students reviewing another who is working
on exactly the same problem. Indeed, it is often possible to gen-
erate large numbers of different problems automatically from a
specification, as Gulwani et al. have done for algebra problems
and more [1, 56].

A drawback of variation in assignments is that it weakens one
of the benefits of IFPR — having students review the same prob-
lem they are already thinking about! Especially for beginning
students, where program comprehension skills are still being
learned, one goal of IFPR is to lessen the cognitive load of the
comprehension task by having the student review code for a
problem they already understand. If they have to internalize an
additional problem description along with new code, this puts
significantly more overhead into the reviewing process.

Depending on the learning goals, it may be good for the re-
viewer to learn to incorporate ideas from different solutions into

her own, since it requires a more abstract understanding of the
techniques. For novices, it may be enough of a challenge to rec-
ognize a good solution and apply it to her own.

Weighted Submission Grading: There is often value in having
reviewers copy parts of other submissions that they see in order
to improve their own work. It happens all the time in profes-
sional software development, and the act of recognizing a good
solution demonstrates understanding that is far beyond blind
plagiarism. Reviewers should take things from the examples
they see and demonstrate that they learned from them; however,
a student has no guarantee that what he is seeing is correct, so
blindly copying can hurt!

However, wholesale copying (where a student submits an empty
file then copies the best of what they see) should be discouraged
(to say the least!). In order to mitigate this, Politz et al. [47]
grade IFPR assignments by assigning heavier weights to ini-
tial submissions than to post-review submissions: an initial pro-
gram submission counts for 75% of the grade. Students can still
improve the 25%-weighted part of their score based on review
feedback and copying others’ solutions, but they can also hurt
their score if they make incorrect changes. Different weight-
ings put different emphases on the importance of review. Hav-
ing the post-review score count for more might be acceptable
in some classroom settings, and ultimately comes down to a
choice about student maturity, class culture, and other course-
specific factors.

Alternative or Supplemental Grading: Another solution to
the grading problem is to supplement assignment grading with
other techniques that cannot be copied. For example, in an in-
person code review of a student’s solution, an instructor can
quickly ascertain whether the student has simply copied some-
thing or actually understands the code they have submitted. This
can be done by, for example, asking the student to change his
program to match a new specification, or asking her to under-
stand a proposed change to her submitted code.

6.2 Interaction with Course-Level Grading

Instructors must determine the extent to which IFPR activities im-
pact course grades and the mechanisms through which they do so.
[Section T|noted Liu and Carless’ distinction between peer feedback
and peer assessment [38], where the latter’s goal is grading. Most
of the working group discussion focused on peer-feedback (which
fit the course contexts of the participants), though we gave some at-
tention to peer-assessment (more often proposed to address grading
at scale in large courses).

6.2.1 Peer Assessment and IFPR

Kulkarni et al. have shown that, with careful rubric and mecha-
nism design, peer assessment can produce similar results to TA
grading in MOOCs [36]. Reily et al. report on the accuracy of
a combination of peer reviews at assessing programming assign-
ments [50]. Hamer et al. describe a technique for deriving grades
from weighted averages of peer assessments to identify “rogue” re-
viewers and generate grades that weight more apparently accurate
students’ assessments more heavily [26]. A common theme across
these studies is that a combination of peers’ assessments provides
an accurate enough assessment, even if some particular students or
reviews are inaccurate.

Peer assessment changes the motivation structure of IFPR. For
example, a student who is afraid of affecting his peers’ grades
with negative feedback may be more hesitant to give that feedback.
In contexts where students are still learning to review and give
feedback, inaccurate reviews are expected and an important part of
the learning process; in this case, reviews probably should not be

used for grading purposes. Using peer review for grading should
be adopted with care, and practitioners should carefully consider
its effects on the other design decisions discussed in this report.

6.2.2 Should Reviews Be Graded?

Although discussed various forms of feedback on re-
views, it did not discuss whether reviews should be assigned scores
that affect students’ course grades. Grading schemes can range
from checkbox-style points for submitting reviews (without grad-
ing content), to more detailed assessments. Of our case studies, six
(3,5,6,8,9, and 11) explicitly tie reviews to the course or assign-
ment grade in some form. No case study discussed grading meta-
reviews.

In general, the group members were reluctant to ascribe grades
to reviews (as opposed to giving meta-reviews, which the group
strongly endorsed). The group shared concerns that having reviews
influence course grades (beyond required participation) would mis-
direct student motivation for reviewing [33].

Nonetheless, the group did discuss options for having reviews
figure into grades. We discussed basing assignment grades on re-
views rather than on the work submitted (on the grounds that
reviews reflect students’ understanding of the assignment): this
would allocate staff grading time to meta-reviews rather than to
code, which could be more valuable (as some, though not all, as-
pects of code can be assessed automatically). We also discussed
basing students’ grades on the improvements that their reviews in-
spired in the work of others, but felt the nuances (submissions with
little room for improvement, students who chose not to act on re-
views) made this infeasible.

The group found relatively little in the literature on grading re-
views. Sims [55] proposes grading the reviews according to com-
pliance to the review writing guidelines. The Review Quality In-
strument (RQI) of van Rooyen et al. [64] is a simple, reliable,
and valid scale for studying scientific peer review processes. The
authors claim high internal consistency for RQI. Trautman et al.
propose using this framework for educational peer reviews [62],
though note a significant limitation: the instrument gauges how
well the reviewer has considered the key aspects of the work and
less whether the review is accurate or correct. They also question
whether grading reviews might diminish the less tangible benefits
of peer reviews such as increased motivation, ownership and in-
creased interest in learning. This question is put forth as topic for
research instead of a claim.

Wessa et al. [70] identify statistical measures of peer review
process and demonstrate that [71] these measurements can be used
to built statistical models, and therefore automatic evaluations of
reviews. They prescribe that objective measures of review quality,
such as word count and number of received and given reviews,
can be used as basis for assessing overall student performance.
Similar automated review process is proposed by Ramachandran
et al. [49], who suggest metrics such as content, tone and quantity
of feedback to suitably represent a review. The group did not
discuss automated assessment of reviews, though some members
have looked informally at word counts in student reviews and found
low correlation with the value of reviews.

6.2.3 Interaction with Relative and Curve Grading

The group noted that IFPR (like other collaborative course struc-
tures) interacts poorly with grading strategies that evaluate students
relative to one another. Such strategies conflict with students’ moti-
vations to help one another improve their work. The working group
identified three distinct ways in which the conflict could manifest
itself:

* Demotivative: There is disincentive to do good review, because
it can push others past oneself in achievement, adversely affect-
ing one’s own grade.

* Destructive: Instead of just being apathetic about review, stu-
dents could even sabotage one another with bad feedback, hop-
ing to reduce others’ scores to actively improve their own.

* Unmotivative: Since the curve puts a limit on how much one
can achieve, there is a disincentive to respond to feedback or
reflect (e.g. especially for high-achieving students, there’s little
reason to take feedback seriously).

No one in the group used relative grading in their own courses,
so we lacked first-hand experience in mitigating these problems
in that context. Boud, Cohen and Sampson [6] discuss various
tensions between standard assessment practices and learning from
peers. Rick and Guzdial [51] discuss the impact of curve-based
grading on collaboration and peer learning.

6.3 Anonymity

Several issues relating to anonymity and privacy come to the fore
with peer review. Developing a culture of positive and construc-
tive critique where students can both give and take feedback ap-
propriately, can take time and require a degree of practice. While
the broader aim may be to develop a positive, supportive and pro-
fessional approach to peer review, there may be a need to provide
some initial shielding from scrutiny for students who are new to the
institution or the practice.

6.3.1 Types of Anonymity

Each of the IFPR roles—authors and reviewers—can be anonymous
to other students or faculty. Reasonable arguments can be made for
each configuration, and different configurations have been used in
practice.

In PeerWise [16], a system to which students submit proposed
study questions on course material, student submissions are ranked
for quality and correctness and the content of the contributed ques-
tions is public. In that case, not revealing contributor identities to
peers is important: this creates a degree of safety for the novice stu-
dent contributor and helps identify the public ranking with the work
and not with the student. However the contributor identities are vis-
ible to the instructors as student contributions may be summatively
graded. A variant on this (similar to some conference reviewing
models) could also see reviews made visible to all reviewers, which
may help in establishing and reinforcing norms and standards and
mitigate the risks of unduly harsh or abusive reviews.

In case study 10, anonymity is staged: at first students review
one another anonymously, then groups are formed and groups re-
view one another, revealing identities and adding a social element.
This lets students do a first round of reviewing to get comfortable
with the process of feedback, and after has the benefits of encour-
aging professional collaboration.

In total in our case studies, only two (4 and 11) explicitly
stated that reviews were anonymous. Several (studies 5, 6, 8, 12,
and 15) had reviews that were in-person, and therefore cannot be
anonymous. The others left it unstated, and in different course
contexts the assignments could be administered either way.

6.3.2 Upsides of Anonymity

At the introductory level, students suffer from both confidence and
maturity problems, making anonymous review an attractive option
(at least initially). Authors will not face personal embarrassment if
others see work that they are not comfortable showing publicly, and
anonymity gives reviewers the freedom to be more candid.

In addition, reviewers who know the author under review might
make assumptions based on the author rather than the submission.

This could even cause authors who consider themselves weaker to
not question incorrect work that comes from a supposedly smart
reviewer. Anonymity helps level the playing field in the face of
such preconceptions.

In general the group considers anonymity to be a less jarring
initial option for IFPR that is more likely to protect students who are
new to the peer-review process. However, sharing identity during
review has significant benefits in the right contexts, and anonymity
isn’t without its own problems.

6.3.3 Downsides of Anonymity

Anonymity can unwittingly enable a culture of excessive criticality,
or even of “flaming” and online harassment, to develop among
some students. The former can probably only be monitored by
course staff. The latter would require policies and techniques for
reporting abuse and inappropriate behavior: for example, a “Flag
Abuse” button in a Web interface that allows students to bring
offensive or inappropriate content to the attention of the staff. In
general, these issues are similar to the unsatisfactory aspects of
peer assessment schemes in group work that ask group members
to evaluate relative contributions [11].

The benefits of non-anonymity center mainly around creating
collaborative cultures and helping students learn professional be-
havior. Non-anonymity creates opportunities for students to ac-
knowledge each others’ contributions. As a broader educational
goal, ethics and professionalism are meant to be covered as part
of our curricula [21]; an open model for peer review gives a clear
opportunity for enforcing appropriate behaviour. Industrial code re-
views are not done anonymously [52], so students gain relevant
skills from learning to give and receive non-anonymous feedback.

6.3.4 Anonymity and Cultural Considerations

Anonymity may have cultural connections at several levels. For
students who come from a consensus-based national culture [29]
where preserving harmony is a strong value and overt criticism can
be considered offensive or cause a loss of face, a greater level of
anonymity may be required at first for students to feel more at
ease in speaking their minds. A converse cultural aspect may be
in operation with non-anonymous contributions; if students know
the other person, they may be less or more critical a priori, based
upon judgments of the peer’s relative status or perceived expertise,
rather than reviewing the material in its own right.

At some institutions such as Brown University (where three
of the group members have studied IFPR), total anonymity is al-
ready hard to establish, because a robust undergraduate TA program
means that students often act as TAs for one another independent of
peer review, and know about one another’s performance. At Brown,
the institutional and student culture makes it commonplace to know
who is reading your code.

The group debated whether giving students the choice to
anonymize was a good idea, and concluded that it was not desirable
because it encouraged hiding attitudes, and may make people jus-
tify being more objectionably critical because they were allowed to
be anonymous. A further negative was that it would not bring the
shy students out (which is sometimes the educator’s goal). It was
concluded that the preferable approach was to make anonymity or
identifiability a matter of policy, and educate students about the
importance of professionalism in either case.

Overall the group doesn’t recommend that IFPR practitioners
adopt anonymity by default, but rather that they take course and
culture into account. Overly stressing anonymity could unwittingly
give the impression in students that peer review is dangerous. We do
recommend that in cases where work is identifiable, the underlying
goals and expectations related to professionalism and community-
building be consciously introduced to students from the outset. This

could be talked about as explicitly and strongly as the discussions
about plagiarism, with potential penalties for abuse of the system
through lack of respect for one another.

6.4 The Role of Experts

Peer review can sometimes usefully be complemented with expert
review. There are several arguments for and against combining
the two. Potential benefits of expert review include: moderating
conflicts between reviewers and reviewees; facilitating contribution
and collaboration; overcoming cultural adjustment problems; and
providing exemplars of good work and good reviewing.

* Experts as Moderators and Facilitators: Experts can act as
moderators to make sure that issues and conflicts that arise,
whether in a live situation or asynchronously, can be dealt with
by an authority figure. As moderators, experts do not take on the
role of reviewers, which keeps students in charge of the feed-
back itself. Moderation is thus a form of process- rather than
content-expertise (akin to pedagogical code reviews [31], which
are led by an expert moderator). Experts may also act as facil-
itators of group discussion of work or reviews. Reviewers who
are not sure of themselves may not contribute much; experts
can assist in getting students to contribute, and push the idea
of review as a learning process, in addition to acting as figures
of objective authority on grading. Facilitation is likely harder
to integrate into IFPR configurations in which students submit
work and reviews asychnronously relative to one another.

Whether acting as moderators or facilitators, expert reviewers
can help address cultural issues where students devalue the
opinions of their peers and overvalue the opinions of instruc-
tors. They can also offset deficiencies in the knowledge and in-
sight of reviewers who are themselves adjusting to the process
of giving informed critiques, and ensure that some knowledge-
able, high quality feedback is received.

Perception and Quality of Expert Review: Expert review
(especially instructor or TA provided) may have unwarranted
special status in students’ minds: feedback from experts may
be interpreted as “more relevant for my grade,” and hence more
likely to be acted upon. This last concern is called out explicitly
by case study 9, in which students produce a peer-reviewed
research article, and in the past often discounted peer feedback
in favor of instructor-provided comments.

Cho and MacArthur hide the provenance of expert- vs. peer-
provided reviews in order to study whether expert review is
in fact more effective at improving students’ grades [7]. They
compare three approaches to giving feedback on written assign-
ments in a psychology course: feedback from a single peer,
feedback from a single topic expert, and feedback from mul-
tiple peers [7]. The results indicate that feedback from multiple
peers results in better quality revisions than feedback from an
expert, with feedback from a single peer being the worst. The
hypothesised reason for this was that peers gave feedback that
was phrased in terms that students could more easily compre-
hend.

Hamer et al. investigate differences between reviews provided
by peers and expert tutors on Matlab programming assignments
in a peer assessment context [27]. The main significant differ-
ence they find is that tutors not only write longer feedback, but
provide more specific negative comments about inaccuracies in
the program under review. In addition, there were two kinds
of feedback in the review rubric—correctness and style—the
longer, more specific negative feedback tended to be in the cor-
rectness comments rather than style comments. There was no
significant difference in other features of review comments, like

whether there was concrete, actionable advice for improving the
program, if the review contained positive encouragement or re-
inforcement, or the final mark given by the tutor.

Expert-provided Exemplars and Models: In IFPR the goal is
to avoid attaching the idea of constructive review to an expert
being present. However, an expert can provide models for re-
view that students can follow. So one strategy would have ex-
perts give examples, or be present for some (early) sessions and
not others. These exemplars and supports represent a form of
scaffolding reviewing.

The working group members discussed an “Editor’s picks” op-
tion, where instructors and TAs highlight good examples of
reviews for others to learn from. TAs might monitor reviews
and post a handful of high-quality ones for the entire class. As
a tweak to avoid simply externally rewarding good examples
(which comes with the downsides of extrinsic motivation [33]),
the reviews picked don’t necessarily all need to be objectively
good. Instead, the editor’s picks could highlight interesting re-
views, and what is interesting (or could be better!) about them.
Students then learn specifically why something is considered
good or bad in a review, and can apply that knowledge to their
own reviewing. The process of breaking down the review shifts
the emphasis from quality of reviewer to important aspects of
the review itself.

6.5 Does IFPR Make Sense for Non-Majors?

When instructing computer science majors, reviews of code can be
motivated by their resemblance to code reviews and similar activ-
ities in the software profession, even though this may not be the
actual driver behind their inclusion in a course. When using in-
flow peer review with non-majors, such motivations might work
less well due to a disconnect between the students and the IT pro-
fession. Regardless of the future profession, we view the reviewing
skill as an important one and note that reviewing comes in naturally
in a number of fields, from academic writing to zoology, but also
in the students’ everyday lives in reviews of movies and restaurants
on websites, etc.

We frame in-flow peer reviewing as a technique for improving
learning based on timely feedback throughout a process. This can
be different from a means of quality assurance of a final artifact, or
a technique for learning to produce and consume reviews, although
these concepts arise naturally in a setting where in-flow peer review
is used. Knowing how to produce and consume reviews is a useful
skill in its own right, regardless of the profession or the context
in which it is used. On this note, using reviews in classes with
a diverse student population will have the additional benefit of
producing more diverse reviews. In many cases, such as for GUI
mockups, this is highly desirable. Therefore, whether or not a
student will face a review professionally is not necessary for IFPR
to be useful.

Test cases are useful for non-majors to review as they are often
less tangled with complicated “non-functional aspects” of the prob-
lem such as memory management, performance, or code elegance.
Case study 1 features an assignment from a course designed ex-
plicitly for non-majors, with review of tests. We also envision that
non-majors reviewing code might reduce “code fear” by making
code less magical and establishing that code can be wrong. This is
also related to the “community of practice” of programming in that
students are seeking to join the broader community of program-
mers by taking a CS course in the first place. Giving non-majors
a sense of what code—and programmers—are doing might teach
respect for code and programming, while not necessarily trying to
make students into professional programmers. Many programmers
are managed by non-programmer experts in other fields who could

benefit from an understanding of practices surrounding code. There
are also cases where non-programmers must be able to read or re-
late to code to make sure that code follows complicated legal prac-
tices or financial algorithms.

Finally, as an important aside, reviewing might help with reten-
tion especially by removing the stigma of computer science being
an anti-social, “inhuman” subject. Humanities students generally
read more than they write — as reviewing is more like reading,
it might feel more comfortable for them than programming. This
could be a component of a CS course in the style of fine arts, which
Barker et al. found to create a better community culture and en-
couraged retention of female students [4].

6.6 Bringing Students Along

One challenge of peer review in general lies in getting students to
value the contributions of their peers. Peer evaluations potentially
contradict a model students have of the instructor as the sole author-
ity. In addition, many students aren’t initially comfortable acting as
reviewers (and giving criticism to one another!), so a desire for har-
mony may hinder their ability to produce effective reviews at first.
These two dimensions—taking the reviews seriously and taking the
act of reviewing seriously—differ in force and mitigations.

When students are in the role of reviewers, instructors may
need to consider how to balance anonymity in reviewing with the
need to engage students in the professional practice of reviewing
(section 6.3). When addressing students coming from cultures that
don’t emphasize review and criticism, explicit reminders that re-
view is part of the working programmer’s life in western culture
can be helpful. Chung and Chow [9] discuss such culture factors
when discussing peer- and problem-based learning in a class in
Hong Kong.

When students are in the role of receiving reviews, instructors
should require students to demonstrate engagement with the re-
views. Asking students to indicate how they used reviews in re-
vising their work is one option. Authors may need explicit instruc-
tions on how to read reviews; this might also help them cope with
criticisms. For some students, peer review may be their first time
getting negative feedback; instructors should make response to re-
view a positive activity. For authors whose work was strong and did
not yield actionable reviews, an instructor could ask “what have
you learned from looking at others’ solutions?” Hopefully, such
activities on a few early assignments would help students develop
self-reflection skills.

Specific advice one could give students includes:

* When you receive criticism, go back to other reviews — are you
making the same mistake over and over?

* Have a cooling-off period if you get negative reviews — you may
view them more positively with a little passage of time.

* Do you see a contradiction in your reviews? Maybe one of the
reviewers is wrong, or maybe your work isn’t clear enough.

* How will you avoid making these mistakes again in the future?
Look at the review, break out the actionable items, prioritize.

* Are you taking the review personally? Remember that the re-
view is about the work (and improving it!), not about you —
the ability to recognize your weaknesses and improve them is
incredibly valuable. This is an attitude encouraged by egoless
programming [69].

If students remain skeptical of the value of peer-review, a mid-
course survey on the value of reviewing might help convey the
experiences of others. This also fosters a culture of peer-review
as a collective effort rather than one of criticism, judgment, or
assessment.

6.7 Software and Analytics for IFPR

Good software tools are key to making IFPR manageable and infor-
mative for both students and course staff. For students, tools that in-
tegrate reviewing with the IDE used for programming assignments,
for example, mitigates some of the context switching that the pro-
cess otherwise requires. For staff, good tools not only manage the
logistics of the process, but can also be instrumental in producing
meta-reviews and in monitoring the effectiveness of IFPR.

Software systems could (1) give basic feedback on review qual-
ity by comparing reviews between students [8] or through use of
machine learning methods [49], (2) aggregate student responses
for discussion [28], (3) flag students who consistently write certain
kinds of reviews (weak, strong, superficial, etc.), or (4) maximize
variety of review tasks by using static analysis tools to appraise
source code similarity. Some of these features are more sophisti-
cated than those included in current peer-review platforms.

Features for organizing submissions or reviews in various ways
could help instructors run effective IFPR processes. Software could
allow instructors to associate arbitrary tags with each submission
or review, such as “sloppy” or “discuss in class,” “ignore,” “in-
sufficient test coverage,” or “misunderstood requirement B.” In-
structors could then search or group submissions and reviews by
tags, or use tags as categories when producing analytical visualiza-
tions. Tags could be visible only to instructors, or instructors could
make tags visible to authors or reviewers. Another way to organize
submissions or reviews would be to cluster them automatically by
various criteria, similar to Expertiza’s automatic meta-reviewing
categories [49]. Example criteria include the length of the reviews
or their tone (“positive,” “neutral,” or “negative”), which may be
detectable automatically using natural language processing tech-
niques. Based on this automatic and manual organization, instruc-
tors could identify recurring misconceptions, or they could select
representative exemplars of reviews to be presented in class. Fi-
nally, the information in reviews (e.g., feedback in each rubric, or
scores on Likert scales) could be used to organize submissions, and
information in meta-reviews could be used to organize reviews.

Instructors as well as students could benefit from analytic vi-
sualizations or dashboards. Visualizations presenting activity over
time could help instructors understand the timeliness of reviews
or a student’s progress over time in terms of the quality of their
submissions or their reviews. Visualizations of reviewer-author re-
lationships, which could include various historic aspects, such as
the quality of their past submissions or the usefulness of their past
reviews, could help with reviewer assignment. Visualizations su-
perimposing reviews on top of submissions or meta-reviews on top
of reviews could provide a compact picture of a certain artifact to
authors, reviewers, or instructors.

Luxton-Reilly [39] provides a systematic survey of tools for
peer-assessment. The survey uses several key parameters to com-
pare tools, such as the flexibilities of work flows, rubric designs,
and the nature of evaluation supported. The summary data in the
survey is not sufficient to determine whether a given tool supports
IFPR, but the descriptions of individual tools contain details that
may be useful in checking for IFPR support.

6.7.1 Are Conference Managers Suitable?

Software tools for managing conference-paper submissions are de-
signed to support peer review. It thus makes sense to ask whether
these tools are suitable for peer review (IFPR or otherwise) in
pedagogic contexts. Popular conference managers in computer
science include EasyChair [65], HotCRP [32], CyberChair [63],
START [23], Linklings [42], and CONTINUE [34]. Some working
group members had tried using conference managers for peer re-
view, but found the fit to be problematic unless the process matched
that of conference reviews.

Peer-review systems must support two distinct tasks: handling
submissions and handling reviews. For IFPR, students must sub-
mit revised work; in some peer-review configurations, students may
submit multiple artifacts at different stages. While some conference
managers support revisions, they typically don’t track multiple sub-
missions from the same student over time. Conference managers
assume that submission deadlines are fixed and synchronous; this
assumption is reflected in the synchronous assignment of papers to
reviewers. Reviewers are typically given read access to all of the
submitted papers, not just the subset that they are due to review
(this sets aside conflict-of-interest, which is less of an issue in the
pedagogic context). These are two examples of configurations that
instructors may wish to make in a pedagogic context that are in-
consistent with the design of conference managers. HotCRP [32]
does support more flexibility anonymity handling than most other
tools: “selective reviewer anonymity” allows reviewers to explicitly
decide on whether or not to keep their reviews anonymous.

7. Industrial Code-Review Practice

Much of our discussion of IFPR has revolved around code review,
as programs are one of the most common artifacts in computer sci-
ence courses. Given the rich history of code-review in industry, it is
worth asking what IFPR can learn from this practice. Code review
is an essential component of industrial software-development. In-
dustrial peer review is inherently in-flow, as reviews are conducted
on a regular basis during development — it would be odd indeed to
only perform code review after a product had shipped to customers!
The industrial product-development life cycle is longer than that in
many courses, but best practices in industrial peer review are still
useful context for this report.

7.1 Motivations for Industrial Code Review

Industrial code reviews differ in motivation from pedagogic code
reviews. The goal is often to reduce the defect rate before releasing
software or committing to a design. This is the primary measure
of an effective review process in Fagan’s seminal work [18], in
followup work to it [66], and also in some modern surveys tied
to large case studies [12]. The goals of in-flow peer review in
pedagogic settings are much broader than just finding bugs in peers’
code, though finding problems is certainly one worthy cause for
review.

However, in one modern study that studies attitudes about code
review in both developers and managers at Microsoft, researchers
found that defect finding, while important, was only one of several
top motivations developers saw for review [3]. Also scoring high in
developer surveys as motivations for code review are general code
improvement, suggesting and finding alternative solutions, knowl-
edge transfer, and team awareness. While performing reviews, de-
velopers indicated specific cases where they learned about a new
API that they could use in their own code, or providing links to the
code author with documentation of other alternatives, suggesting
that these activities do indeed occur.

Activities like knowledge transfer and dissemination of ideas
are certainly goals of in-flow peer review, and in-flow strategies
should consider ways to foster them. Bachelli and Bird [3] note that
these metrics are harder to measure than defect rate, but observe
them coming up spontaneously in interviews and in observations
of reviewers.

7.2 Staged Code Inspections

Fagan’s seminal work on code inspections in an industrial set-
ting [18] finds that putting inspections at carefully-delineated
points throughout a product’s life cycle can save time by fixing
faults earlier, before other work builds on the buggy code. In Fa-
gan’s experiments, there are three inspections: one after an initial

design phase, one after initial coding, and one after unit testing
and before system-wide testing. Experiments show that maximal
productivity is reached by including only the first two inspection
steps due to the high cost in developer time relative to the time
saved by early detection, but that using the first two steps increases
programmer productivity by 23%, according to their metrics.

This result mirrors our intuitions about the value of staging as-
signments for review at points that are useful for catching and fixing
misconceptions about the assignment. Our primary goal is not sim-
ply to improve the programming output of students, however. We
care about what they learn from seeing other examples, teaching
them to effectively review others’ code, and more. Still, it is useful
to consider that the in-flow experience is similar to effective indus-
try practices, and note that professional developers benefit from the
staging process.

7.3 Meetings vs. Asynchronous Code Review

Fagan’s original results are for formal code inspections [18], which
consist of a meeting of several developers (including the origi-
nal author), conducted with prior preparation and with a separate
reader, separate from the author, who presents the work. Defects’
cause and detection are documented in detail, which acts as a sort
of “rubric” for the code review.

While formal code inspections demonstrably find valuable de-
fects, it is not clear that the organization of a meeting is required
in order to have a comparable effect. Votta studied the necessity
of meetings for code inspection, and found that the majority of
defects—over 90%—were found in the preparation for the meet-
ing, rather than in the meeting itself [66]. Votta concludes that much
of the benefit of code review can be had without the overhead of
scheduling in-person meetings.

There is further research on this debate, but the only clear con-
clusion is that significant benefits of review remain even without in-
person review. In a pedagogic setting, in-person reviews may serve
other goals, like training students to review, encouraging productive
feedback, and supporting the social aspects of review. However, in-
dustry research suggests that the overhead of scheduling and hold-
ing meetings isn’t a prerequisite of effective reviews in professional
settings.

7.4 What and How to Review

A large industrial case study on code review [12], which also
documents a survey of code review in industry (including a longer
discussion of formal vs. lightweight review), identifies guidelines
for effective reviewing practices. By measuring defect rates found
against the number of lines of code under review and the length of
the review session, their study recommends “the single best piece
of advice we can give is to review between 100 and 300 lines
of code at a time and spend 30-60 minutes to review it.” While
this advice may be appropriate for peer-review in upper-level or
graduate courses, this much code would likely overwhelm lower-
level students.

8. Additional Related Work

Pedagogic uses of peer review have a long history that predates
in-flow reviewing or peer review in computing courses. A survey
of this history is beyond the scope of this document, though some
relevant citations appear in other surveys [61]. Here, we focus on
more recent work in computing education and cognitive aspects of
education that bear on in-flow peer review.

8.1 Pair Programming

Pair programming (henceforth PP) is a software-development tech-
nique in which two programmers work together on one computer.

PP involves significant (and continuous) in-flow peer feedback,
though coding together is a rather different activity than writing
and responding to reviews. One surface-level difference lies in the
number of reviewers: IFPR students may receive multiple reviews,
whereas comments in PP come from a dedicated programming
partner. Other interesting differences arise along three dimensions:
responsibility, skills developed, and dynamics. To better align the
practices, we contrast PP with an IFPR model called mutual review
(discussed infsection 5.3) in which a pair of students are tasked with
reviewing one another’s submissions.

* Responsibility: The key difference between mutual review and
PP is that in PP both students are responsible for the quality of
a single artifact, whereas in IFPR each student is responsible
for her own artifact. This can naturally lead to a significant
difference in motivation and responsibility.

The differences in shared responsibility can also be seen when
pairing students of different strengths. In PP, if one student is
stronger, that student may drive the production of the artifact,
or even take over the work, without the weaker student hav-
ing the opportunity to participate fully; thus, the weaker student
may not benefit from the experience. In IFPR, a strong student’s
assignment (and hence grade) is not affected by the weak stu-
dent. The strong student is in a better position to help the weaker
student; although the strong student may receive no beneficial
comments, no harm will be done. With IFPR, any problems due
to mismatched pairings can be alleviated by assigning multiple
reviewers. In practice (in several authors’ experience), in PP
students often work alone even when expected to work collab-
oratively.

Skills: The skills required and developed differ between IFPR
and in PP. PP deals primarily with the collaborative creation
of an artifact. IFPR focuses also on the creation of an artifact,
though less collaboratively as students do not work face-to-face.
IFPR also focuses on the high-level skill of performing reviews,
which requires both program comprehension and judgment.
These activities require students to take a higher-level perspec-
tive on the task at hand, including the difference between under-
standing one’s own code and understanding the code of others.
IFPR also forces students to trade off work, namely, time spent
on their own assignment versus time spent on reviewing. This
trade-off is not present in PP. To continue the analogy with aca-
demic paper writing and reviewing: PP is more like working as
coauthors, whereas IFPR is more like the relationship between
a journal paper reviewer and an author (especially if there are
multiple IFPR stages).

Dynamics: The difference between solo and shared responsi-
bility for the artifact yields different dynamics between PP and
IFPR. Due to the continuous communication required in PP, stu-
dents are often immediately alerted to problems in program
comprehension. In contrast, IFPR is separated by both space and
time. As a result, programs can acquire significant accidental
complexity. Students realize this, and thus learn about the diffi-
culties of producing and reading code, both by trying to make
sense out of the submissions of others and by seeing the feed-
back their own submissions receive.

Finally, with IFPR, students are compelled to review other stu-
dents’ code: they cannot ignore problems and let their partner
do the work. On the other hand, in IFPR it may be easier to ig-
nore the advice given than in PP, because of the difference in
ownership; it is harder to argue that someone not make sug-
gested changes to a shared program than to ignore the feedback
on one’s own program.

8.2 Intrinsic vs. Extrinsic Motivation

Ways in which particular assignment designs tradeoff between in-
trinsic and extrinsic motivation have been a theme in this report.
The group frequently considered arguments from Kohn’s “Pun-
ished by Rewards” [33], which argues that praise and rewards (such
as grades) are ineffective and even demotivating. Kohn claims that
rewards effectively punish students who aren’t rewarded, discour-
ages risk-taking in students, devalues the reasoning behind a low
or high grade since the grade is emphasized, and can create a bad
relationship between teacher and student. IFPR is designed to in-
crease intrinsic motivation for reviewing relative to traditional post-
submission peer review. The extent to which this shift occurs likely
interacts with how the grading system treats reviewing.

8.3 Metacognitive Reflection

One goal of in-flow review is to encourage reflection while in
the middle of an assignment. Meta-cognitive reflection has been
studied as an important part of the learning process. Indeed, it
has been indicated that one difference between experts in program
comprehension and novices is the focus on metacognition [17].
Others in different contexts have found effective reviewing and
prompting strategies for encouraging reflection that IFPR can learn
from.

Palinscar and Brown study reciprocal teaching, in which a
teacher alternates with a student in a dialog that prompts for reflec-
tive activities, like generating summaries or clarifying confusing
elements [44]. They used reciprocal teaching with seventh graders
struggling with reading comprehension, with an emphasis on let-
ting students take over as the session progresses. The entire point
of the exercise is to encourage reflective activities in students, and
similar prompts—for summarization or clarification—may lead
students in IFPR contexts to give reviews that cause more reflection,
or more directly reflect themselves.

Davis and Linn [15] use explicit self-review prompts at differ-
ent stages of assignments given to eighth graders. For example, in
one assignment, students had to perform a repeated task (design-
ing clothing and environments to help cold-blooded aliens survive).
They compared responses to direct prompts submitted along with a
design, like “Our design will work well because...”, to prompts de-
signed to encourage reflection after the fact, like “Our design could
be better if we...”, and plan-ahead prompts designed to cause re-
flection during the assignment, like “In thinking about doing our
design, we need to think about...” Their sample size was small, and
they did not find a significant difference in design quality between
the direct and reflective prompts. They did find that students gave
better explanations when given the reflective prompts, but the dif-
ference could easily be attributed to the small sample size.

Frederiksen and White have done a series of studies on reflective
assessment [72] and reflective collaboration [20] in middle school
science classes. In an online environment, students work on mock
experiments using a scientific-method like flow for a project: they
start with an initial inquiry, form hypotheses, analyze mock data,
and draw conclusions. In between steps, they are asked questions
that urge them to reflect on their work: why they think a hypothesis
is true, if they are being meticulous in analyzing their results, and
more. In addition, the environment contains simple autonomous
agents, called advisors, that give automated feedback and sugges-
tions to students. They are also given the opportunity to assess the
work of other students in a few ways: they can simply rate the con-
tents, or they can make specific suggestions, like telling a student
that they should pay attention to a particular advisor. Finally, the
course is complemented with role-playing activities where students
take on the role of advisors, and give specific feedback — the advi-
sors have specific flavors of feedback; an example in the paper is

that a student acting as the “‘Skeptic’ might [be asked to] say ‘I
disagree’ or ‘Prove it”’ to another student’s submission.

8.4 Learning From Examples

In IFPR, students have the opportunity to take what they learn
from examples of others’ work and apply it to their own. There
is existing research in how students take what they learn from
existing examples (whether from peers or experts) and use it to
learn principles they subsequently apply to new problems.

There is a large body of work that studies learning from worked
examples [2], in which students learn solely or primarily from ex-
ample solutions to problems with accompanying descriptions of
the problem solving process used. Worked examples and peer solu-
tions differ significantly. Typically, worked examples are carefully
crafted by experts to help students learn a problem-solving pro-
cess. In peer review, students see solutions produced by peers after
attempting the problem themselves, not as part of learning how to
do the problem. In addition, worked examples generally have ex-
planations at a finer granularity than we would consider presenting
peer review at. Nevertheless, some of the recommendations of the
worked examples literature may be relevant in the IFPR setting: in
a broad survey of worked examples research, Atkinson et al. rec-
ommend that students “experience a variety of examples per prob-
lem type,” and that examples be presented in “close proximity to
matched problems” [2]. Both of these recommendations are conso-
nant with strategies we have proposed for IFPR assignments.

Kulkarni et al. [35] discuss changes in creative output between
subjects who saw varying numbers of examples, and diversity in
examples, prior to creating their own artwork. Subjects seeing more
diverse examples created artwork with more unique features than
subjects seeing a less diverse set or fewer examples. In an IFPR
setting, students who see examples from others, especially when
already primed to think about the same problem, may similarly
have more options to draw on in their solution, rather than only
using whatever techniques they would have tried in their initial
submission.

In PeerWise [16], students created and reviewed one another’s
multiple-choice questions, which has elements both of learning
by example and of review. Denny et al. find that students who
engaged with the system more—by contributing and exploring
more example questions than others (and more than they were
required to by the course)—performed better than those who did
not. However, it’s not clear that the exposure to more examples
caused the difference in performance.

8.5 Peer Instruction

Peer Instruction (PI), which is a specific form of student-centered
pedagogy [40], has been shown to be a promising way to improve
student performance [14] and engagement [54] both in introductory
courses [14] and upper-division courses [37]. Peer instruction, as
defined by Crouch et al. [14], focuses on engaging students in
activities that require them to apply the core concepts under study
and to explain these concepts to their peers. Concretely, a class
taught using PI principles can consist of short presentations, each
of which focuses on a particular core concept, which is then tested
by presenting students a conceptual question, which the students
first solve individually and then discuss in groups.

Related to our undertaking, the most interesting component of
Pl is the peer discussions that occur after presentation of each con-
cept. This differs from (in-flow) peer review in that there isn’t a
submission in question that students are trying to improve. The ex-
ercises are a vehicle for discussion, and the discussion is the end
goal, not producing a quality submission. Neither of these goals is
necessarily more helpful than the other, but depending on expected
outcomes, one can be more effective. In programming and writ-

ing disciplines, for example, one explicit goal is to train students
to produce quality programs and written work. In mathematics or
physics, it may be more important that students understand con-
cepts and know how and where to apply them, rather than produc-
ing any particular artifact.

8.6 Comprehending Program Structure

Program comprehension is at the same time a prerequisite and a
learning goal of in-flow peer review of programming assignments.
Students need some ability to read code in order to provide a mean-
ingful review to one another, but at the same time, IFPR can lessen
the cognitive burden of comprehension by having students review
problems that are conceptually close (or identical) to something the
reader has just encountered. The degree to which it tends toward
one direction or another is a function of the experience level of the
students and the goals of the particular course.

In addition, for in-flow assignments centered around program-
ming, one goal of peer-review is to help students reflect on their
own code structure. There is a rich literature on program compre-
hension (including contrasting experts and novices), but much of
that focuses on understanding the behavior of a new program [19,
53, 58]. In the IFPR context, students already know the problem
and (roughly) what the program is supposed to do. Reading others’
code therefore has different goals: notably, to understand the struc-
ture that someone else brought to the problem and to contrast that
with one’s own. This is a less burdensome task than asking if the
program matches an existing specification.

Studies on program comprehension comparing experts and
novices have found that experts engage in more metacognitive
behavior [17], so the metacognitive context of review may put
students in the right frame of mind to understand programs in the
first place. Other work on program comprehension suggests that
the process has a lot to do with understanding the high-level plan
of a program [58]. Since in the in-flow context students have at
least constructed a plan of their own for the same or a similar prob-
lem, they may at least be able to determine if the solution they are
viewing matches their plan, or is doing something different.

8.7 Increasing Socialization in Programming-Oriented
Courses

IFPR has potential to foster a collaborative and social atmosphere in
programming assignments. We discussed some of the motivations
for a more social CS course when discussing IFPR for non-majors
(section 6.5). There are other approaches to meeting these goals
that IFPR can learn from.

Garvin-Doxas and Barker emphasize the importance of the
classroom climate, emphasizing that courses that reward “hero”
programmers and individual accomplishment give rise to a defen-
sive atmosphere that can be counterproductive to learning for stu-
dents with less prior ability [22]. In later work, Barker and Garvin-
Doxas describe the outcome of running an IT course more like
a fine arts course than a traditional engineering course [4]. This
included projects that were more meaningful, public critique of
results, and routine collaboration. This approach created a class-
room culture where learning is a social and community process,
rather than isolated, and the result was a greater retention of female
students than the traditional engineering teaching approach.

The technique from Barker et al. most relevant for in-flow peer
review, though not completely the same, is the approach to knowl-
edge sharing during lab work. Students actively solicit help from
any student, for example, by yelling questions out, resulting in a
fluid exchange of ideas and techniques. Even though the projects
considered in these labs were run in an open, collaborative setting,
cheating was avoided by using individualized assignments.

Another working group discussed design decisions in computer-
mediated collaborative (CMC) educational settings [73]. That re-
port emphasizes goals that CMC can help reach, including encour-
aging peer review, having teamwork experiences, developing self-
confidence, and improving communication skills. A course using
IFPR that performs review through an online tool is certainly an in-
stance of a CMC setting, and addresses many of the same goals.

8.8 Existing Uses of In-flow Peer Review

Others have used strategies for peer review that fall under the
umbrella of in-flow peer review, even though they did not go by
that name.

In the implementation of a multi-stage compiler, students in
Sendergaard’s course review one another’s work between stages
[60]. The evaluation in that work was only in the form of surveys
after the assignment, but shows generally positive attitudes from
students indicating that they felt the review had helped.

Expertiza [48] (discussed in [section 5.4.1)) is used for large,
multi-stage collaborative projects. This includes assessment of the
reviews themselves as an explicit motivator for giving good feed-
back. It is notable that in Expertiza, students often review other
students’ components of a larger whole, which can be a task that
the reviewer didn’t complete him or herself. In several of our case
studies (1, 3,4, 13, and 14), students review an instance of the same
work that they just did themselves.

CaptainTeach [47] supports in-flow peer review for program-
ming assignments. The Web-based tool supports test-first, data-
structure-first, and one-function-at-a-time stagings of programming
problems. It uses asynchronous reviewing, where students see 2-3
reviews from the most recent students to submit, combined with
random known-good and known-bad solutions provided by the
staff. It supports a fixed set of open-ended review prompts com-
bined with Likert scales for each of tests, implementation, and data
structures. Students are also allowed to give (optional) feedback on
reviews they received. Politz et al. report that students engaged with
the process, submitting stages early enough to get reviews (more
than 24 hours before the deadline), and receiving review feedback
promptly (a few hours) [47]. In another analysis of data on reviews
of test suites in CaptainTeach, Politz et al. report that students were
more likely to add missing tests for a feature after review if they
reviewed or were reviewed by a student who had tested for that
feature [46].

Informa’s “Solve and Evaluate” approach integrates a simple
form of peer review into a software-based class room response
system [28]. During a lecture the instructor poses a problem, and
each student solves it by creating a solution in Informa. Informa
is not limited to multiple-choice problems; it also allows a vari-
ety of problem types, including free text (e.g., code snippets), or
drawings (e.g., diagrams of the structure or state of a program).
Students submit their solution as soon as they are done, and they
immediately are assigned a solution of a peer for evaluation. They
evaluate a solution simply by scoring it as correct or incorrect. In
Informa, a key reason for including an evaluation phase is to keep
the faster students engaged while the slower students are still solv-
ing the problem. While the results of peer review are not shown to
the authors of the submissions, they are used by the instructor to
estimate the level of understanding of the class, and to focus the
class discussion that follows the evaluation phase. A lecture using
Informa often consists of multiple stages, and often the problems in
subsequent stages build on each other (e.g., the first problem asks
students to draw a control-flow graph of a program with condition-
als, and the second problem asks for a control-flow graph including
loops). In such a scenario, a lecture with Informa is an instance of
in-flow peer review.

8.9 Actionable Peer Review

Some other uses of peer review on large projects are related to in-
flow peer review because they allow students to improve their work
in response to review. These uses don’t necessarily stage assign-
ments into reviewable pieces, instead performing review on entire
intermediate artifacts. For example, Clark has students exercise the
functionality of one another’s projects, and lets groups improve
their work based on the feedback their classmates give them [10].
Similarly, Wang, et al. [68], Zeller [74], Papadopoulos et al. [45],
and the Aropd system [25] use assignment structures that allow stu-
dents to update revisions of entire submissions that were reviewed
by peers. Other studies have students write test cases (or manually
test) one another’s work as part of a review [50, 57]. These tests are
most often on entire systems, rather than on pieces of a project that
build up along with reviews. Students do, however, have the chance
to improve their projects in response to their peers’ feedback.

9. Conclusion

IFPR is a highly-configurable mechanism for making peer review
more actionable. It leverages the fact that many problems, both
programming and otherwise, can be split into several steps that
occur at key moments for triggering reflection, and uses those
moments as vehicles for peer feedback. It encourages reflective
and critical thinking in both reviewers and reviewees, and prepares
students for professional activities in judging others’ work and
incorporating feedback into their own.

IFPR has a lot in common with existing peer review approaches,
and in collaborative and participatory pedagogic styles in general.
All of those benefits, from enhancing a sense of community to
improving communication skills, are also goals of IFPR. The main
new idea is to engage students in the collaborative process by better
integrating feedback into the flow of assignments.

This report outlines a large space for designing in-flow peer re-
view assignments. We encourage practitioners to consider many of
these factors, but not to be intimidated by them, or to be concerned
that there are too many challenges to tackle in adopting IFPR. The
key task is to pick good moments for reflection in the middle of
assignments, and use those moments to get the most out of peer
feedback (which we already know has many benefits).

Not surprisingly, our discussions raised several questions for
future research or in-class experimentation. In addition to obvious
questions about which configurations of IFPR are most useful in
various contexts, there are questions about overall logistics of IFPR.
One of our reviewers posed two good examples:

* How extensively should one incorporate IFPR into a course in
order to maximize the benefits?

* If the answer to the previous question includes multiple assign-
ments, how can this be made to work in a single term (quarter
or semester) without over-stretching both the students and re-
sources?

We hope to see future projects and papers explore these and other
questions.

10. Acknowledgments

Many students and course staff participated in our experiments with
peer review prior to the working group meeting. We appreciate their
feedback, humor, and patience; their experiences influenced many
working-group discussions. Our reviewers provided extremely use-
ful and detailed feedback. We regret that the revision window was
too narrow for us to incorporate more of their recommendations.

Bibliography

(1]

2

—

[3

—

[4

—_

(5]

[6

—_

[7

—

[8

—_—

[9

—

[10]

(1]

[12]
[13]

[14]

[15]

[16]

(171

[18]

Christopher Alvin, Sumit Gulwani, Rupak Majumdar, and
Supratik Mukhopadhyay. Synthesis of geometry proof prob-
lems. In Proc. AAAI Conference on Artificial Intelligence,
2014.

Robert K. Atkinson, Sharon J. Derry, Alexander Renkl, and
Donald Wortham. Learning from Examples: Instructional
Principles from the Worked Examples Research. Review of
Educational Research 70(2), pp. 181-214, 2000.

Alberto Bacchelli and Christian Bird. Expectations, Out-
comes, and Challenges of Modern Code Review. In Proc. In-
ternational Conference on Software Engineering, 2013.

Lecia J. Barker, Kathy Garvin-Doxas, and Eric Roberts. What
Can Computer Science Learn from a Fine Arts Approach
to Teaching? In Proc. Special Interest Group on Computer
Science Education, pp. 421-425, 2005.

B. S. Bloom and D. R. Krathwohl. Taxonomy of Educational
Objectives: The Classification of Educational Goals. Hand-
book I: Cognitive Domain. Longmans, 1956.

David Boud, Ruth Cohen, and Jane Sampson. Peer learning
and assessment. Assessment & Evaluation in Higher Educa-
tion 24(4), pp. 413-426, 1999.

Kwangsu Cho and Charles MacArthur. Student revision with
peer and expert reviewing. Learning and Instruction 20(4),
pp- 328-338, 2010.

Kwangsu Cho and Christian D. Sun. Scaffolded writing and
rewriting in the discipline: A web-based reciprocal peer re-
view system. Computers and Education 48(3), pp. 409-426,
2005.

Jenny C. C. Chung and Susanna M. K. Chow. Promoting stu-
dent learning through a student-centred problem-based learn-
ing subject curriculum. Innovations in Education and Teach-
ing International 41(2), pp. 157-168, 2004.

Nicole Clark. Peer testing in software engineering projects. In
Proc. Australasian Computing Education Conference, 2004.

Tony Clear. Thinking Issues: Managing Mid-project Progress
Reviews: A Model for Formative Group Assessment in Cap-
stone Projects. ACM Inroads 1(1), pp. 14-15, 2010.

Jason Cohen, Steven Teleki, and Eric Brown. Best Kept Se-
crets of Peer Code Review. SmartBear Software, 2013.

The College Board. AP Computer Science Principles, Draft
Curriculum Framework. 2014.

Catherine H. Crouch and Eric Mazur. Peer instruction: Ten
years of experience and results. American Journal of Physics
69(9), pp. 970-977, 2001.

Elizabeth A. Davis and Maria C. Linn. Scaffolding students’
knowledge integration: prompts for reflection in KI. Interna-
tional Journal of Science Education 22(8), 2000.

Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen
Purchase. PeerWise: Students Sharing Their Multiple Choice
Questions. In Proc. Fourth International Workshop on Com-
puting Education Research, 2008.

Anneli Eteldpelto. Metacognition and the Expertise of Com-
puter Program Comprehension. Scandinavian Journal of Ed-
ucational Research 37, pp. 243-254, 1993.

M. E. Fagan. Design and code inspections to reduce errors
in program development. IBM Systems Journal, pp. 182-211,
1976.

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

Vikki Fix, Susan Wiedenbeck, and Jean Scholtz. Mental Rep-
resentations of Programs by Novices and Experts. In Proc.
INTERACT, 1993.

John R. Frederiksen and Barbara Y. White. Cognitive Facili-
tation: A Method for Promoting Reflective Collaboration. In
Proc. Computer Support for Collaborative Learning, 1997.

Ursula Fuller, Joyce Currie Little, Bob Keim, Charles
Riedesel, Diana Fitch, and Su White. Perspectives on De-
veloping and Assessing Professional Values in Computing.
SIGCSE Bull. 41(4), pp. 174-194, 2010.

Kathy Garvin-Doxas and Lecia J. Barker. Communication
in Computer Science Classrooms: Understanding Defensive
Climates As a Means of Creating Supportive Behaviors. J.
Educ. Resour. Comput. 4(1), 2004.

Rich Gerber and Paolo Gai. The START V2 ConferenceMan-
ager. 2014.

John Hamer, Quintin Cutts, Jana Jackova, Andrew Luxton-
Reilly, Robert McCartney, Helen Purchase, Charles Riedesel,
Mara Saeli, Kate Sanders, and Judithe Sheard. Contribut-
ing Student Pedagogy. SIGCSE Bulletin 40(4), pp. 194-212,
2008.

John Hamer, Catherine Kell, and Fiona Spence. Peer Assess-
ment using Aropa. In Proc. Australasian Computing Educa-
tion Conference, 2007.

John Hamer, Kenneth T. K. Ma, and Hugh H. F. Kwong. A
method of automatic grade calibration in peer assessment.
In Proc. Australasian Conference on Computing Education,
2005.

John Hamer, Helen Purchase, Andrew Luxton-Reilly, and
Paul Denny. A comparison of peer and tutor feedback. In
Proc. Assessment & Evaluation in Higher Education, 2014.

Matthias Hauswirth and Andrea Adamoli. Teaching Java Pro-
gramming with the Informa Clicker System. Science of Com-
puter Programming, 2011.

Geert Hofstede, Gert Jan Hofstede, and Michael Minkov.
Cultures and Organizations: Software of the Mind. McGraw-
Hill, 2005.

Simon Hooper and Michael J Hannafin. The Effects of Group
Composition on Achievement, Interaction, and Learning Ef-
ficiency During Computer-Based Cooperative Instruction.
Journal of Educational Computing Research 4, pp. 413-424,
1988.

Christopher D. Hundhausen, Anukrati Agrawal, and Pawan
Agarwal. Talking About Code: Integrating Pedagogical Code
Reviews into Early Computing Courses. Transactions on
Computing Education 13(3), 2013.

Eddie Kohler. Hot Crap! In Proc. Workshop on Organizing
Workshops, Conferences, and Symposia in Computer Sys-
tems, WOWCS at NSDI’08, 2008.

Alfie Kohn. Punished By Rewards. Houghton Mifflin Com-
pany, 1999.

Shriram Krishnamurthi. The CONTINUE Server (or, How I
Administered PADL 2002 and 2003). In Proc. International
Symposium on Practical Aspects of Declarative Languages,
2003.

Chinmay Kulkarni, Steven P. Dow, and Scott R. Klemmer.
Early and Repeated Exposure to Examples Improves Creative
Work. In Proc. Cognitive Science, 2012.

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia ,
Kathryn Papadopoulos, Justin Cheng, Daphne Koller, and
Scott R. Klemmer. Peer and Self Assessment in Massive On-
line Classes. ACM Transactions on Computer-Human Inter-
action, 2013.

Cynthia Baily Lee, Saturnino Garcia, and Leo Porter. Can
Peer Instruction Be Effective in Upper-division Computer
Science Courses? Transactions on Computing Education
13(3), pp. 1-22, 2013.

Ngar-Fun Liu and David Carless. Peer feedback: the learning
element of peer assessment. Teaching in Higher Education
11, pp. 279-290, 2006.

Andrew Luxton-Reilly. A Systematic Review of Tools that
Support Peer Assessment. Computer Science Education
19(4), pp. 209-232, 2009.

Eric Mazur. Peer Instruction: A User’s Manual. 1996.

Amanda Miller and Judy Kay. A Mentor Program in CS1. In
Proc. ACM SIGCSE Conference on Innovation and Technol-
ogy in Computer Science Education, 2002.

Mark Montague, Jeremiah Konkle, and Luke Montague. Lin-
klings. 2014.

M. M. Nelson and C. D. Schunn. The nature of feedback:
How different types of peer feedback affect writing perfor-
mance. Instructional Science 27(4), pp. 375-401, 2009.

Annemarie Sullivan Palinscar and Ann L. Brown. Reciprocal
Teaching of Comprehension-Fostering and Comprehension-
Monitoring Activities. Cognition and Instruction, pp. 117—
175, 1984.

Pantelis M. Papadopoulos, Thomas D. Lagkas, and Stavros N.
Demetriadis. How to Improve the Peer Review Method: Free-
selection vs Assigned-pair Protocol Evaluated in a Computer
Networking Course. Computing & Education 59(2), pp. 182—
195, 2012.

Joe Gibbs Politz, Shriram Krishnamurthi, and Kathi Fisler.
In-flow Peer Review of Tests in Test-First Programming. In
Proc. Innovation and Technology in Computer Science Edu-
cation, 2014.

Joe Gibbs Politz, Daniel Patterson, Shriram Krishnamurthi,
and Kathi Fisler. CaptainTeach: Multi-Stage, In-Flow Peer
Review for Programming Assignments. In Proc. Innovation
and Technology in Computer Science Education, 2014.

Lakshmi Ramachandran and Edward F. Gehringer. Reusable
learning objects through peer review: The Expertiza ap-
proach. In Proc. Innovate: Journal of Online Education,
2007.

Lakshmi Ramachandran and Edward F. Gehringer. Auto-
mated Assessment of Review Quality Using Latent Seman-
tic Analysis. In Proc. IEEE International Conference on Ad-
vanced Learning Technologies, 2011.

K. Reily, P. L. Finnerty, and L. Terveen. Two peers are bet-
ter than one: Aggregating peer reviews for computing assign-
ments is surprisingly accurate. In Proc. ACM International
Conference on Supporting Group Work, 2009.

Jochen Rick and Mark Guzdial. Situating CoWeb: A schol-
arship of application. International Journal of Computer-
Supported Collaborative Learning 1(1), pp. 89—115, 2006.

Dieter Rombach, Marcus Ciolkowski, Ross Jeffery, Oliver
Laitenberger, Frank McGarry, and Forrest Shull. Impact of
Research on Practice in the Field of Inspections, Reviews
and Walkthroughs: Learning from Successful Industrial Uses.
SIGSOFT Softw. Eng. Notes 33(6), pp. 26-35, 2008.

(53]

[54]

[55]

(561

[57]

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]
[66]
[67]

[68]

[69]

[70]

[71]

Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Bus-
jahn, and James H. Paterson. An Introduction to Program
Comprehension for Computer Science Educators. In Proc.
Proceedings of the 2010 ITiCSE Working Group Reports,
2010.

Beth Simon, Sarah Esper, Leo Porter, and Quintin Cutts. Stu-
dent Experience in a Student-centered Peer Instruction Class-
room. In Proc. ACM Conference on International Computing
Education Research, 2013.

Gerald K. Sims. Student peer review in the classroom: a
teaching and grading tool. Journal of Agronomic Education
18(2), pp. 105-108, 1989.

R. Singh, S. Gulwani, and S. Rajamani. Automatically gener-
ating algebra problems. In Proc. AAAI Conference on Artifi-
cial Intelligence, 2012.

Joanna Smith, Joe Tessler, Elliot Kramer, and Calvin Lin. Us-
ing Peer Review to Teach Software Testing. In Proc. Interna-
tional Computing Education Research Conference, 2012.

Elliot Soloway and Kate Ehrlich. Empirical Studies of Pro-
gramming Knowledge. IEEE Transactions of Software Engi-
neering 10(5), pp. 595-609, 1984.

Karen Swan, Jia Shen, and Starr Roxanne Hiltz. Assess-
ment and Collaboration in Online Learning. Journal of Asyn-
chronous Learning, 2006.

Harald Sgndergaard. Learning from and with Peers: The
Different Roles of Student Peer Reviewing. In Proc. ACM
SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, 2009.

Keith Topping. Peer Assessment Between Students in Col-
leges and Universities. Review of Educational Research
68(3), pp. 249-276, 1998.

Nancy M. Trautmann. Designing Peer Review for Pedagogi-
cal Success: What Can We Learn from Professional Science?
Journal of College Science Teaching 38(4), pp. 14-19, 2009.

Richard van de Stadt. CyberChair: A Web-Based Groupware
Application to Facilitate the Paper Reviewing Process. 2014.

Susan van Rooyen, Nick Black, and Fiona Godlee. Devel-
opment of the review quality instrument (RQI) for assessing
peer reviews of manuscripts. Journal of Clinical Epidemiol-
0gy 52(7), pp. 625-629, 1999.

Andrei Voronkov. EasyChair Conference Management Sys-
tem. 2014.

Lawrence G. Votta Jr. Does every inspection need a meeting?
In Proc. Foundations of Software Engineering, 1993.

Lev Vygotsky. Interaction between learning and develop-
ment. Mind and Society, pp. 79-91, 1978.

Yanging Wang, Hang Li, Yanan Sun, Jiang Yu, and Jie Yu.
Learning outcomes of programming language courses based
on peer code review model. In Proc. International Conference
on Computer Science & Education, 2011.

Gerald M. Weinberg. The Psychology of Computer Program-
ming. Van Nostrand Reinhold, 1971.

Patrick Wessa. How Reproducible Research Leads to Non-
Rote Learning within Socially Constructivist Statistics Edu-
cation. Electronic Journal of e-Learning 7(2), pp. 173-182,
20009.

Patrick Wessa and Antoon De Rycker. Reviewing peer
reviews-A rule-based approach. In Proc. 5th International
Conference on E-Learning (ICEL), 2010.

[72]

(73]

[74]

Barbara Y. White, John R. Frederiksen, T. Frederiksen, E.
Eslinger, and A. Collins. Inquiry Island: Affordances of a
Multi-Agent Environment for Scientific Inquiry and Reflec-
tive Learning. In Proc. International Conference of the Learn-
ing Sciences (ICLS), 2002.

Ursula Wolz, Jacob Palme, Penny Anderson, Zhi Chen, James
Dunne, Goran Karlsson, Atika Laribi, Sirkku Minnikko,
Robert Spielvogel, and Henry Walker. Computer-mediated
Communication in Collaborative Educational Settings (Re-
port of the ITiCSE *97 Working Group on CMC in Collabo-
rative Educational Settings). In Proc. The Supplemental Pro-
ceedings of the Conference on Integrating Technology into
Computer Science Education: Working Group Reports and
Supplemental Proceedings, 1997.

Andreas Zeller. Making Students Read and Review Code. In
Proc. ACM SIGCSE Conference on Innovation and Technol-
ogy in Computer Science Education, 2000.

	1 In-Flow Peer-Review
	2 An IFPR Roadmap
	2.1 The IFPR Process
	2.2 Issues Surrounding IFPR
	2.3 Terminology

	3 Educational Goals of IFPR
	3.1 Student Learning Objectives
	3.2 Instructor Goals

	4 Examples of IFPR
	5 The In-Flow Process
	5.1 Stages and Submissions
	5.2 Assigning and Scheduling Reviews
	5.2.1 Scheduling Decisions
	5.2.2 Assigning Reviewers to Submissions

	5.3 Performing Review
	5.3.1 Review Rubrics
	5.3.2 Information Provided to Reviewers
	5.3.3 Forms of Reviews

	5.4 Review Feedback (Meta-Reviewing)
	5.4.1 Types of Meta-Reviewing
	5.4.2 Using Meta-Reviews

	6 Parameters and Issues
	6.1 IFPR and Plagiarism
	6.2 Interaction with Course-Level Grading
	6.2.1 Peer Assessment and IFPR
	6.2.2 Should Reviews Be Graded?
	6.2.3 Interaction with Relative and Curve Grading

	6.3 Anonymity
	6.3.1 Types of Anonymity
	6.3.2 Upsides of Anonymity
	6.3.3 Downsides of Anonymity
	6.3.4 Anonymity and Cultural Considerations

	6.4 The Role of Experts
	6.5 Does IFPR Make Sense for Non-Majors?
	6.6 Bringing Students Along
	6.7 Software and Analytics for IFPR
	6.7.1 Are Conference Managers Suitable?

	7 Industrial Code-Review Practice
	7.1 Motivations for Industrial Code Review
	7.2 Staged Code Inspections
	7.3 Meetings vs. Asynchronous Code Review
	7.4 What and How to Review

	8 Additional Related Work
	8.1 Pair Programming
	8.2 Intrinsic vs. Extrinsic Motivation
	8.3 Metacognitive Reflection
	8.4 Learning From Examples
	8.5 Peer Instruction
	8.6 Comprehending Program Structure
	8.7 Increasing Socialization in Programming-Oriented Courses
	8.8 Existing Uses of In-flow Peer Review
	8.9 Actionable Peer Review

	9 Conclusion
	10 Acknowledgments
	Bibliography

