
there is no programming environment. If the new language is
embedded, the existing IDE for the language may also work
for the little language, but it probably won’t understand the
language in its own right.

We have worked with embedding little languages into host
languages for several years. Our effort consists of two relat-
ed projects. The first project is to develop a host language into
which programmers can easily embed other little languages
and where they might even compose such little languages.
Our inspirations, in this case, are Lisp’s and Scheme’s macro
mechanisms, which have been used for decades to create small
languages for specific problem domains.

The second project involves creating a programming envi-
ronment that easily adapts to embedded little languages. Emacs
is a primitive example of what we have in mind, but modern
IDEs offer far more than Emacs. In addition to an editor, an
IDE nowadays offers tools that help programmers understand
a program’s properties. For example, an environment may pro-
vide syntax coloring, an integrated test coverage checker, a de-
bugger, and a stepper. Ideally, the tools of the host environ-
ment should seamlessly work for programs in the embedded
little language and for programs that contain and compose lit-
tle language programs.

In this article, we show how such an IDE might work, what
it means for a programming environment to adapt itself to a
little language, and how this works for the specific example
of a small XML processing language.

Processing XML
Almost everyone in the IT world is at least vaguely familiar
with XML. Entire industries, organizations, and individual
programmers are already using XML in many applications.

16 Dr. Dobb’s Journal, March 2004 http://www.ddj.com

P
rogrammers constantly design and implement little pro-
gramming languages. Some of those languages disappear
under many layers of software. Others help with repetitive
tasks, may thus spread to colleagues, and even evolve into

general-purpose languages over time. Languages such as AWK,
Make, Perl, bash, autoconf, and Tcl come to mind.

Programmers who wish to create a little language face a choice.
One possibility is to build the little language from scratch— an
option that involves building a lexer, parser, and interpreter. The
other possibility is to build the little language on top of an ex-
isting general-purpose language. In this case, the little language
shares the host language’s syntax (variables, data, loops, func-
tions) where possible, its typechecker, interpreters and compil-
ers, and perhaps other tools. This kind of extension is often
called “language embedding.”

Table 1 summarizes the salient differences between imple-
menting a language “from scratch” in a language A, and the strat-
egy of embedding a little language into an existing language B.
The implement-from-scratch strategy uses technology, while an
embedding strategy reuses technology. Table 1 also underscores
a glaring problem for implementors of little languages. If a pro-
grammer chooses to implement the new language from scratch,

John is a graduate student at Northeastern University; Matthias is
a professor at the College of Computer Science at Northeastern Uni-
versity; Robert is an assistant professor of computer science at the
University of Chicago; Matthew is an assistant professor in the School
of Computing at the University of Utah; and Shriram is an assis-
tant professor of computer science at Brown University. They can
be contacted at clements@ccs.neu.edu, matthias@ccs.neu.edu,
robby@cs.uchicago.edu, mflatt@cs.utah.edu, and sk@cs.brown.edu,
respectively.

John Clements, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi

Fostering
Little Languages

Picking up where language designers leave off

Fostering
Little Languages

Picking up where language designers leave off

http://go.borland.com/j1

Moreover, a fair number of competing committees are work-
ing on languages for processing XML. Naturally, programmers
want to integrate XML and XML-processing tools directly into
their programs, and their pro-
gramming environments should
support this integration.

At first glance, XML docu-
ments are similar to HTML doc-
uments. Elements may be either
character data or tags (option-
ally annotated with an attribute
list) enclosing a list of zero or
more XML elements. On a
deeper level, XML consists of
two related parts— a concrete
syntax and an abstract syntax.
Listing One is an example of the
concrete syntax and Figure 1 is
its corresponding abstract syn-
tax tree.

Sublanguages of XML are
specified using schemas (or
other means). A schema defines the set of valid tags, their pos-
sible attributes, and the constraints on the XML elements ap-
pearing between a pair of tags. A schema for the newspaper
article language from Listing One appears in Listing Two. This
schema specifies, among other things, that the header field
must contain a title and author. The ability to specify XML lan-
guages explicitly using schemas most clearly separates XML
and HTML.

XML documents are data. To use this data, programmers
write programs that accept and manipulate the data. Such pro-
grams may just search XML documents or may render them
in a different format. For instance, a newspaper may wish to
render an article stored in an XML-structured database (as in
Listing One) as a web page (see Listing Three) or in a type-
setting system.

On the surface, processing XML data appears to be a te-
dious process, involving the design and implementation of lex-
ers and parsers. But below their surface syntax, many XML ex-
pressions are basically just trees. Each node is either character

data or a tagged node containing a set of attributes and a set
of subtrees. Once you strip away the concrete syntax and fo-
cus on the essence of XML’s structure, the tree becomes ob-
vious, and processing trees becomes the essence of XML pro-

cessing. One way to help
programmers write programs
for processing XML is to pro-
vide them with notations for
writing down XML transforma-
tions as tree transformations.

S-XML
We believe that XML process-
ing can benefit from a “little”
language for tree transforma-
tions. Furthermore, if you em-
bed this language rather than
build it from scratch, program-
mers can use the little language
to develop small programs and
can compose “little programs”
using the host language. In-
deed, you can escape from the

little language and use the host language to process XML if
the little language proves too inefficient or too cumbersome
for a specific problem.

We’ve created such a little language in Scheme called “S-XML.”
Scheme is well suited for this purpose because its data language
makes it easy to create and process XML-like trees. Specifically,
S-XML represents XML elements with S-expressions. Otherwise,
S-XML is like every other little embedded language. It consists
of a (small) number of special forms (syntax) and some auxil-
iary functions (the runtime). Scheme provides the rest of S-XML’s
functionality, including function definition, function application,
iteration, loops, and the like.

S-XML supports three special forms: xml and lmx for creat-
ing XML elements, and xml-match for writing down pattern-
based tree transformations. In addition, the language also pro-
vides a notation for schemas so that you can express XML
language specifications.

An XML document may specify a footer for use in an HTML
rendering. A naive translation would represent such information
as a string, like this:

"<center>page number 3</center>"

Naturally, such a string fails to capture the tree structure of
the document. Every procedure that operates on this data must
parse the string all over again, which makes it difficult to ab-
stract over XML transformations. S-XML uses trees instead, so
that the footer information is represented as:

(xml (center "page number " (em "3")))

Within the form (xml ...), each nested subexpression is tak-
en to describe an XML element. Just as double-quotes are
used in many languages to denote literal data, (xml ...) is
used to denote XML literals. XML elements may also contain
attributes. The xml form permits the addition of attributes to
elements. These attributes appear as an optional (parenthe-
sized) list immediately following the tag name. Thus, an ele-
ment such as:

<body bgcolor="BLUE"> ... </body>

would be written as:

(xml (body ((bgcolor "BLUE")) ...))

With xml, you can construct large constants, but what you re-
ally need are mechanisms for constructing constants with holes

18 Dr. Dobb’s Journal, March 2004 http://www.ddj.com

Implementing "From Scratch" Embedding a Little Language

Variables, loops, etc. are new Variables, loops, etc. are those of B
Safety/type-soundness may not exist Safety/type-soundness is that of B
Lexer is implemented in A Lexer is an extension of B's
Parser is implemented in A Parser is an extension of B's
Interpreter is implemented in A Interpreter is B's
IDE doesn't exist IDE is that of B

Table 1: Use/reuse of language technology.

Figure 1: Abstract syntax tree.

Article

Header Text

chars

Title Author

chars chars

<article>
 <header>
 <title>Not an Article</title>
 <author> John Clements </author>
 </header>
 <text>
 This is not a newspaper article.
 But if it was, this is where the
 article’s text would be.
 </text>
</article>

The core of every little language is
a library of functions and data

structures

(continued from page 16)

that are filled with computed values. S-XML, therefore, supports
the lmx construct, which lets you compute a portion of an XML
tree. For example, you may wish to specify the footer of a page
relative to a page number:

;; Number -> XML
(define (make-footer page-number)

(xml (center "page number: "
(em
(lmx
(number->string page-number))))))

The lmx form evaluates its subexpression and splices the re-
sult into the XML tree in place of the entire lmx-expression.
Here, it converts the given page-number into a string and places
this string into an element.

Now that you know constructs for building XML trees, you
can switch your attention to tree processing. Following a long-
standing tradition, S-XML supports pattern-oriented tree pro-
cessing. Specifically, it provides xml-match with which S-XML
programmers can easily specify a conditional that matches XML
patterns and returns XML data.

Take a look at the function definition in Listing Four. This func-
tion consumes an article element and produces an <html> ele-
ment. The transformation is specified with xml-match, which
matches the function’s sole argument against a pattern that looks
just like an xml data element in S-XML. The difference is that the
pattern may also contain lmx-designated pattern variables— that
is, title-string. As in other pattern-matching notations, a pattern
variable matches everything and represents what it matches. A
pattern such as (text (lmx-splice body-text)) matches a <text> el-
ement that contains a sequence of elements, and the entire se-
quence is bound to body-text. When lmx-splice is used for the
output, a sequence bound to a pattern variable is spliced into
the output.

Each pattern-matching clause in xml-match contains a result
in addition to the pattern. The result is another xml data ele-
ment that contains pattern variables. In the result part of a clause,
the pattern variables represent what they matched if the match
succeeded. For example, if render is applied to an S-XML rep-
resentation of the XML element in Listing One, then title-string
stands for “Not an Article” in the result expression of the first
clause. Similarly, body-text stands for the sequence of words
“This,” “is,” “not,” and so on.

Building S-XML
The core of every little language is a library of functions and data
structures. In fact, for some tasks such a domain-specific library
is a complete solution to the language-design problem. For
many problem statements, however, a library-based language is
not enough. There are just too many important language forms
that cannot be implemented as ordinary functions. Among these
are shortcuts for creating structured data (for example, xml and
lmx), language forms that introduce variable bindings (such as
xml-match), and language forms that affect the flow of control
(xml-match again).

Creating new language forms is outside the scope of most
programming languages. At a minimum, it requires the ability
to translate new notation into the core of the language. But as
C macros demonstrate, this is not enough. It simply doesn’t suf-
fice to think of new notations as strings; the translator must
gracefully die on syntax (and other S-XML) errors and report
them in an informative manner. This, in turn, requires some in-
tegration with the parser and a notation for rewriting parse trees.
LISP introduced a compromise solution, which Scheme adapt-
ed in several steps over the past 20 years.

Consider a form such as (xml (center "page")). If you wish to
represent a <center> element as a record with three fields— one

http://www.ddj.com Dr. Dobb’s Journal, March 2004 19

sales@leadtools.com or call: 800-637-4699

1201 Greenwood Cliff, Suite 400 Charlotte, NC 28204

LEAD and LEADTOOLS are registered trademarks of LEAD Technologies, Inc.

For the last fourteen years, LEADTOOLS has

powered the imaging engines of the most well

known software such as Microsoft Front Page, and

the internal systems of the fortune 500 companies

like Ford Motor Company, Reuters, Boeing, NCR,

Adidas, and many more. Thousands of

programmers have relied on LEADTOOLS for their

imaging needs, but tens of millions of end-users

use LEADTOOLS powered applications daily.

Visit our web site to see what’s new in the

latest release LEADTOOLS 14.

www.leadtools.com
visit

http://www.leadtools.com

for a tag, one for the attributes, and one for the text sequence—
then the correct translation into Scheme is:

(list 'center (list) (list "page"))

Roughly speaking, macros are specified with just such rules,
by (abstract) example.

Naturally, translating xml isn’t quite that simple. The translator
must also recognize embedded lmx expressions, as in this term:

(xml (center "page " (lmx the-page) " of 8)"))

Here, we expect to find this translation:

(make-center (list) (list "page " the-page " of 8"))

That is, when xml finds an embedded lmx, it splices lmx ’s subex-
pression into the proper expression context. Listing Five is an
S-XML module for xml, lmx, and xml-match as presented in this
article. To use it, enter (require (file "....xml-lmx.ss")) where "...."
is the full path to the file. Alternatively, you can put the file in

the directory where you start DrScheme, and just use (require
"xml-lmx.ss").

Little Environments
Once you have an embedded implementation for a little lan-
guage, you should think about what kind of support program-
mers may desire from the existing programming environment.
For example, if the environment performs some syntax coloring
for the host language (say, distinguishing variables from key-
words), then the embedded language should also benefit from
this tool. Specifically, variables in the embedded language should
be colored like variables in the host language, and so on.

Similarly, if the host language supports systematic variable
naming or variable binding diagrams, programs in the embed-
ded language should be able to use variable renaming or vari-
able binding diagrams, too. Better still, if the program in the em-
bedded language refers to some surrounding host program and
vice versa, then the environment should be able to trace vari-
able bindings back and forth between the two programs.

Ideally, most of the tool support should come from the ex-
isting environment without any additional support from the lan-
guage implementor. But this is too much to ask for, given the
current status of IDEs. The best we can hope for is that an em-
bedded language benefits from most tools in the surrounding
IDE and that the extensions to the IDE can be kept to a mini-
mum. Using DrScheme— our home-grown environment— this
is now almost a reality.

DrScheme
DrScheme (http://www.drscheme.org/) is a graphical IDE for
Scheme that runs on most major platforms (UNIX, Linux, Mac OS
X, and Windows). Originally targeting beginning students, our goal
with DrScheme was to provide a simple, easy-to-use IDE—with-
out the plethora of buttons, menus, tools, and other accessories of
professional IDEs. Along the way, the environment has grown up
and has become a useful tool for many Scheme programmers with-
out losing its simple interface.

The core environment (Figure 2) consists of two panes and a
simple toolbar with four buttons. One pane is an editor; the oth-
er is an interactions window. As in most modern IDEs, the ed-
itor is graphical and syntax aware. “Graphical” means that pic-
tures are plain values, just like numbers or strings. “Syntax aware”
means that the editor indents properly on return and visually
matches parentheses, moving from a closing to the corresponding
opening parentheses and gray-shading the code between them.
As Figure 2 shows, the editor also colors keywords, variables,
literal constants, and so on in different colors.

20 Dr. Dobb’s Journal, March 2004 http://www.ddj.com

Figure 4: Using the syntax checker.

Figure 2: DrScheme: The core environment.

Figure 3: Stepping through a search function.

© 2004 Intel Corporation Intel, the Intel logo, Pentium, Itanium, Intel Xeon and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others.

YOU SAVE UP TO $60! Paradise # Retail Discount
Intel® C++ Compiler 8.0 for Windows I23 0B40 $399.00 $378.99

Intel® Visual Fortran 8.0 I23 0B42 $499.00 $473.99

Intel® Visual Fortran 8.0 Upgrade
for CVF Users I23 0B43 $200.00 $189.99

Intel® IPP 4.0 for Windows I23 0B47 $199.00 $189.99

Intel® Thread Checker 2.0 for Windows
with VTune Analyzer 7.1 I23 0C3D $1,198.00 $1,137.99

“We tried the Intel® C++ Compiler for Windows and...(it) generated
impressive code, worked amazingly well with our Integrated Development
Environment, and delivered substantial performance improvements...
We recommend this to any C++ developer building applications for
delivery on Windows-based systems using Intel processors.”

—Mike Marchywka
Chief Scientist; EyeWonder, Inc.

0
Leading

C++ Compiler
for Windows

Intel C++
Compiler 8.0

To order or request additional
information call:
800-423-9990

Email: intel@programmers.com

Maximize Your Application Performance
Intel® C++ and Visual Fortran 8.0
The latest version of Intel’s fast compilers is here!
Give your application a boost in performance with
little or no source code modifications.

SPECfp_base2000†

† Intel® Pentium® 4 processor, 3.2GHz,
512 KB L2 Cache, 256MB memory,
Windows XP Professional

New
Version

8.0!

Performance
Outstanding performance on Intel architecture including Intel®

Pentium® 4, Intel® Xeon™ and Intel® Itanium® 2 processors.

Compatibility
• Both integrate into Microsoft Visual Studio .NET

C++
• Source & binary compatibility with Microsoft Visual C++ .NET

Fortran
• Strong compatibility with Compaq* Visual Fortran

Support
1 year of product upgrades and Intel Premier Support included

Intel® Integrated Performance
Primitives Library 4.0
Highly optimized code for
graphics, multimedia, math
and signal processing.

Intel® Thread Checker 2.0
Detects Win32 and OpenMP
threading bugs. Race conditions,
deadlocks and more.

200

400

600

800

1000

1200

1400

956

1,261

FREE trials available at:
programmersparadise.com/intel

24%
Faster Floating

Point
Performance!

140%

0%
Compaq* Visual

Fortran 6.6
Intel Visual
Fortran 8.0

22%
Faster!

Polyhedron F77 Test††

†† Intel® Pentium® 4, 1.8 GHz, 256 MB memory
Microsoft Windows 2000
See www.polyhedron.com

20%

40%

60%

80%

100%

120%
7.83

6.13

http://www.programmersparadise.com/intel

The interactions pane (or window) is a Lisp-style listener. It
waits for programmers to type in complete expressions (or state-
ments), then evaluates them. If the evaluation terminates and
has a visible result, the listener prints this result and waits for
the next input.

Programmers can evaluate the definitions and expressions
from the editor with a click on the Execute button in the tool-
bar. The other three buttons in the toolbar provide additional
functionality:

• Break terminates the evaluation in the interactions window.
• Step invokes the stepper on the definitions and expressions

in the editor. In contrast to conventional debuggers or step-
pers, DrScheme’s stepper displays the steps of a program ex-
ecution as if it were algebra homework for an eighth grader.
Figure 3 displays some of the evaluation steps for a function
that searches a list of records. The stepper is the most popu-
lar tool among high-school teachers who use DrScheme for
introductory programming courses.

• Check Syntax analyzes the code in the definitions window syn-
tactically, colors it properly, and allows programmers to ex-
plore the lexical regions (scope) of the program. Figure 4 il-
lustrates how programmers can use the information from the
syntax checker to create arrows that show all bound occur-
rences of a function parameter or to rename a function pa-
rameter systematically.

In addition to these basic tools, DrScheme provides a module
browser for navigating the modules and libraries of a program,
a contour outline for navigating the content of an individual mod-
ule, a test-suite manager, an expression coverage checker that
highlights those parts of the code in the editor that are not exe-
cuted by the test suite (this tool is always turned on for students),
a performance profiler that colors expressions according to their
execution intensity, a static debugger for analyzing potential vi-

olations of basic invariants, and a conventional debugger. The
conventional debugger and some other experimental tools are
still under development.

An Environment for S-XML
Most of DrScheme’s tools work with embedded little languages
without any modification. Since an embedded little language in
Scheme is just another parenthesized language, the core editor
almost immediately copes with programs in the new language.
To get the indentation depth correct, you must tell DrScheme
about the new keywords and their indentation depth in a pref-
erence dialog. The syntax coloring (at the moment) doesn’t rec-
ognize the new keywords, though this is, in principle, possible
and is a work in progress.

Similarly, other tools work if they don’t need to under-
stand the full meaning of the constructs in the embedded
language. Consider xml-match, which introduces pattern
variables and binds them to values in patterns and result ex-
pressions. Check Syntax, which lets you browse such vari-
able bindings and rename them systematically, deals with
these new constructs in a completely transparent manner.
For example, Figure 5 shows how the syntax checker can
draw arrows from the pattern variables to their uses and how
you can rename one of them.

DrScheme tools that need to understand the full meaning of
S-XML, however, must be adapted manually. The stepper is a
primary example for such a tool. Figure 6 shows the stepper’s
actions for an application of render to an <article> element.
While the S-XML programs are translated to plain Scheme pro-
grams, a symbolic stepper must display the execution steps as
if they had taken place at the source level. Since the stepper
works on plain Scheme programs, it must uncompile interme-
diate execution stages into S-XML programs, which the step-
per as- is (naturally) cannot do. Put differently, the stepper
needs additional hints so that it can uncompile intermediate
execution stages into source code.

At the moment, hints for the stepper (and other semantic tools,
such as the static debugger and the symbolic, dynamic debug-
ger) must come from the S-XML designer. In this particular case,
the stepper must become aware of xml and lmx because they
build values in the little language. Conversely, a stepper must
be able to display intermediate steps of the processes that con-
struct XML values piece by piece. To add this knowledge, we

(continued from page 20)

22 Dr. Dobb’s Journal, March 2004 http://www.ddj.com

Figure 6: Stepping with S-XML. Figure 7: Using the syntax checker with S-XML.

Figure 5: Using the syntax checker with XML.

Paradise #
F01 0131

$850.99
www.programmersparadise.com/faircom

c-tree Plus®

by FairCom
With unparalleled performance and sophistication,
c-tree Plus gives developers absolute control over
their data management needs. Commercial
developers use c-tree Plus for a wide variety of
embedded, vertical market, and enterprise-wide
database applications. Use any one or a combina-
tion of our flexible APIs including low-level and
ISAM C APIs, simplified C and C++ database
APIs, SQL, ODBC, or JDBC. c-tree Plus can be used
to develop single-user and multi-user non-server
applications or client-side application for FairCom’s
robust database server—the c-tree Server. Windows
to Mac to Unix all in one package.

NEW!
SQL

Support!

Your best source for software
development tools!

®

RoboHelp Office
The Industry Standard in Help Authoring
Create professional Help systems for desktop
and Web-based applications, including .NET.

• Create all popular Help formats
• Create standard and advanced

Help-specific features
• Work in WYSIWYG or true code
• Easily create context-sensitive Help
• Generate printed documentation
• Winner of 55 industry awards

* Price after mfr’s mail-in rebate. New
US/Can licenses only. Expires 3/31/04.

Paradise #
E75 0311

$879.99*
www.programmersparadise.com/ehelp

Programmer’s Paradise #1
Best-Selling Help Authoring
Tool for 7 Years Running!

Download a demo today. Enterprise Edition
Paradise #
T79 0214
$1,495.99

Professional Edition
Paradise #
T79 0215
$729.99

TX Text Control ActiveX 10.0
by The Imaging Source
Add RTF, DOC, HTML, CSS and
PDF Support to Your Application
TX Text Control is royalty-free, robust and powerful
word processing software in reusable component form.
The new Enterprise/XML version features a rich set of properties for the
manipulation of XML and CSS. Developers can now offer end-users the
ability to separate their textual content from their formatting rules.

www.programmersparadise.com/theimagingsource

NEW
.NET

VERSION!

8 0 0 - 4 4 5 - 7 8 9 9 • p r o g r a m m e r s p a r a d i s e . c o m

Paradise #
T34 0199

$482.99

programmersparadise.com/techexcel

Paradise Picks

Paradise #
S3R 0147

$117.99

Single Server
Paradise #
D29 070F

$888.99

PR-Tracker™ v5.1
by Softwise Company
Affordable scalable enterprise level bug
tracking system featuring classification,
assignment, sorting, searching, reporting,
access control, user permissions, attachments
and email notification. Integrates with
PR-Tracker Web Client (included) and
ProblemReport.asp (included for your
betatest or customer support interface).
Supports Access and SQL Server.

Download Today!

www.programmersparadise.com/softwise

www.programmersparadise.com/dtsearch

dtSearch Web with Spider
Quickly publish a large amount of data to a Web site,
with “blazing speeds” (CRN Test Center) searching.

• Features over a dozen indexed and fielded data
search options.

• Highlights hits in XML, HTML and PDF, while
displaying links and images; converts other files
(“Office,” ZIP, etc.) to HTML with highlighted hits.

• Spider adds a third-party site to a site’s own searchable database.
• Optional API supports SQL, C++, Java, and all .NET languages.

Download dtSearch Desktop with Spider
for immediate evaluation
“The most powerful document search tool
on the market”—Wired Magazine

LEADTOOLS
Document Imaging v.14
by LEAD Technologies
New version 14 offers enhanced OCR support
with Handprint (ICR) and OMR recognition.
Features include new annotation objects with
added output formats, image processing
functions, document file formats, image
registration functions, document image
display, Twain support and more.

www.programmersparadise.com/lead

Paradise #
L05 0520
$1662.99

DevTrack 5.6
Powerful Defect and
Project Tracking
by TechExcel
DevTrack, the market-leading defect
and project tracking solution, compre-
hensively manages and automates
your software development processes.
DevTrack 5.6 features sophisticated
workflow and process automation,
seamless source code control integration
with VSS, Perforce and ClearCase,
robust searching, and built-in reports
and analysis. Intuitive administration
and integration reduces the cost of
deployment and maintenance.

Paradise #
S69 0U66

$960.99

Sun™ ONE Studio 8,
Compiler Collection
by Sun Microsystems
Now with improved performance and
better portability to boost programmer pro-
ductivity! The Sun ONE Studio 8, Compiler
Collection delivers complete language sys-
tems and tools designed to speed software
development for you and your team.
• Improved compile time—Language

parsers, optimizer, and code generator
have been modified to reduce compila-
tion time, allowing you to deploy your
application sooner.

• Continued support for de facto (gcc,
Visual C++) and de jure standards
(C99, OpenMP)

• Licensing structure based on a serial
number model

www.programmersparadise.com/sunone

New X86
Platform
Version!

www.programmersparadise.com/teamstudio

Teamstudio For Java
Bundle Edition 4
by Teamstudio
• Eliminate the frustration of using trial-and-error

to locate performance bottlenecks and memory
leaks in your Java applications.

• Stop getting aggravated reading other people’s
badly written code.

Teamstudio for Java brings you powerful tools for
auditing code, speeding application performance,
and reducing memory footprints. Seamlessly
integrates with your IDE.

Paradise #
T2M 0103
$1,072.99

GUARANTEED BEST PRICES*
Should you see one of these products listed at a lower price in another ad in this magazine,
CALL US! We’ll beat the price, and still offer our same quality service and support!

*Terms of the offer:
• Offer good through March 31, 2003
• Applicable to pricing on current

versions of software listed
• March issue prices only

• Offer does not apply towards
obvious errors in competitors’ ads

• Subject to same terms
and conditions

Prices subject to change. Not responsible for typographical errors.

IP*Works! Red Carpet
Subscriptions
by /n software
IP*Works! Red Carpet™ Subscriptions give you
everything in one package: communications
components for every major Internet protocol, SSL
and SSH security, S/MIME encryption, Digital
Certificates, Credit Card Processing, ZIP compres-
sion, Instant Messaging, and even e-business (EDI)
transactions. .NET, Java, COM, C++, Delphi,
everything is included, together with per developer
licensing, free quarterly update CDs and free
upgrades during the subscription term.

www.programmersparadise.com/nsoftware

Paradise #
D77 0148
$1264.99

http://www.programmersparadise.com

currently extend semantics-based tools by hand. One of our re-
search objectives is to find out whether these extensions can be
specified with little languages, too.

Visual Support for S-XML
On occasion, a little language such as S-XML spreads and many
programmers start to use it. At that point, it often makes sense
to extend the IDE for the host language with tools that are tar-
geted to the little language. In this particular case, we added
XML text boxes for visualizing xml and Scheme text boxes for
visualizing lmx.

Figure 7 shows an S-XML program that uses XML and Scheme
boxes. The figure also shows how such boxes are (almost au-
tomatically) integrated with other DrScheme tools, such as Check
Syntax and the program contour browser (on the right). The ini-

tial implementation of visual support for S-XML took one day.
Although the majority of the functionality was added on that
day, minor refinements occurred over the following months, per-
haps totaling another day or two of concentrated effort. It cur-
rently consists of about 800 lines of code. This is the largest ex-
tension for S-XML besides the stepper. Figure 8 illustrates how
the visual support for S-XML is integrated with the stepper. This
preliminary screenshot shows a step in the evaluation of an xml
article whose title is supplied at runtime.

Conclusion
A programming language’s environment affects how useful the
language is to programmers. This is true for mainstream languages
as well as little languages. Indeed, for the latter, providing a good
development environment may be a major factor to its success.

To understand what it takes to turn the environment for a host
language into an environment for a little language, we have be-
gun a multiyear research effort to expand DrScheme to DrX—
where X is any little language. This article shows how much can
already be done automatically for a little XML language. We are
now testing DrX for other little languages— one for dealing with
plots, another for dealing with timed expressions— and we’re
hoping to prove that building and offering adaptable IDEs is
not just a dream.

DDJ

Listing One
<article>

<header>
<title>Not an Article</title>
<author> John Clements </author>

</header>
<text>
This is not a newspaper article.
But if it was, this is where the
article's text would be.
</text>

</article>

Listing Two
<schema>

<element name="header">
<sequence> <element-ref name="title"/>

<element-ref name="author"/>
</sequence>

</element>
<element name="body">

<mixed> <pcdata/> <mixed/>
</element>
<element name="article">

<sequence> <element-ref name="header"/>
<element-ref name="body"/>

</sequence>
</element>

</schema>

Listing Three
<html>

<head><title>Not an Article</title></head>
<body>

<center><h1>Not an Article</h1>
by John Clements</center>
<spacer type="vertical" size="20">
<p>This is not a newspaper article. But if it was,
this is where the article's text would be.</p>

</body>
</html>

Listing Four
;; XML[article] -> XML[html]
(define (render xml-article)

(xml-match
; TO BE MATCHED:
xml-article
[; PATTERN 1:

(article
(header
(title (lmx title-string))
(author (lmx author-string)))

(text (lmx-splice body-text)))
; RESULT 1:
(xml
(html
(head (title (lmx title-string)))

(body
(p (center (h1 (lmx title-string)))

(center (lmx author-string))
(spacer {(type "vertical") (size "20")})
(lmx-splice body-text)))))]

[; PATTERN 2:
(article (lmx-splice any))
; RESULT 2:
(error 'render "ill-formed xml-article")]))

Listing Five
(module xml-lmx mzscheme

(require (lib "match.ss"))
(provide xml xml-match)

(define-syntax (xml stx)
(letrec ([process-xexpr

(lambda (xexpr)
(syntax-case xexpr (lmx lmx-splice)
[(lmx-splice unquoted) #`(unquote-splicing unquoted)]
[(lmx unquoted) #`(unquote unquoted)]
[(tag ([attr val] ...) . sub-xexprs)
(identifier? #`tag)
#`(tag ([attr val] ...)

#,@(map process-xexpr (syntax->list #`sub-xexprs)))]
[(tag . sub-xexprs)
(identifier? #`tag)
#`(tag ()

#,@(map process-xexpr (syntax->list #`sub-xexprs)))]
[str
(string? (syntax-e #`str))
xexpr]))])

(syntax-case stx ()
[(_ xexpr) #`(quasiquote #,(process-xexpr #`xexpr))])))

(define-syntax (xml-match stx)
(letrec ([process-xexpr

(lambda (xexpr)
(syntax-case xexpr (lmx lmx-splice)
[(lmx-splice unquoted)

#`(unquote-splicing (unquoted (... ...)))]
[(lmx unquoted) #`(unquote unquoted)]
[(tag ([attr val] ...) . sub-xexprs)
(identifier? #`tag)
#`(tag ([attr val] ...)

#,@(map process-xexpr (syntax->list #`sub-xexprs)))]
[(tag . sub-xexprs)
(identifier? #`tag)
#`(tag ()

#,@(map process-xexpr (syntax->list #`sub-xexprs)))]
[str
(string? (syntax-e #`str))
xexpr]))])

(syntax-case stx ()
[(_ matched (pat rhs) ...)
(with-syntax ([(pattern ...) (map process-xexpr (syntax->list

#`(pat ...)))])
#`(match matched ((quasiquote pattern) rhs) ...))]))))

DDJ

(continued from page 22)

24 Dr. Dobb’s Journal, March 2004 http://www.ddj.com

Figure 8: Stepping with S-XML.

	next toc:

