Embedding Dynamic Dataflow
in a Call-by-Value Language*

Gregory H. Cooper and Shriram Krishnamurthi

Brown University, Providence, RI 02912, USA
{greg, sk}@s.brown. edu

Abstract. This paper describes FrTime, an extension of Scheme designed for
writing interactive applications. Inspired by functional reactive prograng, the
language embeds dynamic dataflow within a call-by-value functional kyeyu
The essence of the embedding is to make program expressions etaloates

in a dataflow graph. This strategy eases importation of legacy code enidgpia-
cremental program construction. We have integrated FrTime with theherée
programming environment and have used it to develop several apgétations.

We describe FrTime's design and implementation in detail and presenialfo
semantics of its evaluation model.

1 Introduction

This paper describes FrTime (pronounced “father time”yogmmming language built
atop the DrScheme environment [9]. FrTime is an exploratioan important point in
the design space of dynamic dataflow, or functional rea§fivé6, 19], programming.

To make FrTime as familiar as possible to current prograrantiee language reuses
much of the infrastructure, including the syntax, of an txgcall-by-value language.
In this case the host language is a purely functional sulfs8tlbeme, although the
strategy we describe could be applied to other call-byesddéuinguages as well. The
embedding strategy reuses the host language’s evaluatnake program execution
construct a graph of dataflow dependencies; a datadloginesubsequently reacts to
events and propagates changes through this graph. FrTinsem@tively extends basic
language constructs to trigger graph creation when usdteiodntext of time-varying
values. Pure Scheme programs are also FrTime programsheitteime meaning they
have in Scheme and may be incorporated into FrTime prograthewt modification.

The design of FrTime reflects a desire to satisfy three madthsgo

1. Programs should be able to respond to and process evemtefternal sources.
For example, one application of FrTime is as a scripting legg for a debugger [15].
A debugger script must respond to events from the prograrenindestigation, which
arrive at an unspecified frequency that cannot be knariori. This suggests that the
language should embrace a push-driven implementatiotegyravhere the arrival of
an event triggers a computation that propagates up a trezpefdiencies.

2. FrTime programs should be able to make maximal use of agmging envi-
ronment for incremental development. This especially rmghat programmers must

* This work is partially supported by NSF grant CCR-0305949.

be able to write expressions in the read-eval-print IcepPQ), observe and name their
values, use them to build larger expressions, and so on.dth support, theepLcan
serve as one of the primary interfaces for many programeglblyesaving programmers
from having to construct a separate, explicit interface. &le, the paper about
the scriptable debugger [15] discusses the debugging obresit-paths algorithm by
interactively adding script fragments that provide insiegly better clues. FrTime's
support for dynamic dataflow graph construction saves uadled tobuild an interac-
tion mode for the debugger. Instead we reuse the DrSclranre inheriting its many
features and also its careful handling of many subtle isgLigs

3. As a practical matter, FrTime needs to reuse as much ofiatingxevaluator as
possible. In particular, the underlying evaluator in Dr&tie is quite complex and sup-
ports a large legacy codebase. Ideally, therefore, FrTiesels an evaluation strategy
that can reuse this evaluator and seamlessly integrate@slegacy code as possible to
inherit a large library of useful functionality. (For exatapby inheriting DrScheme’s
graphics library, the scriptable debugger supports gcabldisplay of the target pro-
gram’s state.) A corollary is that legacy programs shouléhbeementally convertible
into FrTime. That is, it should be possible to begin with aistng Scheme applica-
tion and run it under FrTime, then gradually change fragmeiftit to use dataflow
features. This must not require a significant source tramsftion (such as conversion
into continuation-passing or monadic style).

In this paper we present the semantics and implementatiéinTafme. In particu-
lar, we describe the language’s embedding strategy andtheatisfies the goals stated
above. We also provide an operational semantics that spetife language’s evalua-
tion model. FrTime has been distributed with the DrSchemg@mming environment
since 2003 and has been used to develop several non-tppéitations, including a
scriptable debugger [15], a spreadsheet, and a versiore @lileshow [10] presenta-
tion system enhanced with interactive animations.

2 The FrTime Language

FrTime extends the language of DrScheme [9] with suppodyaamic dataflow through
a notion ofsignals or time-varying values. The language is inspired and mfmt by
work on functional reactive programminggp) [7, 16, 19], which extends Haskell [14]
with similar features.

The most basic signals are those that represent time iEg®ifexample, there is a
signal calledsecondswhich counts the number of seconds elapsed since a spagific p
in the pastSecondss an example of Aehavior—a signal that is defined at every point
in time, orcontinuous If we apply a primitive functiorf to a behavior, the result is a
new behavior, whose value is computed by applyitgthe argument at (conceptually)
every point in timé' In other words, FrTimdifts primitive functions to the domain of
behaviors. For example, if we evaluagvén? seconfisthe result is a new behavior
that indicates, at every moment, whether the current valsecondss even.

In addition to behaviors, there are signals called eveatats that carry sequences
of discrete values. For example, we have built an interfactné DrScheme window

! Operationally, the language only applie® the argument initially and each time it changes.

8o

Untitled - DrScheme (=]

ene Untitled - DrScheme =)

Welcome to DrScheme, version 300.

Language: FrTime.

> seconds

1135044659

> (even? seconds)

#£

> (require (lib "animation.ss"
> key-strokes

#<event (last: release)>

> (define chrs (filter-e char? key-strokes))
> chrs

#<event (last: e)>

> (define uchrs (map-e char-upcase chrs))

> uchrs

#<event (last: E)>

> (define clst (collect-e uchrs empty cons))
> clst

#<event (last: (E H))>

> (list->string (reverse (hold clst empty)))
“HE"

> |

‘frtime”))

\Welcome to DrScheme, version 300.

Language: FrTime.

> seconds

1135044676

> (even? seconds)

#t

> (require (lib "animation.ss"
> key-strokes

#<event (last: release)>

> (define chrs (filter-e char? key-strokes))
> chrs

#<event (last: o)>

> (define uchrs (map-e char-upcase chrs))

> uchrs

#<event (last: 0)>

> (define clst (collect-e uchrs empty cons))
> clst

#<event (last: (0 L L E H))>

> (list->string (reverse (hold clst empty)))
“HELLO"

> |

‘frtime”))

Fig. 1. Screenshots of a single interactive FrTime session, taken 17 sequartls a

toolkit that provides an event stream callexy-strokeswhich carries key events. Unlike
with behaviors, primitive procedures cannot be appliedramesources. FrTime instead
provides a collection of event-processing combinators dn@ analogous to common
list-processing routines. For example, the reey-strokesstream contains events for
key presses and releases. Applications that don't caret #imueleases can elide them
with (filter-e char? key-strokgsThis produces a new event stream that only carries the
events whose values are characters.

There is similarly an analog ahap called map-e which we could use to convert
all of the alphabetic characters to upper case. Another twatdr, calledcollect-e
resembles Haskell'scanl it consumes an event stream, an initial accumulator, and
a transformer. For each event occurrermslect-eapplies the transformer to the new
event and the accumulator, yielding a new accumulator wikiemitted on the resulting
event stream. By passirgmpty andconsas the second and third arguments, we can
build a list of all the occurrences of a given event.

FrTime provides primitives for converting between behaviand event streams.
One ishold, which consumes an event stream and an initial value ancheetLbehavior
that starts with the initial value and changes to the lashievalue each time an event
occurs. Converselghangegonsumes a behavior and returns an event stream that emits
the value of the behavior each time it changes.

On the surface, signals bear some similarity to constraetsd in other languages.
Behaviors change over time, like mutable data structuréseoreturn values of impure
procedures, and event streams resemble the infinite lagydilso called streams) com-
mon to Haskell and other functional languages. The keydiffee is that FrTime tracks
dataflow relationships between signals and automaticatigmputes them to maintain
programmer-specified invariants.

FrTime runs in the DrScheme programming environment. Eidupresents two
screenshots from the same interactive session in DrSchakes about seventeen sec-
onds apart. In this session we first evalusgeondsnd gven? secondisThen we load
the FrTime animation library, which creates a new, emptydeim (not shown). As we

type into this new window, key press and release eventseaorithekey-strokegvent
stream. We createhrsby filtering out the release events, amthrsby converting these
to upper-case witinap-e We makecollect-eaccumulate a list of characters, then apply
hold to produce a behavior, which we reverse and convert to agstrin

Evaluating a signal at the DrScheme prompt registers a diepeyn between that
signal and the graphical object that represents it in trexdictions window. Thus, when
the signal’s value changes, FrTime automatically triggerspdate of the display. This
explains why the two screenshots in Fig. 1 show differentesfor many expressions,
even though they are taken from the same session. This is portemt example of
integrating the language with the environment in order speet the language’s uncon-
ventional abstractions. Conversely, the language suploetenvironment’s notion of
interactive, incremental program construction. For exarrgs we build up the string of
key-strokes, we can name and observe each intermediatg cbgeking that it behaves
as we expect before adding the next piece.

3 Evaluation Strategy

In this section we describe FrTime’s evaluation strategyictv satisfies the goals set
forth in the Introduction. Firstly, it employs a push-drivapdate mechanism: events
initiate computation, and changes cause dependent péatte pfogram to recompute.
Secondly, the language supports incremental program remtisin; the programmer
can interleave program construction, evaluation, andrebtien. Finally, it reuses the
Scheme evaluator and permits reuse of existing Schemeibaale, which supports
incremental conversion of Scheme programs to use FrTinagafldw features.

FrTime is a collection of syntactic abstractions and valegnitions implemented
in Scheme. Executing a FrTime program means running thenSetevaluator in an
environment containing the FrTime definitions. These diding make executing the
program build a graph of its dataflow dependenci€he nodes of this graph corre-
spond to program expressions, and the arcs indicate flowwésdrom one expression
to another. An expression that does not utilize any dataflements evaluates as a
standard, pure Scheme expression, yielding the same valelid have in Scheme.

Because evaluation is push-driven, a program’s reactiilyinates through de-
pendence on primitive event sources, for example a timeeyadard, a mouse, or a
network data stream. The FrTineaginelistens to events from these sources and routes
them to the interested parts of the program’s dataflow grealues change at the cor-
responding nodes of the dataflow graph and propagate alerdgttendency arcs.

In the remainder of this section, we explain how evaluatirigy EEme expression
constructs a graph of dataflow dependencies, and how thedgegmplements reac-
tivity through subsequent traversal of this graph. We dis@ome of the difficulties that
arise from a push-driven update model and how we solve them.

3.1 Dataflow Graph Construction and Manipulation

Suppose the programmer enters the expressiod 4) at the FrTimerRePL. Its evalu-
ation proceeds in the traditional call-by-value fashiorstfieducing subexpressions to
values, then applying the specified operation to them.

FrTime is meant to extend pure Scheme with a notion of sigsal# we start with
a pure Scheme expression and replace some constant valhesigvials, the result
should be a legal FrTime program. For example, we should lestalbefer to “the time
3 seconds from now” by writing 3 seconds However, evaluating such an expression
in a standard Scheme evaluator does not yield the desiraflaasemantics. Scheme
primitives like + only know how to process ordinary, constant Scheme valuethié
case numbers). At best, the result might be to add the current valueof seconds
This would produce a constant value reflecting the stateeo$yistem at the moment of
evaluating the expression, but it would fail to update whih passage of time. In reality,
the situation is worse; FrTime's signals are implementedada structures, so passing
seconddo + is a type mismatch and causes a runtime exception.

Clearly, ordinary Scheme evaluation does not work for FrTime. This means that
we must either write a new evaluator for FrTime, or extendefud evaluation to ac-
commodate FrTime’s novel features. Since we want to reusaugh of Scheme as
possible, we take the latter approach by interposing a nmésimathat prevents the di-
rect application of Scheme primitives to signals. Spedificave define the FrTime
evaluation environment so that the names of Scheme prasitiefer to lifted versions
of the same. Lifting wraps a primitive with code that cheakssignal arguments and, if
there are any, constructs and returns a new signal. For d&athp FrTime expression
(+ 3 secondsreduces to the following Scheme code:

(if (or (signal?3) (signal? secongd$
(make—signal’ (A O (+ (current-value3) (current-value secongy ‘3 secondp
(+ 3 secondy

This first tests for signals among the argument subexpmssgincesecondss a signal,
the conditional selects the first branch. The procedouake-signalconsumes a thunk
(nullary procedure), boxed above, and any numbeprofiucervalues to which the
thunk refers. It returns a new signal whose value is defirteahyapoint in time, by the
result of calling the thunk. In this case, it applies the &ddiprimitive to the current
values of the constar®tand the signatecondsThe procedureurrent-valueacts like
the identity function on constant values, saifent-value3) reduces td3. On signals,
current-valueprojects the signal’s current value, an ordinary Schemeteoih. Thus
the addition primitive inside the thunk sees only constasishere are no errors. The
fact that signals likessecondshange over time underscores the necessity of the thunk:
the language needs to re-evaluate the procedure to updasigiiml when any of the
producers change.

The additional arguments tmake-signal (here3 andsecondpare the producers
on which the new signal depends. They may include both cotsstend signalsnake-
signalignores the constants and registers a dependency with édehsignals. Regis-
tration gives the producers explicit references to the rigned (instead of the other way
around, as a reader might initially assume). Thesersereferences are essential to im-
plementing push-driven evaluation: when a signal chartbesuntime system follows
them to determine which signals need recomputation. Figsteows the resulting sig-
nal graph. Rounded boxes depict signals, solid arrows arealalata references, and
dashed arrows represent the reverse references needessfiedfven updates.

seconds:| 1043 3 seconds:

Fig. 2. Dataflow graph for (+ 3econdp Fig. 3. Dataflow graph for (* 2 (+ 3econdy

The addition of these reverse references would ordinaxihaed reachability into
a symmetric relation, to the detriment of effective memomnagement. To solve this
problem, we make the reverse refereneesak which tells the memory manager to
ignore them when computing reachability. If a signal is noger reachable from the
application, it will be reclaimed. Since there may be a gigant delay between objects’
becoming unreachable and their reclamation by the garbaligstor, it is possible that
the engine will continue recomputing sudbadsignals for some time. This strategy is
unacceptable in general, so we need a mechanism for deségjingls when they cease
to belong in the system. We describe such a mechanism in&8ct.

The FrTime evaluation model applies to all expressions) ¢vese that do not use
signals. For example, the FrTime expressien3(4) reduces to the following Scheme
expression:

(if (or (signal?3) (signal?4))
(make-signal(X\ () (+ (current-value3) (current-valued))) 3 4)
(+34)

Because the constarisnd4 are not signals, the entire expression is clearly equitalen
to its raw Scheme counterpart, and yields the constathis illustrates one of our
design goals: that pure Scheme expressions should evatuBtéime as they would
in standard Scheme. This means that programmers can edsilpure Scheme and
FrTime code, which creates a smooth migration path for pgiEicheme code.

Because user-defined signals like3 secondsare indistinguishable from primitive
signals likesecondsevaluation of FrTime expressions works even when operain
signals nest. For example, if a programmer write (+ 3 secondy, the inner ¢
...) subexpression evaluates first, yielding a signal lileedne described above. The
evaluation of the« ...) application proceeds in an analogous manner, cottistgua
new signal that depends upon the value-pf¥(seconds We show the resulting graph
in Fig. 3.

Expressions can arbitrarily nest and mix computationslifng constants and sig-
nals. For example, if we write{ (+ 1 2) secondy the (+ 1 2) evaluates as in Scheme,
reducing to the constait after which evaluation proceeds exactly as above foB (
seconds Only one new signal is created, and the resulting datafiaplyis identical
to the one shown in Fig. 2.

The dataflow graph construction that occurs when a FrTimgrpro runs is just the
first step in its evaluation. The interesting part—the progsaeactivity—begins once
the graph is constructed and continues as long as the syatesrand events arrive.
This involves primitive signals changing in response t@mxl events and propagating
through the dataflow graph. For example, once every secdideatriggers a change
in secondswhich in turn triggers recomputation of every signal tdapendson sec-
onds such as+ 3 secondgin our example above. Changes then propagate to transitive
dependents, such asZ (+ 3 secondy.

When the engine recomputes a signal, it compares the new wéhuéhe previous
one. If they are the same (according to Schereg8procedure), the engine does not
schedule the signal’'s dependents. For example, a signakedefiy an expression like
(quotient seconds0) depends osecondsut only changes aftesecondsncreases by
ten. Consumers of this signal, like (quotient second0) 100), only recompute every
ten seconds, not every second.

3.2 Glitch Prevention

Scheduling recomputation is an important semantic issaeekample, consider the
expression € secondg+ 1 secondy. This evaluates to a signal that should always
have the valuérue, sincen is always less than + 1.

However, life is not so simple in a push-driven update moHeth change isec-
ondstriggers recomputation of the overall expression and theriff+ 1 secondssig-
nal, and the order in which FrTime recomputes these sigrifdsta the answer. If it
updates the+ 1 secondssignal first, then the top-levet compares up-to-date ver-
sions ofsecondsand ¢ 1 secondy yielding true. On the other hand, if it updates
the top-level signal first, it then compares the up-to-degeondswith the stale { 1
seconds—which is equal to the new value séconds-yielding false

This situation, where a signal is recomputed before allsditbordinate signals are
up-to-date, is called glitch [5]. Such behavior is unacceptable as it results in redundan
computation and, much worse, causes signals to violateiamia.

We need a traversal strategy that prevents glitches. Thaatqroperty is that no
signal should update until everything on which it dependsiss up-to-date. Unfortu-
nately, the obvious candidates of depth-first and breadthdearch are susceptible to
glitches, as the preceding example shows. However, a lsligitdified breadth-first
search achieves the goal. Specifically, we approximaterdqehs structure by assign-
ing each signal &eight which exceeds that of all its producers. To make a valididept
assignment possible, the dataflow graph must be acyclis.réktriction has the benefit
of guaranteeing that update propagation terminates, lal$dt seems to impose a se-
vere limit on the language’s the expressive power. We exptaSect. 3.5 how FrTime
supports programs with cyclic dependencies.

Computing signal heights is relatively simple. Simsake-signalreceives all of the
new signal’s producers, it only needs to compute their marirand add to it. Instead
of a standard first-in-first-out queue, the engine uses aiyrigueue to process nodes
in order of increasing height. Since each signal is highan thverything on which it
depends, this strategy guarantees the absence of glicesdundant computation.

3.3 Dynamic Reconfiguration

The height-guided recomputation strategy works underdberaption that the dataflow
graph does not change in the middle of an update cycle. Unfately, this is an un-
reasonable assumption: the need to reconfigure the gragmigally arises naturally
from combining behaviors with basic Scheme features.

We illustrate some of the intricacies of dynamic reconfigjorathrough a simple
example involving the use of a time-varying condition iniiaxpression:

(let+ ([len (modulo seconds)]
[Ist (build-list len add]])
(if (zero? len
0
(list-ref Ist (sub1l len)))

In this programJen cycles through the valugs 1, 2, 3, andlstis the list (L ... len).
Whenlenis 0, the value of the whole expressiorfisand otherwise it is the last element
of Ist, which is also equal tten.

Evaluating this program proves to be somewhat tricky. Siteeif's condition
is time-varying, the result of the whole expression needswiich dynamically be-
tween the branches (either of which may also be time-vajyfogvarding the value of
whichever branch the condition currently selects.

In general, evaluating a branch is only legal when the candgelects it. For exam-
ple, when the first branch is selected above, evaluatingeitensl branch would raise an
exception by attempting to extract the elemenistht position—1. The threat of such
problems means that, when the condition changes, a newltbraast be constructed
and the old one disabled, or deleted, before evaluationepdx: Thus the structure
of the dataflow graph must change in the middle of an updatke cicthis example,
the need arises from the use of behaviors in conditionalanatogous situation arises
when the function position of an application is time-vagyin

Changing the structure of the dataflow graph in the middlenafigdate cycle cre-
ates a number of hazards that must be handled carefully.t@otisg new dataflow
graph fragments is precarious because the existing grapberia an inconsistent state,
with some signals updated but others stale. In this exargtleas a large height be-
causebuild-listis a recursive procedure that constructs a complex fragofefataflow
graph. However, sinceero?is a primitive, gero? len has heigh, and when it be-
comesfalse (triggering construction of the second brandh) still has the stale value
empty. Evaluating the new branch (which tries to extract an eldrfrem Ist) would
raise an exception. To avoid this problem, FrTime cons$rtioe new branchvithout
computing the initial node valueistead it enqueues the new nodes for update, and
the recomputation algorithm initializes them after reagtthe proper height.

Another problem is that the new fragment’s height may exdbatlof the old one.
To prevent glitches, the engine needs to adjust height rassigts to reflect the new
graph topology before performing any more updates. It misst aotify the priority
queue of any changes in heights of signals that are alreaylyeeied for update.

Deleting a fragment of the dataflow graph is also subtle. Bvgmt any unwanted
evaluation, FrTime must delete all of the signals in the dehch, including those

already enqueued for recomputation. This means that tighhef all of these signals
must strictly exceed that of the condition. Deleting a sigmaolves removing all edges
incident on it, which makes it unreachable and ensuresttall not be scheduled for
recomputation again. However, since a change may havedglssheduled the deleted
signal for recomputation, deletion replaces the signaddate procedure with a no-op,
preventing ill effects from any final update attempt. (Théshnique is more efficient
than the alternative of removing the deleted signals froampittiority queue.)
Determining which signals to delete can be tricky, too. has simply the set of all
signals reachable from the root of the deleted fragmergvtbuld include many signals
merely referenced within the branch (in the example, sililkeéd len andlst). However,
taking only the signals directly created by evaluation &f bihanch yields an underap-
proximation. This is because the branch may contain otheauthjc expressions, which
in turn constructed signals after the creation of the efgpBranch. FrTime needs to
track construction within this extended notion of the esgren’s dynamic extent. The
semantics presented in Sect. 4 provides an abstract motlasahechanism, but the
details involved in implementing it efficiently are beyorettscope of this paper.

3.4 Incremental Construction

FrTime’s evaluation model differs from the approaches riakethe HaskellFRP sys-
tems [7, 16]. In those, a program specifies the structure ghardic dataflow compu-
tation, but the actual reactivity is implemented in an ipteter calledeactimate This
interpreter runs in an infinite loop, blocking interactitindugh therepL until the com-
putation is finished. In many applications, we need to suppePL-style interaction in
the middle of the reactive program'’s execution.

FrTime support®REPL interaction by implementing reactivity in a separate tdrea
The user is assigned one thread, typically corresponditiget®rSchem&eprL, while
the FrTime dataflow engine, which constructs and manipsitdte program’s dataflow
graph, runs in a separate thread. These threads commuthicaiigh a message queue;
at the beginning of each update cycle, the engine emptiegubee and processes the
messages. Each message corresponds either to an evemenceuwr to a request for
construction of a new dataflow graph fragment. When the udersan expression at
the REPL prompt, theREPL sends a message to the dataflow engine, which evaluates it
and responds with the root of the resulting graph. Conttarns to theRePL, which is-
sues a new prompt for the user, while in the background thimemgntinues processing
events and updating signals.

On the surface, it may appear that the Haskell systems cablig\&e similar be-
havior simply by spawning a new thread to evaluate the ca##dotimate Control flow
would return to theRepL, apparently allowing the user to extend or modify the progra
However, this background process would still not returnlaevar offer an interface for
probing or extending the running dataflow computation. Talees of signals running
inside areactimatesession, like the dataflow program itself, reside in the @doce’s
scope and hence cannot escape or be affected from the outsiantrast, FrTime’s
message queue allows users to submit new program fragmamasnitally, anceval-
uating an expression returns a live signahich, because of the engine’s background
execution, reflects part of a running computation.

z € (var) ::= (variable names) p € (prim) ==+|- | * |/ |<|>]...

o € (loc) ::= (store locations) t,n € (num) ==0|1]2]...
u,v € (v) u= L] true|fal se| (num) | (prim)| (A((var)") (e)) | (loc)
e € (e) u= (v) | (var) [((e) (e)") | (del ay (e) (num)) | (i f (e) (e} (e))
Ee(E):=[]1((v)(E)(e)") | (del ay (E) (num)) | (i f (E) (e) (e))
)

= (lift (prim) (v)") | (del ay (loc) (num) (loc)) | i nput
| (dyn(A((var)) (e)) (loc) (loc)) | (fwd (loc)) | const
Fig. 4. Grammars for FrTime values, expressions, evaluation contextsjgmal §/pes

s € (sig-type

3.5 Cycles

We explain in Sect. 3.2 how our height assignment strategjyices the dataflow graph
to be acyclic. However, programs with cyclic signal netvggkise naturally in many
applications. For example, in user interfaces, we oftentw&a sets of widgets that
display and control the same underlying model, such@sandHsV views in a color-
selection window. Since either set of widgets must be ablefteence the other, they
are mutually dependent. Forbidding cycles altogether @valigallow expression of
such patterns, making the language unacceptably weak.

In the current implementation, we make a compromise cadistith that made by
other dataflow languages [4, 5, 16, 18, 19]. We providelay operator that reflects the
value that its argument had at a specific interval in the piatcycle includes a signal
created bydelay, then that cycle cannot cause the system to enter a tight kope
the delay halts update propagation until the future. Weefioee assign a height of 0
to delay-ed signals. As long as each cycle passes throutdgiay, a consistent height
assignment is possible, and evaluation is safe.

4 Semantics

We have developed a formal semantics of FrTime’s evaluatiodel, which highlights
the push-driven update strategy and the embedding in dgalklue functional host
language. Figure 4 shows the grammars for values, expresswaluation contexts,
and signal types. Values include the undefined valug booleans, numbers, primi-
tive proceduresj-abstractions, and store locations (which identify sighaExpres-
sions include values, procedure applicatiods| ays, and conditionals. Evaluation
contexts [8] enforce a left-to-right, call-by-value ordmm subexpression evaluation.
Signal types, which we explain in detail below, describedifferent signal variants.
Figure 5 presents semantic domains and operations over. theamparameter to
the system, defines reduction for primitive’s.denotes a set of signal locations and
X means a set oéxternal eventseach of which contains a location, a value, and an
occurrence time (when it enters the systefmjefers to a set ohternal eventswhich
contain only target locations and (optionally) values. é&rstS maps signal locations to
triples containing @urrent value asignal type and aset of dependent&or notational

6 = {primy x (V) x ... — (V) (primitive evaluation)
¥ C (loc) (store location set)
I C (loc) U ((loc) x (v)) (internal event set)
X C (loc) x (v) x (num) (external event set)
S+ (V) — (v) x (sig-typg x 2(100 (signal in store)
Vs(v) = o', whereS(v) = (v/, _,) (current value projection)
A(X, vo,v) = { i !)ftr:)efw:}s(,)e (signals affected by change)
reg(a 2 S) = Slo’ — (v,8, X" U{o})]ver 5|8 (o) =(v.5,5) (dependency registration)
(X)) =U,ex ¥’ whereS(o) = (-, -,) (dependency lookup)
dfrds) = Dg {a |loelV(o,.)el}) (deferred recomputations)
Slo— (v, 5,2’ \E)]w\sm (0,5,57)5
del(S, X) 2’ if S(o) = (., (dyn___),%") (dependency removal)
Uses @ otherwise

Fig. 5. Semantic domains and operations

convenience when dealing with behaviors and constantssttre permits lookup of
constants, whickhonst signals. This simplifies the definition d%;, which projects the
current value of any signal or constant. Other importantajens includeeg, which
registers one signal’s dependence on a set of other sigmadd)s, which computes
the set of signals dependent upon any of a set of sigdaitscomputes the set of stale
signals that are deferred, or not ready for immediate updla¢e" indicates transitive,
irreflexive closure). Finallydel eliminates references to deleted signals from a given
store. As explained in Sect. 3.3, FrTime needs to deletakigacursively from nested
dynamic branches. To facilitate thidel not only returns the modified store but also
finds all the nestedyn signals, whose children must be deleted.

FrTime’s evaluation model divides naturally into two laye©ne is the context-
sensitive rewriting system that captures the call-by-@dlunctional core and the ex-
tension that constructs the dataflow graph. Figure 6 shosvgdhsformation rules that
comprise this layer. Thesmnstructiorrules reduce expressions in the context of a store
and a set of internal events. Theg,, andiF reductions are standard for languages de-
rived from the\-calculus; they neither read nor change any of the additieleanents
in the tuple. TheLiFTed versions of these rules describe how the system exteads th
dataflow graph when behaviors are used with primitive proces| user-defined proce-
dures, and conditionals.

TheLIFTed rules explain only the construction of the dataflow grdjie reactivity
is described by the layer afpdaterules, which are presented in Fig. 7. These specify
how the system evolves when each variety of signal updates:

lift Application of a primitive to one or more behaviors resutisthie lifting of the
application (ruled-LIFT). This yields a new i f t signal that records the primitive
and its arguments. The new signal is enqueued for updatehvitnrokes ruleu-
LIFT after all the arguments are up-to-date. The rule compueesitinal’'s value
by applying the primitive to the current values of the argateelf the new value
differs from the old one, the signal’'s dependents are erepiéar update.

{v1,...,un} A(loc) =0

)
(S, I,E[(pv1...vn)]) = (S, I, E[6(p,vi,...,0n)]) ©)

{v1,.. ,1:Yn} A(locy = {o1,...,06} #] Vi.G [1..k].S(03) = (vi, 85, X5)
S’ =rego,{o1,...,06},S[c— (L, (lift poi...v,),0)]) (G-LIFT)

(S, [,E[(pvi...vn)]) — (S, TU{c}, Elo])
(S, 1,E[(A(z1...2n) €) v1...vn)]) — (S, 1, Ele[vi/z1] ... [vn/zn]]) (Bv)

S' = S[o1 — (L, (dyn (A (z) (zv1...v1)) 0 02),0)][o2 — (L, (fwd L),0)]
(S, I,E[(cv1...v,)]) — (redo1,{c},S"), I U{o1}, E[o2])

<S,I,E[(i f true e; 62)]) — <S, I,E[eﬂ) (IF)
(S,I,E[(if false eie2)]) — (S,1I,Elez2])

S = Slo1— (L, (dyn (A (z) (i f xe1e2)) o02),0)][o2 — (L, (fwd L1),0)]
(S,I,E[(c v1...vn)]) — (reglo1,{c},5"), I U{o1}, E[o2])
S’ =reg(oz2,{c},S[o1 — (L,i nput ,0)][e2 — (L, (del ay o n o1),0)])
(S,I,E[(del ay o n)]) — (S’,TU {02}, E[o1])

(Bu-LIFT)

(IF-LIFT)

(DELAY)

Fig. 6. Construction rules

delay, input Delaying a signal requires two new signalsansumexof typedel ay)
observes changes in the argument and directs eventprtudacerthat arrive af-
ter the given interval (ruleJ-DELAY). The producer has typeipuT and simply
forwards the delayed value carried by the latest event (pul®PuT). Because
communication passes through the external event mechathisre is no direct de-
pendence; this is whyelay breaks cycles. In general, input signals can channel
values into the system from the external event queue. Theethas useful not only
for delay but can also model events from all manner of input sourced) a8 a
mouse or a network port.

dyn, fwd Signals of typedyn modify the structure of the dataflow graph in response
to changes in a givetrigger signal. These signals are used to implement both
conditionals if expressions) and applications with a signal in the fungpiesition.
For conditionals, the trigger is the condition, while fomptipations the trigger is
the function. Eachdyn signal contains an update procedure (théeld in rule
U-DYN), which FrTime applies to the current value of the triggey)(to yield a
new branch of dataflow graph (rooted). The branch is connected to the rest
of the graph by a permanehivd signal, which forwards the value of the current
branch. Thelyn signal’s Y field, normally used to track dependents, tracks all the
signals created by the most recent invocation of the updatedure. These are the
signals that must be deleted when a change in the triggelidatas the existing
branch. Each application delremoves references to these signals in the store and
accumulates the set of signals created by nedyedsignals. These also must be
deleted and may in turn have children requiring deletiore [Bimguage thus applies
delrepeatedly until no deletions remain.

I> o0 &dfrds(I) S(o) = (vo,(l1ft pv1...), %) o(p,Vs(vi),...) =
(X,S,1,t)y = (X,S[o— (v,(lift pvy...), 2], I\ {o}UA(X,v0,v),t)
ocel S(o) = (L, (delay o noi1),X)
(X,S,I,t) — (X U{(01,Vs(0),t+n)},S, I\ {c},t)
(o,v) el S(o) = (vo,i nput , X)
(X, S,I,t) — (X, S[o — (v,i nput , 2)], I\ {o} UA(X,vo,v),t)
ocecl S(o) = (L,(dynwuoy 02), X)
S(o2) = (v, (fwd _), X2) (S*,0) = del"(S, X)

(9%, 1, (uVs(o1))) =" (5, I, 03) X' =dom(S’) \ dom(S)
S1 =reg(oz2, {03}, 5 [0 — (L, (dynu oy o2), X)][o2 — (v, (fwd 03), 22)])

v
(U-LIFT)

(U-DELAY)

(U-INPUT)

(X,8,I,t) — (X, 51, (I'\ 2)\ {o}, 1) (U-DYN)

cel S(o) = (vo, (fwd o), X) S(o') = (v,)
<)(7 S,[,t) — <X,S[o’ — ('Uy(f\/\d U/)zz)L[\ {U}UA(27UO7U)7t> (U‘FWD)
(X,S,0,t) — (X,S,{(o,v) | (o,v,t+1) € X},t+1) (U-SHIFT)

Fig. 7. Update rules

The rules described above leave the precise schedulinglateppnon-deterministic.
However, they enforce a topological order, which guarasntiee absence of glitches and
makes the state at the end of each update cycle well-defineein Wikere are no more
internal update events to process, the system is stablevaaitsahe arrival of new
events. Time advances to the next step, and any externakeseireduled for the new
time shift into the set of internal events (rwesHIFT).

5 Related Work

There is a large body of research on dataflow programming.afly language was Lu-
cid [18], a pure, first-order dataflow language based on symcius streams. Lustre [4]
offers a similar programming model to that of Lucid, but wi#strictions that support
compilation to finite automata and real-time performancargntees. Lustre also adds
a notion of user-defined clocks, allowing streams to compudifferent rates. Lucid
Synchrone [12] extends Lustre with ML-style type infergnpattern-matching, and
first-class functions. Signal [2] is similar to Lustre bub&sed on relations rather than
functions, so the evaluation model is non-deterministiterg are other synchronous
languages, such as Esterel [3], whose programming modelmaerative.

Functional reactive programminggpP) [7,16,17,19] merges the model of syn-
chronous dataflow programming with the expressive power adkell, a statically-
typed, higher-order functional language. In additiondide support foswitching(dy-
namically reconfiguring a program’s dataflow structure) amtbduces a conceptual
separation of signals into (continuoumhaviorsand (discretegvents

There has been significant work on implementation modelsrf®. Real-time
FRP[20] FRPis close in spirit to the synchronous dataflow languagesreviiie focus is

on bounding resource consumption. Paralk[17] adds a notion of non-determinism
and explores compilation afRP programs to parallel code. Elliott discusses several
functional implementation strategies fBrp systems [6], which suffer from various
practical problems such as time- and space-leaks. A newsiove Yampa [16], fixes
these problems at the expense of some expressive powee Wwhah [7] extended
Haskell with first-class signals, the Yampa programmerdsual network osignal func-
tionsin a custom syntax, through a setasfow combinators [13]. FrTime’s linguistic
goals are more in line with those of Fran—integrating sigméths the Scheme lan-
guage in as seamless a manner as possible. ImportantlydseSaheme is eager, the
implementation has precise control over when signals begatuating, which helps to
prevent time-leaks. In addition, the use of state in the ém@ntation allows more con-
trol over memory usage, which helps to avoid space-leaks.evaluation model leads
to several other differences, as described in Section 3.

Frapge [5] is a Java library for building.RP-style dynamic dataflow graphs. Its
evaluation model is similar to FrTime's, in the sense thahpotation is driven by
external events, not by a central clock. However, the prafiag strategy is based on a
“hybrid push-pull” algorithm, whereas FrTime's is entiygdush-driven, which makes
conditional evaluation more challenging. A more importdiffierence from FrTime is
that Frapg is a library, not a language. It is intended less for end-psggramming
than as runtime support for @mpP compiler that targets Java.

Adaptive functional programminga€P) [1] supports incremental recomputation
of function results when their inputs change. As in FrTimeaation occurs in two
stages. First the program runs, constructing a graph o&is dependencies. The user
then changes input values and tells the system to recontpeitedependents. The key
difference from FrTime is thatFp requires transforming the program irdestination-
passing styleThis prevents the easy import of legacy code and comp§dheetask of
porting existing libraries. The structure mfp also leads to a more linear recomputation
process, where the program re-executes from the first pfigdtad by the changes.

6 Conclusions and Future Work

We have presented FrTime, an implementation of functiceattive programming for
a call-by-value language. We have described its novel atialu model, which accom-
plishes the goals set forth in the Introduction. We have pisgided a formal semantic
model for reasoning about FrTime evaluation more absyrattie language is inte-
grated and distributed with the DrScheme programming enmient. We have devel-
oped interfaces for various libraries and built severaltrimial applications with it.

Our primary focus for future research is to improve perfanoeof the update strat-
egy. Currently, there is significant overhead involved wimeving from Scheme’s top-
down, stack-based execution model to FrTime’s push-drigeaue-based update algo-
rithm. In particular, we have noticed severe degradatiomqerformance when running
code from existing Scheme libraries under FrTime. FrTimenits fine control (not
described in this paper) over the boundary between the twoution strategies, and
we are interested in developing mechanical techniquesgiimizing the decision.

Acknowledgements. We are grateful to Antony Courtney, Paul Hudak, Guillaume
Marceau, and John Peterson for valuable discussions afisuvtrk. We also thank
the anonymous reviewers for their suggestions.

References

1. U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functionalgraamming. InACM
SIGPLAN Symposium on Principles of Programming Languagugeges 247—-259, 2002.

2. A. Benveniste, P. L. Guernic, and C. Jacquemot. Synchronagggnming with events
and relations: the signal language and its semant&sence of Computer Programming
16(2):103-149, 1991.

. G. Berry.The Foundations of EstereMIT Press, 1998.

. P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A datdla language
for programming synchronous systems. A@GM SIGPLAN Symposium on Principles of
Programming Languagepages 178-188, 1987.

5. A. Courtney. Frapg Functional reactive programming in Java. Rractical Aspects of
Declarative Languagepages 29-44, 2001.

6. C. Elliott. Functional implementations of continuous modeled animatio®rdgramming
Languages: Implementations, Logics, and Prograpages 284—299, 1998.

7. C. Elliott and P. Hudak. Functional reactive animation. AM SIGPLAN International
Conference on Functional Programmirmages 263—-277, 1997.

8. M. Felleisen and R. Hieb. The revised report on the syntactic thedrgagaential control
and state Theoretical Computer Scienck02(2):235-271, 1992.

9. R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. KrishnamurthEtéckler, and
M. Felleisen. DrScheme: A programming environment for Schedoernal of Functional
Programming 12(2):159-182, 2002.

10. R.B. Findler and M. Flatt. Slideshow: Functional presentationdCIM SIGPLAN Interna-
tional Conference on Functional Programmirgages 224—-235, 2004.

11. M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Programranguages as oper-
ating systemsqf, Revenge of the Son of the Lisp Machine) AGM SIGPLAN International
Conference on Functional Programmingages 138-147, 1999.

12. G. Hamon and M. Pouzet. Modular Resetting of Synchronous DmtaHtograms. In
ACM SIGPLAN International Conference on Principles and Practice afl&ative Pro-
gramming pages 289-300, 2000.

13. J. Hughes. Generalizing monads to arrd@aence of Computer Programmir8y (1-3):67—
111, 2000.

14. S. P. Jones and J. Hughes, edit&sport on the Programming Language Haskell 2899.

15. G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P. Reiss.atéfldw language for
scriptable debugging. IEEEE International Symposium on Automated Software Engineer-
ing, pages 218-227, 2004.

16. H. Nilsson, A. Courtney, and J. Peterson. Functional reactvgr@mming, continued. In
ACM SIGPLAN Workshop on Haskellages 51-64, 2002.

17. J. Peterson, V. Trifonov, and A. Serjantov. Parallel functioaattive programming. In
Practical Aspects of Declarative Languageages 16-31, 2000.

18. W. W. Wadge and E. A. Ashcroftucid, the Dataflow Programming Languag&cademic
Press U.K., 1985.

19. Z. Wan and P. Hudak. Functional reactive programming fron fiigiciples. InACM
Conference on Programming Language Design and Implementatiges 242-252, 2000.

20. Z.Wan, W. Taha, and P. Hudak. Real-time FRFA@M SIGPLAN International Conference
on Functional Programmingpages 146—-156, 2001.

AW

