
From Macros to DSLs: The Evolution of Racket∗
1

Ryan Culpepper2

PLT3

ryanc@racket-lang.org4

Matthias Felleisen5

PLT6

matthias@racket-lang.org7

Matthew Flatt8

PLT9

mflatt@racket-lang.org10

Shriram Krishnamurthi11

PLT12

sk@racket-lang.org13

Abstract14

The Racket language promotes a language-oriented style of programming. Developers create many15

domain-specific languages, write programs in them, and compose these programs via Racket code.16

This style of programming can work only if creating and composing little languages is simple and17

effective. While Racket’s Lisp heritage might suggest that macros suffice, its design team discovered18

significant shortcomings and had to improve them in many ways. This paper presents the evolution19

of Racket’s macro system, including a false start, and assesses its current state.20

2012 ACM Subject Classification Software and its engineering → Semantics21

Keywords and phrases design principles, macros systems, domain-specific languages22

Digital Object Identifier 10.4230/LIPIcs...023

∗ Over 20 years, this work was partially supported by our host institutions (Brown University, Northeastern
University, Prague Technical University, and University of Utah) as well as several funding organizations
(AFOSR, Cisco, DARPA, Microsoft, Mozilla, NSA, and NSF).

© Culpepper, Felleisen, Flatt, Krishnamurthi;
licensed under Creative Commons License CC-BY

.
Editors: ; Article No. 0; pp. 0:1–0:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ryanc@racket-lang.org
mailto:matthias@racket-lang.org
mailto:mflatt@racket-lang.org
mailto:sk@racket-lang.org
https://doi.org/10.4230/LIPIcs.\relax .\relax .0
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:2 From Macros to DSLs: The Evolution of Racket

1 Macros and Domain-Specific Languages24

The Racket manifesto [19, 20] argues for a language-oriented programming (LOP) [12, 43]25

approach to software development. The idea is to take Hudak’s slogan of “languages [as]26

the ultimate abstractions” [32] seriously and to program with domain-specific languages27

(DSLs) as if they were proper abstractions within the chosen language. As with all kinds28

of abstractions, programmers wish to create DSLs, write programs in them, embed these29

programs in code of the underlying language, and have them communicate with each other.30

According to the Lisp worldview, a language with macros supports this vision particularly31

well. Using macros, programmers can tailor the language to a domain. Because programs in32

such tailored languages sit within host programs, they can easily communicate with the host33

and each other. In short, creating, using, and composing DSLs looks easy.34

Macros alone do not make DSLs, however, a lesson that the Racket team has learned35

over 20 years of working on a realization of language-oriented programming. This paper36

recounts Racket’s history of linguistic mechanisms designed to support language-oriented37

programming; it formulates desiderata for DSL support based on, and refined by, the Racket38

team’s experiences; it also assesses how well the desiderata are met by Racket’s current39

capabilities. The history begins with Scheme’s hygienic macros, which, in turn, derive40

from Lisp (see sec. 2). After a false start (see sec. 4), the Racket designers switched to41

procedural, hygienic macros and made them work across modules; they also strictly separated42

expansion time from run time (see sec. 5). Eventually, they created a meta-DSL for writing43

macros that could properly express the grammatical constraints of an extension, check them,44

and synthesize proper error messages (see sec. 6). A comparison between general DSL45

implementation desiderata (see sec. 3) and Racket’s capabilities shows that the language’s46

support for a certain class of DSLs still falls short in several ways (see sec. 7).47

Note This paper does not address the safety issues of language-oriented programming. As48

a similar set of authors explained in the Racket Manifesto [19], language-oriented programming49

means programmers use a host language to safely compose code from many small pieces50

written in many different DSLs and use the very same host language to implement the DSLs51

themselves. Hence language-oriented programming clearly needs the tools to link DSLs safely52

(e.g., via contracts [21] or types [40]) and to incorporate systems-level protection features53

(e.g., sandboxes and resource custodians [29]).54

Some Hints For Beginners on Reading Code55

We use Racket-y constructs (e.g., define-syntax-rule) to illustrate Lisp and Scheme macros.56

Readers familiar with the original languages should be able to reconstruct the original ideas;57

beginners can experiment with the examples in Racket.58

Lisp’s S-expression construction Racket’s code construction
’ S-expression quote #’ code quote
‘ Quine quasiquote #‘ code quasiquote
, Quine unquote #, code unquote
@, list splicing #@, code splicing

Figure 1 Hints on strange symbols

For operations on S-expressions, i.e., the nested and heterogeneous lists that represent59

syntax trees, Lisp uses car for first, cdr for rest, and cadr for second. For the convenient60

construction of S-expressions, Lisp comes with an implementation of Quine’s quasiquotation61



Culpepper, Felleisen, Flatt, Krishnamurthi 0:3

idea that uses the symbols shown on the left of fig. 1 as short-hands: quote, quasiquote,62

unquote, and unquote-splicing. By contrast, Racket introduces a parallel datas tructure63

(syntax objects). To distinguish between the two constructions, the short-hand names are64

prefixed with #.65

2 The Lisp and Scheme Pre-history66

Lisp has supported macros since 1963 [31], and Scheme inherited them from Lisp in 1975 [41].67

Roughly speaking, a Lisp or Scheme implementation uses a reader to turn the sequence of68

characters into a concrete tree representation: S-expressions. It then applies an expander to69

obtain the abstract syntax tree(s) (AST). The expander traverses the S-expression to find70

and eliminate uses of macros. A macro rewrites one S-expression into a different one, which71

the expander traverses afresh. Once the expander discovers a node with a syntax constructor72

from the core language, say lambda, it descends into its branches and recursively expands73

those. The process ends when the entire S-expression is made of core constructors.74

A bit more technically, macros are functions of type75

S-expression −→ S-expression76

The define-macro form defines macros, which are written using operators on S-expressions.77

Each such definition adds a macro function to a table of macros. The expander maps an78

S-expression together with this table to an intermediate abstract syntax representation:79

S-expression × TableOf[MacroId, (S-expression −→ S-expression)] −→ AST80

The AST is an internal representation of an S-expression of only core constructors.81

See the left-hand side of fig. 2 for the simple example of a let macro. As the comments82

above the code say, the let macro extends Racket with a block-structure construct for local83

definitions. The macro implementation assumes that it is given an S-expression of a certain84

shape. Once the definition of the let macro is recognized, the expander adds the symbol85

’let together with the specified transformer function to the macro table. Every time the86

macro expander encounters an S-expression whose head symbol is ’let, it retrieves the87

macro transformer and calls it on the S-expression. The function deconstructs the given88

S-expression into four pieces: decl, lhs, rhs, body. From these, it constructs an S-expression89

that represents the immediate application of a lambda function.90

;; PURPOSE extend Racket with block-oriented, local bindings
;;
;; ASSUME the given S-expression has the shape
;; (let ((lhs rhs) ...) body ...)
;; FURTHERMORE ASSUME:
;; (1) lhs ... is a sequence of distinct identifiers
;; (2) rhs ..., body ... are expressions
;; PRODUCE
;; ((lambda (lhs ...) body ...) rhs ...)

(define-macro (let e)
(define decl (cadr e))
(define lhs (map car decl))
(define rhs (map cadr decl))
(define body (cddr e))
;; return
‘((lambda ,lhs ,@body) ,@rhs))

(define-syntax-rule
(let ((lhs rhs) ...) body ...)
;; rewrites above pattern to template below
((lambda (lhs ...) body ...) rhs ...))

Figure 2 Macros articulated in plain Lisp vs Kohlbecker’s macro DSL



0:4 From Macros to DSLs: The Evolution of Racket

Macros greatly enhance the power of Lisp, but their formulation as functions on S-91

expressions is both error-prone and inconvenient. As fig. 2 shows, the creator of the function92

makes certain assumption about the shape of the given S-expression, which are not guaranteed93

by the macro expansion process. Yet even writing just a transformation from the assumed94

shape of the S-expression to the properly shaped output requires bureaucratic programming95

patterns, something a macro author must manage and easily causes omissions and oversights.96

For concreteness, consider the following problems in the context of let macro:97

1. The S-expression could be an improper list. The transformer, as written, does not notice98

such a problem, meaning the compilation process ignores this violation of the implied99

grammar of the language extension.100

2. The S-expression could be too short. Its second part might not be a list. If it is a list, it101

may contain an S-expression without a cadr field. In these cases, the macro transformer102

raises an exception and the compilation process is aborted.103

3. The S-expression has the correct length but its second part may contain lists that contain104

too many S-expressions. Once again, the macro transformer ignores this problem.105

4. The S-expression may come with something other than an identifier as the lhs part of a106

local declaration. Or, it may repeat the same identifier as an lhs part of the second clause.107

In this case, the macro generates code anyways, relying on the rest of the compilation108

process to discover the problems. When these problems are discovered,109

a. it may have become impossible to report the error in terms of source code, meaning a110

programmer might not understand where to look for the syntax error.111

b. it has definitely become impossible to report errors in terms of the language extension,112

meaning a programmer might not comprehend the error message.113

5. The author of the macro might forget the unquote , to the left of lhs. In many members114

of the Lisp family, the resulting code would be syntactically well formed but semantically115

rather different from the intended one. In particular, conventional Lisp would generate a116

function that binds all occurrences of lhs in body via this newly created lambda—a clear117

violation of the intended scoping arrangements expressed in the comments.118

In short, if the S-expression fails to live up to the stated assumptions, the macro transformation119

may break, ignore code, or generate code that some later step in the compilation process120

recognizes as an error but describes in inappropriate terms. If the programmer makes even a121

small mistake, strange code may run and is likely to cause inexplicable run-time errors.122

Kohlbecker’s dissertation research on macros greatly improves this situation [34,35,36].123

His macro system for Scheme 84 adds two elements to the macro writer’s toolbox. The first124

is a DSL for articulating macro transformations as rewriting rules consisting of a pattern125

and a template. The revised macro expander matches S-expressions against the specified126

patterns; if there is a match, the template is instantiated with the resulting substitution. This127

DSL removes programming patterns from macro definitions and, to some extent, eliminates128

problems 1 through 3 from above. For an example, see the right-hand side of fig. 2.129

Note We call Lisp-style macros procedural and Kohlbecker’s approach declarative.130

The second novel element is hygienic expansion. By default, Kohlbecker’s macro expander131

assumes that identifiers contained in the source must be distinct from macro-generated132

identifiers in binding positions. As such, it eliminates the need to explicitly protect against133

accidental interference between the macro’s lexical scopes and those of its use contexts—that134

is, yet another programming pattern from macro code. At a minimum, this hygienic expander135

would not bind lhs in body as indicated in problem 5 above.136

Further work [2, 7, 14] refined and improved the pattern-oriented approach to specifying137

macros as well as hygienic macro expansion. The define-syntax-rule construct and138



Culpepper, Felleisen, Flatt, Krishnamurthi 0:5

hygienic expansion became part of the Scheme standard by the late 1990s [1]. Starting139

in 1988 and in parallel to the Scheme standardization process, Dybvig et al. [14] designed140

and implemented a macro definition construct, define-syntax-cases (in actual code it141

requires a combination of define-syntax and syntax-case) that merged the procedural142

and declarative elements of the Lisp world. Dybvig et al. also switched from S-expressions143

to trees of syntax objects. These trees included source locations so that the error handling144

code could try to point back to the surface code (problem 4a above).145

Starting in the late 80s, researchers explored other ways to facilitate the work of macro146

authors, including two relevant to creating DSLs from macros. Dybvig et al. [13] invented147

expander-passing macros. Macro authors would write their own expanders and use different148

ones in different macros. At an abstract level, expansion-passing style anticipates the need149

for checking static attributes. Blume [3] as well as Kelsey and Reese [33] added modules that150

could export and import macros. Such modules allow macro programmers to encapsulate151

bundles of macros, a first step towards encapsulating a DSL’s design and implementation.152

3 DSLs Require More than Bunches of Macros153

Scheme-style macros greatly improve on Lisp’s as far as the extension of an existing language154

is concerned. A developer can add concise and lexically correct macros to a program and may155

immediately use them, for writing either ordinary run-time code or additional macros. This156

immediacy is powerful and enticing because a programmer never has to leave the familiar157

programming environment, use external tools, or mess with scaffolding setups.158

The idea of macros is also easy to comprehend at the abstract level. Conceptually, a macro159

definition adds a new alternative to one of Racket’s grammatical productions: definitions160

or expressions. The declarative approach makes it easy to specify simple S-expression161

transformers in a straightforward manner; hygienic macro expansion guarantees the integrity162

of the program’s lexical scope.163

The problem is that a language extension provides only a false sense of a purpose-tailored164

language. On one hand, a programmer who uses a bunch of macro-based language extensions165

as if it were a self-contained DSL must code with an extreme degree of self-discipline. On166

the other hand, the macro system fails to support some of the traditional advantages of167

using DSLs: catching mistakes in the parsing or type-checking stage; exploiting constraints168

to generate optimized code; or link with/target tailor-made run-time functions.169

Conventionally, the creation of DSLs demands a pipeline of compiler passes:170

1. a parser, based on explicit specification of a domain-specific vocabulary and a grammar,171

that reports errors at the DSL’s source level;172

2. a static semantics, because one goal of migrating from an application interface to a DSL173

is to enforce certain constraints statically;174

3. a code generation and optimization pass, because another goal of introducing DSLs is to175

exploit the static or linguistic constraints for improved performance; and,176

4. a run-time system, because (1) the host language may lack pieces of functionality or (2)177

the target language might be distinct from the host language.178

Scheme macros per se do not support the creation of such pipelines or its proper encapsulation.179

The Racket designers noticed some of these problems when they created their first180

teaching languages [17, 18]. In response, they launched two orthogonal efforts to support the181

development of DSLs via language-extension mechanisms with the explicit goal of retaining182

the ease of use of the latter:183



0:6 From Macros to DSLs: The Evolution of Racket

One concerned the encapsulation of DSLs and support for some traditional passes. This184

idea was to develop a module system that allows the export and import of macros and185

functions while also retaining a notion of separate compilation for modules.186

The other aimed at a mechanism for easily expressing a macro’s assumptions about its187

input and synthesizing error messages at the appropriate level, i.e., the problems from188

sec. 2. The results would also help with implementing DSLs via modules.189

While sec. 4 reports on an ambitious, and abandoned, attempt to address these problems all190

at once, secs. 5 and 6 describe the tools that Racket eventually provided to DSL designers191

and implementors.192

4 Ambitious Beginnings193

When the Racket designers discovered the shortcomings of a traditional Scheme macro system,194

they decided to address them with three innovations. First, they decided to move beyond195

the traditional S-expression representation of syntax and instead use a richly structured196

one (see sec. 4.1). Second, they realized that macros needed to work together to implement197

context-sensitive checks. To this end, they supplemented declarative macros with procedural198

micros that could deal with attributes of the expansion context (see sec. 4.2). Finally they199

decided to use modules as the containers of macro-based DSL implementations as well as the200

units of DSL use (see sec. 4.3).201

4.1 From S-expressions to Syntax Objects202

To track source locations across macro expansion, Racket—like Dybvig’s Chez Scheme—203

introduced a syntax object representation of the surface code, abandoning the conventional204

S-expression representation. Roughly speaking, a syntax object resembles an S-expression205

with a structure wrapped around every node. At a minimum, this structure contains source206

locations of the various tokens in the syntax. Using this information, a macro expander can207

often pinpoint the source location of a syntax error, partially solving problem 4a from sec. 3.208

4.2 The Vocabularies of Micros209

Recall that a macro is a function on the syntax representation. Once this representation210

uses structures instead of just S-expressions, the signature of a macro has to be adapted:211

Syntax-Object −→ Syntax-Object212

Of course, this very signature says that macros cannot naturally express1 communication213

channels concerning attributes of the expansion context.214

Krishnamurthi et al.’s work [38] supplements macros with micros to solve this issue. Like215

define-macro, define-micro specifies a function that consumes the representation of a216

syntax. Additionally, it may absorb any number of Attribute values so that collections of217

micros can communicate contextual information to each other explicitly:218

Syntax-Object −→ (Attribute ... −→ Output)219

As this signature shows, a micro also differs from a macro in that the result is some arbitrary220

type called Output. This type must be the same for all micros that collaborate but may221

1 A macro author could implement this form of communication via a protocol that encodes attributes as
syntax objects. We consider an encoding unnatural and therefore use the phrase “naturally express.”



Culpepper, Felleisen, Flatt, Krishnamurthi 0:7

differ from one collection of micros to another. For macro-like micros, Output would equal222

Syntax-Object. By contrast, for an embedded compiler Output would be AST, meaning the223

type of abstract syntax trees for the target language. This target language might be Racket,224

but it could also be something completely different, such as GPU assembly code. The Racket225

team did not explore this direction at the time.226

As this explanation points out, micros for DSLs must be thought of as members of a227

collection. To make this notion concrete, Krishnamurthi et al. also introduce the notion of228

a vocabulary. Since collections of macros and micros determine the “words” and “sentence229

structure” of a DSL, a vocabulary represents the formal equivalent of a dictionary and230

grammar rules. The micros themselves transform “sentences” in an embedded language into231

meaningful—that is, executable—programs.232

In Krishnamurthi et al.’s setting, a vocabulary is created with (make-vocabulary) and233

comes with two operations: define-micro, which adds a micro function to a given vocabulary,234

and dispatch, which applies a micro to an expression in the context of a specific vocabulary.235

;; type Output = RacketAST

(define compiler (make-vocabulary))

_ _ _ elided _ _ _

(define-micro compiler
(if cond then else)
==>
(lambda ()

(define (expd t)
((dispatch t compiler)))

(define cond-ir (expd cond))
(define then-ir (expd then))
(define else-ir (expd else))
(make-AST-if

cond-ir then-ir else-ir)))

_ _ _ elided _ _ _

(define compiler-language
(extend-vocabulary

base-language
compiler))

;; type Output = RacketType
(define type-check (make-vocabulary))

_ _ _ elided _ _ _

(define-micro type-check
(if cond then else)
==>
(lambda (Γ)

;; first block
(define (tc t)

((dispatch t type-check) Γ))
(define cond-type (tc cond))
(unless (type-== cond-type Boolean)

(error _ _ _ elided _ _ _))
(define then-type (tc then))
(define else-type (tc else))
(unless (type-== then-type else-type)

(error _ _ _ elided _ _ _))
then-type))

_ _ _ elided _ _ _

Figure 3 Micros and vocabularies

Fig. 3 collects illustrative excerpts from a vocabulary-micro code base. The left-hand236

column sets up a compiler vocabulary, which expresses transformations from the surface237

syntax into Racket’s core language. Among other micros, the if micro is added to compiler238

because it is a core construct. The final definition shows how to construct a complete239

language implementation by mixing in vocabularies into the common base language.240

Like Scheme’s macro definitions, micro definitions use a pattern DSL for specifying inputs.241

As for the Attribute ... sequence, micros consume those via an explicit lambda. To242

create its output, the if micro allocates an AST node via make-AST-if. The pieces of this243

node are the results of expanding the three pieces that make up the original if expression.244

The expansions of these sub-expressions employ dispatch, a function that consumes the245

expression to be expanded together with the contextual vocabulary and the attributes (none246

here) in a staged fashion.247



0:8 From Macros to DSLs: The Evolution of Racket

The right-hand side of fig. 3 shows how to add an if micro for a type-checking variant of248

the DSL. The code introduces a second vocabulary for the type checker. The if micro for249

this additional vocabulary implements the type checking rule for if in a standard manner,250

reporting an error as soon it is discovered.251

Once the type-check vocabulary is in place, a developer can use it independently or252

in combination with the compiler vocabulary. For example, Racket’s soft typing sys-253

tem [23] needed a distinct interpretation for the language’s letrec construct, i.e., a distinct254

type-check vocabulary unrelated to the actual compiler. A variant of Typed Racket [42]255

could be implemented via the composition of these two vocabularies; in this context, the256

composition would discard the result of the pass based on the type-check vocabulary.257

In general, DSL creators get two advantages from vocabularies and micros. First, they258

can now specify the syntax of their languages via explicit collections of micros. Each micro259

denotes a new production in the language’s expression language, and the input patterns260

describe its shape. Second, they can naturally express and implement static checking. The261

micro’s secondary arguments represent “inherited” attribute, and the flexible Output type262

allows the propagation of “synthesized” ones.263

Implementing complete DSLs from vocabularies becomes similar to playing with Legos:264

(1) vocabularies are like mixins [30], (2) languages resemble classes, and (3) dispatch is265

basically a method invocation. Hence creating a variety of similar DSLs is often a game of266

linking a number of pieces from a box of language-building blocks. For the team’s rapid267

production and modification of teaching languages in the mid 1990s, vocabularies were a268

critical first step.269

4.3 Languages for Semantic Modules270

According to sec. 3 the implementation of any language combines a compiler with a run-time271

system. This dictum also applies to DSLs, whether realized with macros or micros. Both272

translate source code to target code, which refers to run-time values (functions, objects,273

constants, and so on). Such run-time values often collaborate “via conspiracy,” meaning their274

uses in target code satisfies logical statements—invariants that would not hold if all code275

had free access to these values. That is, the implementor of a DSL will almost certainly wish276

to hide these run-time values and even some of the auxiliary compile-time transformations.277

All of this suggests that macros, micros and vocabularies should go into a module, and such278

modules should make up a DSL implementation.279

Conversely, the implementors of DSLs do not think of deploying individual constructs280

but complete languages. Indeed, conventional language implementors imagine that DSL281

programmers create self-contained programs. By contrast, Lispers think of their language282

extensions and imagine that DSL programmers may wish to escape into the underlying host283

language or even integrate constructs from different DSL-like extensions at the expression284

level. The question is whether a macro-micro based approach can move away from the “whole285

program” thinking of ordinary DSLs and realize a Lisp-ish approach of deploying languages286

for small units of code.287

Krishnamurthi’s dissertation [37] presents answers to these two questions and thus288

introduces the first full framework for a macro-oriented approach to language-oriented289

programming. It combines macros with the first-class modules of the 1990s Racket, dubbed290

units [28], where the latter becomes both the container for DSL implementations as well as291

the one for DSL deployment. Technically, these units have the shape of fig. 4. They are292

parameterized over a Language and link-time imports, and they export values in response.293



Culpepper, Felleisen, Flatt, Krishnamurthi 0:9

(unit/lang Language
(ImportIdentifier ...)
(ExportIdentfier ...)
Definitions-and-Expressions ...)

Figure 4 Language-parameterized, first-class units

A DSL implementation is also just a unit/lang that combines macros, micros, and294

run-time values. It is not recognized as a valid Language until it is registered with a language295

administrator . The latter compiles unit/lang expressions separately to plain units. For296

this compilation, the language administrator expands all uses of macros and micros and then297

resolves all the names in the generated code—without exposing any of them to other code.298

In particular, the developer does not need to take any action, such as adding the names of299

run-time values to export specifications of Languages or to unit/langs that use a Language.300

The result of a compilation is a collection of plain Racket units, and the Racket compiler301

turns this collection into a running program.302

In principle, Krishnamurthi’s unit/lang system addresses all four DSL criteria listed303

in sec. 3. The micro-vocabulary combination can enforce syntax constraints beyond what304

macros can do. They are designed to express static processing in several passes and explicitly305

accommodate target languages distinct from Racket. And, the implementations of DSLs as306

unit/langs encapsulates the compiler component with a run-time component.307

What this system fails to satisfy is the desire to synthesize DSL implementation techniques308

with Lisp’s incremental language-extension approach. The main problem is that a programmer309

has to parameterize an entire unit over a complete language. It is impossible to selectively310

import individual macros and micros from a unit/lang, which is what Racket developers311

truly want from a modular macro system. After a few years of using plain units, the Racket312

team also realized that first-class units provided more expressive power than they usually313

needed, meaning the extra complexity of programming the linking process rarely ever paid314

off in the code base.315

Additionally, the unit/lang system was a step too far on the social side. Racket—then316

called PLT Scheme—was firmly in the Scheme camp and, at the time, the Scheme community317

had developed and open-sourced a new syntax system [14] that quickly gained in popularity.318

This macro system combined the declarative form of Krishnamurthi’s macros with the proce-319

dural form of his micros into a single define-syntax-cases form. Furthermore, this new320

macro system came with the same kind of syntax-object representation as Krishnamurthi’s,321

allowing source tracking, hygienic expansion, and other cross-expansion communication. In322

other words, the new system seemed to come with all the positive aspects of Krishnamurthi’s323

without its downsides. Hence, the Racket team decided to adapt this macro system and324

create a module system around it.325

5 Languages From Syntactic Modules326

The Racket designers started this rebuilding effort in 2000. The goal was to create a module327

system where a developer could write down each module in a DSL that fit the problem domain328

and where a module could export/import individual macros to/from other modules—and329

this second point forced them to reconsider the first-class nature of modules.330

Flatt’s “you want it when” module-macro system [24] realizes this goal. It introduces a331

module form, which at first glance looks like unit/lang. Like the latter, module explicitly332

specifies the language of a module body, as the grammar in fig. 5 shows. Otherwise the333



0:10 From Macros to DSLs: The Evolution of Racket

(module Name Language

{ ProvideSpeification
| RequireSpecification
| Definition
| Expression }∗

)

#lang Language Name.rkt

{ ProvideSpeification
| RequireSpecification
| Definition
| Expression }∗

Figure 5 Language-parameterized, first-order modules and their modern abbreviation

grammar appears to introduce a new expression form whose internals consist of a sequence334

of exports, imports, definitions and expressions. A small difference concerns the organization335

of the module body. The import and export specifications no longer need to show up as336

the first element of the module; they can appear anywhere in the module. Appearances337

are deceiving, however, and the Name part suggests the key difference. A module is not an338

expression but a first-order form, known to the expander.339

When the expander encounters module, it imports the Language’s provided identifiers.340

This step establishes the base syntax and semantics of the module’s expressions, definitions,341

imports, and exports. Next the expander finds the imported and locally-defined macros in342

the module body. The search for imported macros calls for the expansion and compilation of343

the referenced modules. It is this step that requires the restriction to first-order modules,344

because the expander must be able to identify the sources of imported macros and retrieve345

their full meaning. Finally, the expander adds those imported and local macros to the346

language syntax and then expands the module body properly, delivering an abstract-syntax347

representation in the Racket core language.348

One consequence of this arrangment is that the expansion of one module may demand349

the evaluation of an entire tower of modules. The first module may import and use a macro350

from a second module, whose definition relies on code that also uses language extensions.351

Hence, this second module must be compiled after expanding and compiling the module that352

supplies these auxiliary macros.353

#lang racket loop.rkt

(provide inf-loop)

(define-syntax-cases
[(inf-loop e)
(begin

(displayln "generating inf-loop")
#’(do-it (lambda () e)))])

(define (do-it th)
(th)
(do-it th))

#lang racket use-loop.rkt

(provide display-infinitely-often)

(require "loop.rkt")

(define (display-infinitely-often x)
(inf-loop (do-it x)))

(define (do-it x)
(displayln x))

Figure 6 Exporting macros from, and importing them into, modules

The right-hand side of fig. 5 also shows the modern, alternative syntax for modules.354

The first line of code specifies only the language of the module via a #lang specification;355

the name of the file (boxed) determines the name of the module. Fig. 6 illustrates how356

two modules interact at the syntax and run-time level. The module on the left defines the357

language extension inf-loop, whose implementation generates code with a reference to the358

function do-it. The module on the right imports this language extension via the require359

specification. The Racket compiler retrieves the macro during compile time and uses it to360



Culpepper, Felleisen, Flatt, Krishnamurthi 0:11

expand the body of the display-infinitely-often function—including a reference to the361

do-it function in module loop.rkt. Cross-module hygienic expansion [24,26] ensures that362

this macro-introduced name does not conflict in any way with the do-it function definition363

of the use-loop.rkt module. Conceptually, the expansion of display-infinitely-often364

looks like the following definition:365

(define (display-infinitely-often x)366

(loop.rkt-do-it (lambda () (use-loop.rkt-do-it x))))367

with the two distinct, fully-resolved names guaranteeing the proper functioning of the code368

according to the intuitive surface meaning.369

Flatt’s module-macro system allows the use of both declarative and procedural language370

extensions. To illustrate the latter kind, the inf-loop macro uses define-syntax-cases.371

If the expander can match a piece of syntax against one of the left-hand-side patterns372

of define-syntax-cases, it evaluates the expression on the right. This evaluation must373

produce code, which is often accomplished via the use of templates (introduced by #’) whose374

pattern variables are automatically replaced by matching pieces of syntax. But, as the375

definition of inf-loop suggests, the right-hand side may contain side-effecting expressions376

such as displayln. While these expressions do not become a part of the generated code as377

the above snippet shows, their side effects are observable during compile time.378

To enable separate compilation, Racket discards the effects of the expansion phase before379

it moves on to running a module. Discarding such effects reflects the Racket designers’ under-380

standing that language-extensions are like compilers, which do not have to be implemented381

in the same language as the one that they compile and which are not run in the same phase382

as the program that they translate. Phase separation greatly facilitates reasoning about383

compilation, avoiding a lot of the pitfalls of Lisp’s and Scheme’s module systems with their384

explicit eval-when and compile-when instructions [24].385

#lang racket math.rkt

(provide Ack)

;; Number Number -> Number
(define (Ack x y)

(cond
[(zero? x) (+ y 1)]
[(and (> x 0) (zero? y))
(Ack (- x 1) 1)]

[else
(Ack (- x 1) (Ack x (- y 1)))]))

#lang racket use-acker.rkt

(require (for-syntax "math.rkt")))

(define-syntax-cases ()
[(static-Ack x y)
;; rewrites the pattern to a template
;; via some procedural processing
(let* ((x-e (syntax-e #’x))

(y-e (syntax-e #’y)))
(unless (and (number? x-e) (number? y-e))

(raise-syntax-error #f "not numbers"))
(define ack (Ack x-e y-e))
#‘(printf "the Ack # is ~a" #,ack))])

(static-Ack 1 2)

Figure 7 Importing at a different phase

Phase separation imposes some cost on developers, however. If a module needs run-386

time functions for the definition of a language construct, the import specification must387

explicitly request a phase shift. For an example, see fig. 7. The module on the right defines388

static-Ack, which computes the Ackermann function of two numbers at compile time. Since389

the Ackermann function belongs into a different library module, say math, the use-ack390

module most import it from there. But, because this function must be used at compile time,391

the require specification uses the (underlined) for-syntax annotation to shift the import to392

this early phase. The Racket designers’ experience shows that phase-shifting annotations are393



0:12 From Macros to DSLs: The Evolution of Racket

still significantly easier to work with than Lisp’s and Scheme’s expand-when and eval-when394

annotations.395

Like Krishnamurthi’s unit/langs, Flatt’s modules allow developers to write different396

components in different languages. In the case of modules, the Language position points397

to a module itself. The exports of this Language module determine the initial syntax and398

semantics of a client module.399

In contrast to an ordinary module, a Language module must export certain macros, called400

interposition points; it may export others. An interposition point is a keyword that the401

macro expander adds to some forms during its traversal of the source tree. Here are the two402

most important ones for Language modules:403

#%module-begin is the (invisible) keyword that introduces the sequence of definitions404

and expressions in a module body. A Language module must export this form.405

#%top-interaction enables the read-eval-print loop for a Language, i.e., dynamic loading406

of files and interactive evaluation of expressions.407

Other interposition points control different aspects of a Language’s meaning:408

#%app is inserted into function applications. In source code, an application has the shape409

(fun arg ...), which expands to the intermediate form (#%app fun arg ...).410

#%datum is wrapped around every literal constant.411

#%top is used to annotate module-level variable occurrences.412

In practice, a developer creates a Language by adding features to a base language,413

subtracting others (by not exporting them), and re-interpreting some. Here “features” covers414

both macros and run-time values. The #%module-begin macro is commonly re-interpreted415

for a couple of reasons. Its re-definition often helps with the elimination of boilerplate416

code but also the communication of context-sensitive information from one source-level417

S-expression (including modules) to another during expansion.418

#lang racket lazy.rkt

(provide
(except-out (all-from-out racket) #%app)
(rename-out [lazy-app #%app]))

(define-syntax-rule
(lazy-app f a ...)
(#%app f (lambda () a) ...))

#lang "lazy.rkt" no-error.rkt

; a constant function
(define (f x y)

10)

; called on two erroneous terms
(f (/ 1 0) (first ’()))
; evaluates to 10

Figure 8 Building an embedded DSL from modules and macros

Fig. 8 indicates how a developer could quickly build a language that looks like Racket but419

uses call-by-name instead of call-by-value. The module on the left is the language implemen-420

tation. It starts from Racket and re-exports all of its features, including #%module-begin,421

except for function application. The module re-interprets function application via the sec-422

ond part of provide. Technically, a re-interpretation consists of a macro definition that is423

re-named in a provide. The lazy module comes with a lazy-app macro, which rewrites424

(lazy-app fun arg ...) to (#%app fun (lambda () arg) ...). By static scope, the425

#%app in the expansion refers to the function application form of Racket. Since this macro426

is provided under the name #%app, a client module’s function applications—into which the427

expander inserts #%app—eventually expand according to lazy-app. In particular, the two428

exception-raising expressions in the no-error module are wrapped in lambda; because f is a429

constant function that does not evaluate its arguments, these errors are never reported. (For430

additional details on lazy, see the last chapter of Realm of Racket [15].)431



Culpepper, Felleisen, Flatt, Krishnamurthi 0:13

#lang racket all-in-one.rkt

(module lazy-impl racket

(provide
(except-out (all-from-out racket) #%app)
(rename-out [lazy-app #%app]))

(define-syntax-rule
(lazy-app f a ...)
(#%app f (lambda () a) ...)))

(module lazy-client (submod ".." lazy-impl)

(define (f x y)
10)

(f (/ 1 0) (first ’())))

(require (submod "." lazy-client))

(a) DSL development in one module (b) Algol 60 as a Racket DSL

Figure 9 Developing and deploying DSLs in Racket

Modules and macros jointly make DSL development an interactive activity in the Racket432

ecosystem. A programmer can open two tabs or windows in an IDE to use one for the433

DSL implementation and another for a DSL program. Or, a programmer can place a DSL-434

implementing submodule [25] and a DSL-using submodule into a single file, which can then435

be edited and executed within a single editor window of the preferred IDE. Fig. 9a shows436

how to combine the modules of fig. 8 into a single file. This program consists of three pieces.437

The first one is a submodule that implements the lazy language, while the second uses the438

first one in the Language position. Hence the first submodule is the programming language439

of the second. The last piece of the program requires and thus evaluates the client module.440

Any change to the first submodule is immediately visible in the second.441

A developer may also equip a DSL with any desired syntax, not just build on top of442

Racket’s beautiful parentheses. To support this kind of syntax, a Language module may443

export a new reader. Recall from sec. 2 that a Lisp reader turns the stream of characters444

into a sequence of S-expressions (or Syntax-Objects, in the case of Racket). The rest of the445

implementation can then use the usual mix of macros and functions. Butterick’s Beautiful446

Racket [4] is a comprehensive introduction to this strategy and comes with a powerful library447

package for lexing and parsing.448

In the context of modular macros, a developer may also create a conventional compiler449

with the macro infrastructure. Instead of just expanding to Racket, a DSL implementation450

may use a combination of macros and compile-time functions to perform conventional type451

checking or other context-sensitive checks.452

Fig. 9b presents a simple example of a Racket DSL program in conventional syntax.453

Except for the first line, the code represents a standard Algol 60 program. The first line454

turns this program into a Racket DSL and thus allows Racket to parse, type check, compile,455

and run this program. Because the DSL implementation turns the Algol 60 program into456

syntax objects and implements its semantics via macro expansion, DrRacket (the Racket457

IDE [22]) automatically adapts itself to this new language. For example, fig. 9b illustrates458

how DrRacket connects the binding occurrence of INVERSE’s parameter to its bound ones.459



0:14 From Macros to DSLs: The Evolution of Racket

In sum, Racket’s modules simultaneously allow the incremental and interactive construc-460

tion of language extensions as well as the construction of complete DSLs with their own461

vocabulary. The key design decision is to turn macros into entities that first-order modules462

can export, import, hide, and re-interpret. It does necessitate the introduction of strict phase463

separation between the expansion phase and run-time phase to obtain separate compilation.464

6 Syntax Done Properly With Parsing Macros465

The implementation of a DSL’s syntax consists of two essential parts: parsing syntactically466

legitimate sentences, and reporting violations of the syntactic rules. Both aspects are equally467

important, but for 40 years, the macro community mostly neglected the second one.468

Sec. 2 lists five problems with parsing via Lisp-style macros. Kohlbecker’s rewriting DSL—469

based on patterns and templates—eliminates all of them except for problem 4. To appreciate470

the complexity of this particular problem, consider the actual grammatical production of471

let expressions in classical BNF notation:472

(let ({[id expression]}∗) expression+)473

Kohlbecker’s pattern-based meta-DSL addresses this context-free shape specification with474

the elegant trick of using ellipses (. . . ) for ∗ and unrolling for +:475

(let ([id expression] ...) expression expression ...)476

What Kohlbecker’s notation cannot express is the side condition of fig. 2:477

id ... is a sequence of distinct identifiers478

Indeed, Kohlbecker’s notation cannot even specify that id must stand for an identifier.479

So now imagine a programmer who writes480

(let (((+ 1 2) x)) (* x 3)) ;; => ((lambda ((+ 1 2)) (* x 3)) x)481

or482

(let ((x 1) (x 2)) (* x 3)) ;; => ((lambda (x x) (* x 3)) 1 2)483

In either case, a pattern-oriented language generates the lambda expression to the right of484

the => arrow. Hence, the resulting syntax errors speak of lambda and parameters, concepts485

that the grammatical description of let never mentions. While a reader might be tempted486

to dismiss this particular error message as “obvious,” it is imperative to keep in mind that487

this let expression might have been generated by the use of some other macro, which in488

turn might be the result of some macro-defining macro, and so on.489

Dybvig’s define-syntax-cases slightly improves on Kohlbecker’s DSL. It allows the490

attachment of of fenders—Boolean expressions—to a macro’s input patterns. With such491

fenders, a macro developer can manually formulate conditions that check such side conditions.492

Even in such simple cases as let, however, the error-checking code is many times the size of493

the rewriting specification. And this is why most macro authors fail to add this code or, if494

they do, fail to write comprehensive checks that also generates good error messages.495

Culpepper’s DSL for defining macros solves this problem with two innovations [8,9,10,11].496

The first is an augmentation of the pattern-matching DSL with “words” for articulating497

classification constraints such as those of the let macro. The second is a DSL for specifying498

new classifications. Together, these innovations allow programmers to easily enforce assump-499

tions about the surface syntax, synthesize error messages in terms of the specification, and500

deconstruct the inputs of a macro into relevant pieces.501



Culpepper, Felleisen, Flatt, Krishnamurthi 0:15

(define-syntax-class distinct-bindings
#:description "sequence of distinct binding pairs"
(pattern (b:binding ...)
#:fail-when (check-duplicate-id #’(b.lhs ..))

"duplicate variable name"
#:with (lhs* ...) #’(b.lhs ...)
#:with (rhs* ...) #’(b.rhs ...)))

(define-syntax-class binding
#:description "binding pair"
(pattern (lhs:id rhs:expr)))

Figure 10 Syntax classifications

Following our discussion above, the specification of let needs two syntax classifications:502

one to say that the second part of let’s input is a sequence and another one to say that the503

elements of this sequence are identifier-expression pairs. Fig. 10 shows how a programmer504

can define these classifications in Culpepper’s meta-DSL. A classification must come with at505

least one pattern clause, which spells out the context-free shape of the form and names its506

pieces. For example, the binding class uses the pre-defined classifications id (for identifier)507

and expr (for expression) to say that a binding has the shape (id expr) and that the name508

of the id is lhs and the name of expr is rhs. Any use of such a syntax class, for example the509

one in the definition of distinct-bindings, may refer to these attributes of the input via a510

dot notation. Thus, b.lhs ... in distinct-bindings denotes the sequence of identifiers.511

As this example also shows, a syntax-class definition may also defer to procedural code, such512

as check-duplicate-id to process the input. A fail-when clause allows macro developers513

to specify a part of the synthesized error message (when the default is not sufficiently clear).514

(define-syntax-parser let
[(_ bs:distinct-bindings body:expr ...+)
;; rewrites the pattern to a template
#’((lambda (bs.lhs* ...) body ...) bs.rhs* ...)])

Figure 11 Macros via parsing macros

Using these two syntax classes, specifying the complete shape of let is straightforward;515

see fig. 11. The :distinct-bindings classification of bs introduces names for two pieces516

of the input syntax: a sequence of identifiers (bs.lhs*) and a sequence of right-hand-side517

expressions (bs.rhs*), one per variable. The syntax template uses these pieces to generate518

the same target code as the macros in fig. 2.519

A comparison of figs. 2 and 11 illustrates the advantages as well as the disadvantages of520

Culpepper’s DSL for writing macros. On the positive side, the size of the Culpepper-style521

macro definition appears to remain the same as the one for the Kohlbecker-style one. The522

revised definition merely adds classifications to the macro’s pattern and attribute selections523

to the macro’s template. This shallow size comparison camouflages that these small changes524

cause the macro to check all constraints on the shape of let and formulate syntax errors in525

terms of the specified surface syntax. As Culpepper [9, page 469] explains, implementing the526

same level of assumption checking and error reporting via procedural macros increases the527

code size by “several factors.” Furthermore the “primary benefit [of this meta-DSL] . . . is528

increased clarity” of a macro’s input specification and its code template.529

On the negative side, macro programmers are now expected to develop syntax classi-530

fications such as those in fig. 10 and use them properly in macro definitions, as in fig. 11.531

While the development of syntax classifications clearly poses a new obstacle, their use comes532

with a significant payoff and most end up as reusable elements in libraries. Hence the cost533

of developing them is recouped through reuse. As for the use of syntax classifications in534



0:16 From Macros to DSLs: The Evolution of Racket

macro templates and patterns, experience shows that most macro programmers consider the535

annotations as type-like notions and the attribute selections as a natural by-product.536

In short, Culpepper’s meta-DSL completely replaces the define-syntax-cases meta-537

DSL for macro definitions. By now, the large majority of Racket programmers develop macros538

in Culpepper’s DSL and contribute to the ever-expanding collection of syntax classifications.539

lang. lexical classify error separate run-time code gen.
extens. scope syntax messages compil. encaps. opt.
(sec. 3) (2) (1) (1) (4) (4) (3)

Lisp macros X – – – – – –
Scheme
– syntax-rules X X patterns – – – –
– syntax-case X X patterns & – – – –

fenders –
Racket X X patterns & X X& X module
– syntax-parse syn. classes phases only

– means programmers have the tools to design manual solutions

Figure 12 A concise overview of Lisp-family language extension features

7 DSL Creators Need Still More Than Modular, Parsing Macros540

Racket has made great progress in improving the state of the art of macros with an eye541

toward both language extension and DSL implementation. Fig. 12 surveys the progress542

in roughly the terms of sec. 3’s criteria. The syntax-parse DSL for defining macros can543

express almost every context-free and -sensitive constraint; macro developers get away with544

a few hints and yet get code that reports syntax errors in terms of the macro-defined variant.545

The module system supports both the fine-grained export/import of macros for language546

extensions and the whole-cloth implementation of DSLs.547

At this point, implementing DSLs is well within reach for Racket beginners [4, 15] and548

easy for experts. While beginners may focus on module-based DSLs, experts use macros549

to create fluidly embedded DSLs. Examples are the DSL of pattern-matching for run-time550

values, the syntax-parse DSL itself, and Redex [16,39]. In this domain, however, the macro551

framework falls short of satisfying the full list of desiderata for from sec. 3.552

To explain this gap, let us concisely classify DSLs and characterize Racket’s support:553

stand-alone DSLs554

These are the most recognized form in the real world. Racket supports those via module555

languages with at least the same conveniences as other DSL construction frameworks.556

embedded DSLs with a fixed interface557

All programming languages come with numerous such sub-languages. For example,558

printf interprets the format DSL—usually written as an embedded string—for rendering559

some number of values for an output device. In Racket, such DSLs instead come as a560

new set of expression forms with which programmers compose domain-specific programs.561

Even in Racket, though, such DSLs allow only restricted interactions with the host.562

embedded and extensible DSLs with an expression-level interface563

Racket’s DSLs for pattern matching and structure declarations are illuminating examples564

of this kind. The former allows programmers to articulate complex patterns, with565

embedded Racket expressions. The latter may contain patterns, which contain expressions,566

etc. The pattern DSL is extensible so that, for example, the DSL of structure definitions567



Culpepper, Felleisen, Flatt, Krishnamurthi 0:17

(define-typed-syntax (if cond then else)
[` cond >> cond-ir =⇒ cond-type]
[` then >> then-ir =⇒ then-type]
[` else >> else-ir ⇐= else-type]
-------------------------------------------------
[(AST-if cond-ir then-ir else-ir) −→ then-type])

Figure 13 Type-checking from macros

can automatically generate patterns for matching structure instances. Naturally, this568

DSL for structure declarations can also embed Racket expressions at a fine granularity.569

With regard to the third kind of DSL, Racket’s macro approach suffers from several570

problems. A comparison with the criteria in sec. 3 suggests three obvious ones.571

The first concerns DSLs that demand new syntactic categories and, in turn, good parsing572

and error reporting techniques. While syntax classes allow DSL creators to enumerate573

the elements of a new syntactic category, this enumeration is fixed. Experienced DSL574

implementors can work around this restriction, just like programmers can create extensible575

visitor patterns in object-oriented languages to allow the blind-box extension of data types.576

The second problem is about context-sensitive language processing. The existing macro577

framework makes it difficult to implement context-sensitive static checking, translations, and578

optimizing transformations—even for just Racket’s macros, not to mention those that define579

new syntactic categories. Chang and his students [5, 6] have begun to push the boundaries580

in the realm of type checking, a particular rich form of context-sensitivity. Specifically,581

the team has encoded the rich domain of type checking as a meta-DSL. In essence, this582

meta-DSL enables DSL creators to formulate type checking in the form of type elaboration583

rules from the literature (see fig. 13), instead of the procedural approach of fig. 3. However,584

their innovation exploits brittle protocols to make macros work together [27]. As a result,585

it is difficult to extend their framework or adapt it to other domains without using design586

patterns for macro programming.587

Finally, the DSL framework fails to accommodate languages whose compilation target is588

not Racket. Consider an embedded DSL for Cuda programming that benefits from a fluid589

integration with Racket. Such a DSL may need two interpretations: on computers with590

graphical co-processors it should compile to GPU code, while on a computer without such a591

processor it may need to denote a plain Racket expression. Implementing a dependent-type592

system in the spirit of Chang et al.’s work supplies a second concrete example. The language593

of types does not have the semantics of Racket’s expressions and definitions. Although it is594

possible to expand such DSLs through Racket’s core, it forces DSL developers to employ595

numerous macro-design patterns.596

The proposed work-arounds for these three problems reveal why the Racket team does597

not consider the problem solved. Racket is all about helping programmers avoid syntactic598

design patterns. Hence, the appearance of design patterns at the macro level is antithetical to599

the Racket way of doing things, and the Racket team will continue to look for improvements.600

Acknowledgements The authors thank Michael Ballantyne, Eli Barzilay, Stephen Chang,601

Robby Findler, Alex Knauth, Alexis King, and Sam Tobin-Hochstadt for contributing at602

various stages to the evolution of Racket’s macro system and how it supports LOP. They603

also gratefully acknowledge the suggestions of the anonymous SNAPL ’19 reviewers, Sam604

Caldwell, Ben Greenman for improving the presentation.605



0:18 From Macros to DSLs: The Evolution of Racket

References606

1 H. Abelson, R.K. Dybvig, C.T. Haynes, G.J. Rozas, N.I. Adams, D.P. Friedman, E. Kohlbecker,607

G.L. Steele, D.H. Bartley, R. Halstead, D. Oxley, G.J. Sussman, G. Brooks, C. Hanson, K.M.608

Pitman, and M. Wand. Revised5 report on the algorithmic language scheme. Higher-Order609

and Symbolic Computation, 11(1):7–105, Aug 1998.610

2 Alan Bawden and Jonathan Rees. Syntactic closures. In Symposium on Lisp and Functional611

Programming, pages 86–95, 1988.612

3 Matthias Blume. Refining hygienic macros for modules and separate compilation. Technical613

report tr-h-171, ATR Human Information Processing Research Laboratories, Kyoto, Japan,614

1995. people.cs.uchicago.edu/~blume/papers/hygmac.pdf.615

4 Matthew Butterick. Beautiful Racket. 2013. URL: https://beautifulracket.com/.616

5 Stephen Chang, Alex Knauth, and Ben Greenman. Type systems as macros. In Symposium617

on Principles of Programming Languages, pages 694–705, 2017.618

6 Stephen Chang, Alex Knauth, and Emina Torlak. Symbolic types for lenient symbolic execution.619

In Symposium on Principles of Programming Languages, pages 40:1–40:29, 2018.620

7 William Clinger and Jonathan Rees. Macros that work. In Symposium on Principles of621

Programming Languages, pages 155–162, 1991.622

8 Ryan Culpepper. Refining Syntactic Sugar: Tools for Supporting Macro Development. PhD623

thesis, Northeastern University, 2010.624

9 Ryan Culpepper. Fortifying macros. Journal of Functional Programming, 22(4–5):439–476,625

2012.626

10 Ryan Culpepper and Matthias Felleisen. Taming macros. In Generative Programming and627

Component Engineering, pages 225–243, 2004.628

11 Ryan Culpepper and Matthias Felleisen. Fortifying macros. In International Conference on629

Functional Programming, pages 235–246, 2010.630

12 Sergey Dmitriev. Language-oriented programming: the next programming paradigm, 2004.631

13 R. Kent Dybvig, Daniel P. Friedman, and Christopher T. Haynes. Expansion-passing style: A632

general macro mechanism. Lisp and Symbolic Computation, 1(1):53–75, January 1988.633

14 R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme. Lisp634

and Symbolic Computation, 5(4):295–326, December 1993.635

15 Matthias Felleisen, Forrest Bice, Rose DeMaio, Spencer Florence, Feng-Yun Mimi Lin, Scott636

Lindeman, Nicole Nussbaum, Eric Peterson, Ryan Plessner, David Van Horn, and Conrad637

Barski. Realm of Racket. No Starch Press, 2013. URL: http://www.realmofracket.com/.638

16 Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with639

PLT Redex. MIT Press, 2009.640

17 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. How641

to Design Programs. Second Edition. MIT Press, 2001–2018. URL: http://www.htdp.org/.642

18 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. The643

structure and interpretation of the computer science curriculum. Journal of Functional644

Programming, 14(4):365–378, 2004.645

19 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay,646

Jay McCarthy, and Sam Tobin-Hochstadt. The Racket Manifesto. In First Summit on Advances647

in Programming Languages, pages 113–128, 2015.648

20 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzi-649

lay, Jay McCarthy, and Sam Tobin-Hochstadt. A programmable programming language.650

Communications of the ACM, 61(3):62–71, February 2018.651

21 R. Findler and M. Felleisen. Contracts for higher-order functions. In International Conference652

on Functional Programming, pages 48–59, 2002.653

22 Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishna-654

murthi, Paul Steckler, and Matthias Felleisen. DrScheme: A programming environment for655

Scheme. Journal of Functional Programming, 12(2):159–182, 2002.656

people.cs.uchicago.edu/~blume/papers/hygmac.pdf
https://beautifulracket.com/
http://www.realmofracket.com/
http://www.htdp.org/


Culpepper, Felleisen, Flatt, Krishnamurthi 0:19

23 Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie Weirich, and Matthias657

Felleisen. Catching bugs in the web of program invariants. In Conference on Programming658

Language Design and Implementation, pages 23–32, 1996.659

24 Matthew Flatt. Composable and compilable macros: You want it when? In International660

Conference on Functional Programming, pages 72–83, 2002.661

25 Matthew Flatt. Submodules in Racket: you want it when, again? In Generative Programming662

and Component Engineering, pages 13–22, 2013.663

26 Matthew Flatt. Binding as sets of scopes. In Symposium on Principles of Programming664

Languages, pages 705–717, 2016.665

27 Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. Macros that666

work together: Compile-time bindings, partial expansion, and definition contexts. Journal of667

Functional Programming, 22(2):181––216, March 2012.668

28 Matthew Flatt and Matthias Felleisen. Cool modules for HOT languages. In Conference on669

Programming Language Design and Implementation, pages 236–248, 1998.670

29 Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias Felleisen. Pro-671

gramming languages as operating systems (or, Revenge of the Son of the Lisp Machine). In672

International Conference on Functional Programming, pages 138–147, September 1999.673

30 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In674

Symposium on Principles of Programming Languages, pages 171–183, 1998.675

31 Timothy P. Hart. MACROS for LISP. Technical Report 57, MIT Artificial Intelligence676

Laboratory, 1963.677

32 Paul Hudak. Modular domain specific languages and tools. In Fifth International Conference678

on Software Reuse, pages 134–142, 1998.679

33 Richard Kelsey and Jonathan Rees. A tractable Scheme implementation. Lisp and Symbolic680

Computation, 5(4):315–335, 1994.681

34 Eugene E. Kohlbecker. Syntactic Extensions in the Programming Language Lisp. PhD thesis,682

Indiana University, 1986.683

35 Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F. Duba. Hygienic684

macro expansion. In Symposium on Lisp and Functional Programming, pages 151–161, 1986.685

36 Eugene E. Kohlbecker and Mitchell Wand. Macros-by-example: Deriving syntactic transfor-686

mations from their specifications. In Symposium on Principles of Programming Languages,687

pages 77–84, 1987.688

37 Shriram Krishnamurthi. Linguistic Reuse. PhD thesis, Rice University, 2001.689

38 Shriram Krishnamurthi, Matthias Felleisen, and Bruce F. Duba. From macros to reusable690

generative programming. In International Symposium on Generative and Component-Based691

Software Engineering, pages 105–120, 1999.692

39 Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. A visual693

environment for developing context-sensitive term rewriting systems. In Rewriting Techniques694

and Applications, pages 2–16, 2004.695

40 Daniel Patterson and Amal Ahmed. Linking types for multi-language software: Have your696

cake and eat it too. In Summit on Advances in Programming Languages, pages 12:1–12:15,697

2017.698

41 Gerald L. Sussman and Guy Lewis Steele Jr. Scheme: An interpreter for extended lambda699

calculus. Technical Report 349, MIT Artificial Intelligence Laboratory, 1975.700

42 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed701

Scheme. In Symposium on Principles of Programming Languages, pages 395–406, 2008.702

43 Martin P. Ward. Language oriented programming. Software Concepts and Tools, 15:147–161,703

April 1994.704


	Macros and Domain-Specific Languages
	The Lisp and Scheme Pre-history
	DSLs Require More than Bunches of Macros
	Ambitious Beginnings
	From S-expressions to Syntax Objects
	The Vocabularies of Micros
	Languages for Semantic Modules

	Languages From Syntactic Modules
	Syntax Done Properly With Parsing Macros
	DSL Creators Need Still More Than Modular, Parsing Macros

