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Abstract. Obligations are pervasive in modern systems, often linked to access
control decisions. We present a very general model of obligations as objects with
state, and discuss its interaction with a program’s execution. We describe several
analyses that the model enables, both static (for verification) and dynamic (for
monitoring). This includes a systematic approach to approximating obligations
for enforcement. We also discuss some extensions that would enable practical
policy notations. Finally, we evaluate the robustness of our model against stan-
dard definitions from jurisprudence.

1 Introduction

Modern society recognizes a strong linkage between rights and responsibilities, or be-
tween privileges and corresponding obligations. This connection between rights and
obligations carries over to computer systems also: when a system is given the right
to perform a certain action, there is often a corresponding obligation on the system’s
subsequent behavior. For instance, when a system is permitted to access a particular
resource, such as a file descriptor, the obligation may vary from having to return that
resource, not over-use that resource, or not share that resource. In fact, in computer sys-
tems, the mere attempt to obtain a right may incur an obligation: for instance, when a
password-guarded access is denied, the system may be obliged to log the denial.

This connection between rights and obligations ought to be reflected in our de-
scriptions of access-control policies. A popular modern access control language such
as XACML [1] (and similarly, EPAL [2]) repeatedly associates obligations with decisions
and provides a syntactic element for specifying them, but then says,

There are no standard definitions for these actions in version 2.0 of XACML.
(<Obligations>) elements are returned to the PEP [policy enforcement point]
for enforcement.

and provides little further information on the structure or interpretation of obligations.
This paper contributes in three respects: by providing a rich model of obligations;

by linking these to program actions; and by defining how to perform verification and
monitoring of the resulting systems. Our model is unique in several ways: obligations
are stateful entities, reflecting the fact that they can change over time; obligations are
linked to program actions while still permitting separate expression of policy from pro-
gram; and the model is abstract enough to encompass a tremendous variety of obliga-
tions, which we demonstrate by employing the taxonomy of a standard American legal
reference, Black’s Law Dictionary [3].



2 Motivating Examples

Obligations impose many kinds of constraints. Some of these constraints are positive
(that a person repay a loan; once a file is read, subsequent messages must be encrypted),
while others are negative (that companies not sell email addresses to third parties; once
a file is read, no messages can be sent). Some require a single action in bounded time
(return a library book within 3 weeks), while others require repeated behaviors (renew
a subscription annually). Some carry penalties for violation (interest on late payments),
while others bear no repercussion (failing to acknowledge a closed bug report). The
following examples are representative of the constraints in realistic systems:

Example 1 (File check-out and return) A code versioning tool restricts which develop-
ers may check out critical files. Furthermore, at most one developer can have write
permission for a critical file at any time. When a developer is given access to a file,
she is obligated to eventually check the file back in.

Example 2 (Logging following access denial) When a user attempts to access a docu-
ment for which he lacks the required credentials, every subsequent attempt to access
documents by that user must be logged.

Example 3 (Delegation in a bug tracker) In a bug-tracking system for a software com-
pany, users submit bug reports online. An employee scans each report and delegates
responsibility for handling the bug to an appropriate developer. As developers work
on bugs, they in turn may delegate the handling to other developers. Each devel-
oper is obligated to eventually close every bug report they are assigned to that is
not awaiting additional input from some user.

Example 4 (Incremental payment) An online store allows customers to accumulate
balances in their accounts and pay them off incrementally. Purchasing an item ob-
ligates the buyer to pay the seller the purchase price.

A viable model of obligations should capture and support reasoning about all of
these examples, yet no prior model does. Example 1 is generally supported, but rarely
the others. Example 2 arises on a denied, rather than permitted action. Examples 3
and 4 require obligations to have state. Section 7 provides more detail in evaluating
related work using these criteria.

3 Foundational Model

Obligations arise in response to user or program actions. In our model we will assume
that actions triggering obligations are governed by access-control policies, though this
assumption can be relaxed with only minimal changes to our formalism. We treat obli-
gations as constraints on future behavior, and do not address provisions (constraints on
current or past behaviors) except insofar as these are used in access control. We de-
scribe our model of systems and obligations abstractly, to accommodate a wide variety
of concrete implementations.

We represent program executions by infinite sequences π of state/action pairs, or
paths:

π = (s0,a0),(s1,a1), . . .



Let ΠStates,Actions denote the set of paths over States and Actions; we will suppress the
subscript on Π when States and Actions are clear from context. In the abstract model,
the precise nature of the sets States of states and Actions of actions is irrelevant; in
particular we are not assuming a finite-state framework. In order to represent the fact
that obligations are conferred upon, and by, different agents in a system, we assume that
each action is associated with an agent, or with several agents acting concurrently.

A system S is a set of paths. If ρ ∈ S we say that ρ is a run of S . In the usual way
we can model terminating runs by incorporating a halting state which transitions only
to itself.

3.1 Policies

Obligations arise most frequently as an aspect of a rich notion of access control: “per-
missions with strings attached,” in Minsky and Lockman’s phrase [4]. Our conception
of pure access control is standard: in a given state a policy evaluates a request to perform
an action and returns a decision (possible decisions generally include Permit and Deny).
We make no assumptions about the language in which policy rules are expressed.

Since our interest in this paper is in access-control policies enriched with a notion
of obligations, henceforth the term policy will refer the following notion.

Definition 1 A policy for a system S is a tuple (Decs,Obls,P,γ), where

– Decs is a set of access decisions,
– Obls is a set of obligations,
– P : States×Actions → Decs×2Obls, and
– γ : Obls → 2Π.

P determines the access control decision and defines the obligations that arise at each
state-action pair. If Ω is an obligation, γ(Ω) is the set of paths which satisfy Ω; we say
that this set of paths is the obligation condition for Ω. For brevity we will often simply
use P to refer to the policy. A system together with a policy determine a policy-informed
program [5]. This definition does not stipulate how the program handles denials, but is
flexible enough to permit the pruning of such paths from the obligation condition.

Consider Example 1 from Section 2. Assume the system maintains information
about availability and credentials in relations Available(f) and MayEdit(d,f), where f
and d denote files and developers, respectively. Let states of the system be sets of facts
(closed atomic formulas) over these relations. Assume the system recognizes actions
RequestEdit(d,f) and CheckIn(d,f) to denote that developers want to check out and re-
turn files, respectively. The following policy elements formally capture this scenario:

– Obls contains one obligation Od, f for each developer d and file f .
– P(s,RequestEdit(d,f)) = 〈Permit,{Od, f }〉 if Available(f) and MayEdit(d,f) are both

true in s, otherwise P(s,RequestEdit(d,f)) = 〈Deny, /0〉.
– γ(Od, f ) = the set of all paths that contain (at some stage) action CheckIn(d,f).

As obligations specify behavior that a system may or may not respect, we introduce
terminology for various relationships between systems and the obligations arising from
policies.



Definition 2 If π = (s0,a0),(s1,a1), . . . is a path and P is a policy, we say that obliga-
tion Ω is created at stage i > 0 of π if Ω ∈ P(si−1,ai−1); in this case π satisfies Ω if the
path (si,ai),(si+1,ai+1), . . . is in γ(Ω). The path π obeys the policy P if it satisfies each
obligation created at each stage of the path. A system obeys a policy P if each of its
runs obeys P.

These definitions treat obligations as constraints on entire paths. As such it does
not, in general, make sense to speak about them being true or false at a specific state
of a computation. But we do note that sometimes it makes intuitive sense to speak of
an obligation being discharged at a certain time (e.g., making a log entry) or being
violated at a certain time (e.g., publishing a file in violation of a privacy policy). This
can be captured formally as follows.

Definition 3 Let S be a system, let ρ = (s0,a0),(s1,a1), . . . be a run of S , and let Ω

be an obligation created at stage i of ρ. The obligation Ω is discharged at a stage n ≥ i
of π if every run of S with prefix (s0,a0), . . . ,(sn,an) satisfies Ω. The obligation Ω is
violated at stage n ≥ i of ρ if no run of S with prefix (s0,a0), . . . ,(sn,an) satisfies Ω.

According to the standard taxonomy of system properties defined in Alpern and Schnei-
der [6] an obligation is violable if and only if its condition is a safety condition; it is easy
to see that an obligation is dischargeable if and only if the negation of its condition is
a safety condition; following Manna and Pnueli [7] we refer to these as guarantee con-
ditions. (What Manna and Pnueli term an “obligation”, however, is merely a boolean
combination of safety and guarantee conditions.)

It is often useful to be able to monitor a system for policy compliance, especially
when dealing with black-box components or those running on untrusted platforms. It
is precisely the safety obligations that, in principle, can be the target of runtime mon-
itoring. In Section 5 we consider the problems of detecting whether an obligation is a
safety or guarantee obligation, and if not, how to compute an appropriate “best approx-
imation.”

3.2 Aren’t Obligations Just Fairness Properties?

Our view of obligations as constraining future execution behaviors (paths) of a system
suggests a theoretical connection between obligations and the notion of fairness. We
cannot, however, reduce obligations to fairness for a few reasons. For one, fairness is a
static and global property of a system’s execution (usually of the environment), whereas
obligations arise dynamically based on actions. This marks obligations as a special
class of progress properties. More subtly, fairness is treated as an assumption (which
may be verified) so that, for instance, a verifier excludes unfair paths; in contrast, while
obligations should be met, systems expect them to be violated and seek compensation.
Video rental stores, for example, oblige customers to return videos by a deadline, but
a priori specify late fees because they expect some customers to violate the obligation
(and benefit financially from their doing so!).



3.3 Path Specifications

In fact, our formal model has avoided fixing any particular language for paths at all. In-
stead, it allows any specification of paths for describing conditions; standard languages
for paths, such as automata and temporal logic, seem natural concrete choices. If we do
choose to use temporal logic, the set of obligations that arise in practice suggest that a
minimal set of operators for capturing conditions should include those of LTL, including
both the strong and weak variants of the until operator, as well as the unless operator
(the dual of until). Example 1 of Section 2 is naturally specified using the “eventually”
operator of LTL, while Example 2 clearly requires the “globally” operator.

The application at hand may require that actions of particular agents lead to obli-
gations being fulfilled. See Example 3. LTL is not rich enough to capture the nuances
of having several agents, but temporal logics such as ATL* [8] do offer such capabili-
ties. Situations such as Example 4 require something more than propositional temporal
logics; this will be explored in detail in the next section,

Finally, many obligations involve bounded time, or intervals of time. Examples in-
clude requiring someone to pay by a particular time, or to reverify contact information
on an annual basis. While LTL can express such constraints using the next-state operator,
such specifications are often clumsy. Other logics [9] provide more nuanced handling
of time constraints; the choice of language for describing time is closely tied to to the
choice of program model.

The main point of this discussion is to highlight the range of path specification lan-
guages that may be useful in devising a concrete language for obligations. We strongly
believe that a useful theoretical treatment of obligations should be independent of, or
at least parameterized over, the program models and path specifications that arise in
particular applications.

4 Obligations Have State

Many interesting notions of obligation go beyond requiring that a single action be taken
(or forbidden). This leads us to confront some subtle issues concerning modeling the
interaction of policies and programs. Consider Example 4. Suppose A buys an item
from B for 10 dollars. Describing the obligation condition as a payment action for 10
dollars isn’t right, because debt can be paid in installments. Therefore, tracking the
obligation may require maintaining state. In addition to enabling obligations to track
state, we should also permit policy authors to use a different vocabulary than that of the
program’s internal data structures (for instance, the obligation may be in terms of what
is owed, while the program only tracks what has been paid).

To make this precise we now settle on some notation for describing program states
and the structure of individual obligations. First we tackle the problem of distinct vo-
cabularies. By a signature Σ we mean a graded set of relation symbols and constants; we
let FactsΣ denote the set of all closed atomic formulas over such a signature. We assume
that states of a system are Herbrand structures over signatures; so states are subsets of
the set FactsΣS of all facts over signature ΣS. Other recent works have employed similar
models of software as transition systems over relational facts [10, 11].



The policy author works over a different relational signature ΣO of the terms that
capture the state of an obligation. States in policy-informed programs are comprised of
facts over ΣS ∪ΣO; let StatesOb denote the set of all such states.

We can now model the state associated with each obligation as follows.

Definition 4 An obligation state over ΣO for a system over States and Actions is a tuple
containing at least two fields: (1) a representation of a set of paths in ΠStatesOb,Actions
(capturing the condition) and (2) a subset of FactsO. The set of all such states is denoted
ObStates.

The “at least” in this definition allows a particular policy language to store additional
information with an obligation. Section 6 gives examples of such extensions that arise
in practice.

When a policy author defines ΣO in order to express obligations, she also needs
to specify how the obligation state evolves based on system states and actions. This is
given in the form of a function.

Definition 5 An update function for ΣO, States and Actions is a function U of type
States×Actions×FactsO →FactsO. UOb denotes this function lifted to States×Actions×
ObStates → ObStates by applying U to each element of FactsO in an ObStates.

Consider Example 4 again. Let Pay(A,B,n) be a program action denoting A paying
n dollars to B, and Owes(A,B,x) denote the internal state of the obligation that records
the current debt. The update function is the natural one: most actions leave the balance
unaltered, but an action Pay(A,B,y) transforms the state of the debt to Owes(A,B,(x-y)).

Example 3 regarding delegation also highlights the importance of state in obliga-
tions. The state of the obligation associated with a bug would include a field for the
agent currently responsible for the obligation. This field can be written by the update
function in response to a system action corresponding to delegation of responsibility
for the bug. Section 6 discusses why creating separate obligations on each delegation is
not necessarily an appropriate alternative to capturing state.

Having refined what it means to be an obligation, we must now refine what it means
for a path to satisfy an obligation (thereby refining Definition 2). We first define a func-
tion U∗ that maps paths over (States×Actions) to paths over (StatesOb ×Actions) as
follows.

Definition 6 Let U be an update function, and let β0 be a subset of FactsO. When π is a
path over (States×Actions), the path U∗(π,β0) is the path whose actions are the same
as that of π and whose states are given by

s∗0 = (s0,β0)
s∗n+1 = (sn+1,U(sn,an))

Definition 7 Let Ω be an obligation with condition φ and initial set of ΣO facts β0. Then
Ω is satisfied in a path π over ΣS if and only if U∗(π,β0) satisfies φ.

5 Static Analysis and Monitoring of Obligations

We now discuss two styles of analyses, one static and the other dynamic.



5.1 Automata-Theoretic Static Analyses

Having provided a basic model of obligations, we now turn to some analyses we might
want to perform.

1. Does a certain run of the system satisfy a given obligation Ω?
2. Does there exist a run of the system in which Ω is satisfied?
3. At a particular state in a run, has obligation Ω been discharged or violated?
4. Does a given model of a policy-informed program satisfy all of its obligations?

(This is useful as different models of the same system and its environment may
satisfy different obligations.)

5. For a given system condition φ, is φ satisfied by all runs of the system that satisfy
their obligations?

6. When does one obligation imply another in the context of the given system? Are
two given obligations contradictory? Does one obligations policy entail another in
an absolute sense? Does one obligations policy entail another in the context of the
given system?

In this section we assume a finite-state representation of programs and policies. In
particular we assume that for a given policy P the set Obls of obligations is finite. We
further assume that the obligations in question do not involve different agents in any
essential way. The generalization of the automata-based techniques [12] of this section
to the multi-agent setting is a topic of future work.

In this setting the essential strategy for answering questions such as those above
is to capture obligations by automata. In this section we show in Corollary 9 that for
each obligation Ω we can construct a Büchi automaton AΩ that accepts precisely those
paths that satisfy Ω. In Theorem 10 we show how to combine such automata for the
individual obligations to build a Büchi automaton AP that accepts precisely those paths
that satisfy (all of the obligations in) policy P.

Now suppose that the set of runs of the system S is given by a Büchi automaton
AS . If we then take the cross product of AS with AΩ then the resulting automaton
accepts precisely the system runs that satisfy Ω. Questions such as 1, 2, and 3 can then
be answered using standard algorithms over Büchi automata. If we instead take the
cross product of AS with AP we can address questions such as 4 and 5. Questions such
as 6 are equivalent to questions of language containment for Büchi automata, for which
algorithms are well-known [13].

The rest of this section develops these ideas formally.

Definitions A Büchi automaton is a tuple A = (Σ,Q,Q0,∆,F) where Q is a finite set of
states, Q0 ⊆Q is a set of initial states, Σ is a input alphabet, ∆⊆Q×Σ×Q is a transition
relation, and F ⊆ Q is the set of fair states. A run of A on an infinite word α ∈ Σω is
an infinite sequence r of states from Q such that r(0) ∈ Q0 and (r(i),α(i),r(i+1)) ∈ ∆

for all i ≥ 0. Such a run is accepting if r(i) ∈ F for infinitely many i. The word α is
accepted by A if there is an accepting run of A on α.

Let ΦO abbreviate |FactsO|, the number of facts over the signature ΣO.



Proposition 8. Let A be a Büchi automaton over 2FactsS∪FactsO ; let β0 be a set of ΣO
facts. Then there is a Büchi automaton A∗ over 2FactsS such that for every path π over
(States×Actions)

A∗ accepts π if and only if A accepts U∗(π,β0)

The size of A∗ is |A | ·2ΦO .

Proof. This is an instance of a general construction, which will be easier to outline in a
more abstract setting.

Let ΣA and ΣB be alphabets, and suppose u : ΣA → ΣB. Then from any ω-sequence
α = a0,a1, . . . over ΣA and initial element b0 from ΣB we can build an ω-sequence
u∗(α,b0) over ΣA ×ΣB: (a0,b0),(a1,b1) . . . where each bi+1 is u(ai).

It will suffice to show in this setting that given a Büchi automaton A over ΣA ×ΣB
we can build a Büchi automaton A∗ over ΣA such that for every sequence such as α

above,
A∗ accepts α if and only if A accepts u∗(α,b0)

since we may take ΣA to be 2FactsS , ΣB to be 2FactsO (note that 2FactsS∪FactsO is naturally
isomorphic to 2FactsS ×2FactsO ), b0 to be β0 and u to be U∗.

Let A be ((ΣA×ΣB),Q,Q0,∆,F). Define A∗ to be (ΣA,(Q×ΣB),(Q0×{β0}),∆∗,(F×
ΣB)) where ∆∗ is defined by

∆∗((s,b),a) = (∆(s,(a,b)),u(a))

To see that this works, consider a sequence α and let r be any run of A∗ on α, r =
(s0,b0),(s1,b1), . . . . First note that each bi+1 is precisely u(ai). It is then easy to see
that the sequence s0,s1, . . . obtained by taking the first component of each pair in r is
a run of A on u∗(α,b0), and furthermore all such A-runs can be obtained in this way.
This establishes the desired relation between A∗ and A .

Corollary 9. Let Ω be an obligation for system S whose condition is expressed as a
temporal logic formula of size |Ω|. We can build a Büchi automaton AΩ accepting
precisely those paths π ∈ 2Π that satisfy Ω. The size of AΩ is bounded by 2|Ω|+ΦO .

Proof. Let A be a Büchi automaton over 2FactsS∪FactsO corresponding to the obligation
condition for Ω, and let β0 be the initial FactsO facts for Ω. As is well-known, the
size of A is bounded by 2|Ω|. The automaton A∗constructed as in Proposition 8 is of
size 2|Ω| · 2ΦO = 2|Ω|+ΦO and accepts those paths π such that A accepts U∗(π,β0). By
Definition 7 these are the paths that satisfy the condition for Ω, so we may take AΩ to
be A∗.

Note that the factor of 2ΦO above is a generous bound: the actual set of ΣO facts arising
in the states of A∗ is the set of facts which can arise in a sequence of U-updates to the
initial ΣO facts in the obligation Ω.

It is not surprising that a given obligation can be represented as an automaton. Each
of the infinitely many paths through a system, though, induces its own sequence of
obligations to be fulfilled. Hence, it is perhaps surprising that these obligation automata
can be combined into a single finite-state automaton for the whole system.



Theorem 10. Let P be a policy for system S . We can build a Büchi automaton AP
accepting precisely those paths π ∈ 2Π that satisfy P.

Proof. Given AΩ, define the automaton A ′
Ω

which, intuitively, “sleeps” until a system
transition is taken that creates the obligation Ω. Formally, we construct A ′

Ω
by starting

with AΩ and adding a new state q0 to AΩ, which will serve as the sole initial state.
The transition relation ∆′ is the extension of the transition function ∆ of AΩ defined as
follows.

For each pair (s,a):

– Add {(q0,(s,a),q0)} to ∆′;
– if obligation Ω arises due to action a out of s, that is, if Ω ∈ P(s,a), then add
{(q0,(s,a),r) | r was an initial state of AΩ} to ∆′.

The automaton AP is the product ∏{A ′
Ω
| Ω ∈ Obls}.

5.2 Dynamic Monitoring of Safety and Guarantee Obligations

We have seen that a violable obligation is one whose condition is a safety condition, and
a dischargeable obligation is one whose condition is a guarantee condition. Under the
natural topology on the set ΠStates,Actions of all paths of a system the safety conditions
are precisely the closed sets and the liveness conditions are precisely the open sets [6].

The previous notions generalize immediately to the set of runs of a system S : we
simply take the subspace topology. In this way we may define the notion of S -safety
condition and S -guarantee condition. A set of paths might define a safety condition (for
example) relative to a system even if it fails to be a safety condition in the absolute sense.
This yields the appropriate notions of safety and guarantee relevant to obligations being
discharged or to be violated in a system. In general, obligations that forbid some action
are S -safety conditions, while obligations that demand some action eventually are S -
guarantee conditions. Any obligation with a deadline is both S -safety and S -guarantee.
Some obligations are neither: the canonical examples are LTL “until” conditions.

Suppose that S is finite-branching, that is, for every state s there are only finitely
many pairs of the form (s,a) that can arise in the system. By an easy application of
Kőnig’s Lemma, if P is both an S -safety and an S -guarantee and S is finite-branching
then Ω has a “deadline”. That is, there is a single i such that for every run ρ of S , Ω is
either discharged or violated before stage i.

Approximating Obligations for Monitoring When a policy cannot be monitored pre-
cisely (such as one that is neither safety nor guarantee) and must be approximated, it is
valuable to construct a “best” approximation.

Definition 11 Let P be any condition. The S -safety closure P̂ of P is the intersection
of all S -safety conditions containing P . The S -interior P o of P is the union of all S -
guarantee conditions contained in P .



The S -safety closure of a condition is a safety condition: it is closed just because closed
sets are closed under intersection. Clearly P̂ is the smallest S -safety condition contain-
ing P . Of course, when P is a S -safety condition, P̂ = P . Similarly, the S -interior P o

of a condition is the largest S -guarantee condition contained in P .
Given an arbitrary P , the monitoring system can monitor the S -safety condition P̂ .

If a run fails P̂ it certainly fails P and, by definition, P̂ is the smallest condition which
can be used to soundly check P -failure. By an analogous argument we may view P o as
the best dischargeable approximation to P : if a run satisfies P o then it is guaranteed to
satisfy P , and P o is the largest S -guarantee condition with this property.

Computing the Approximations Alpern and Schneider [14] characterized the Büchi
automata that accept safety properties. It is easy to see from their analysis how to con-
struct, from a given automaton A , an automaton accepting the closure of the language
of A . So to generate an automaton characterizing the S -safety closure of an obligation
Ω, construct AΩ as in Section 5.1 and compute its closure. Complementation yields an
algorithm for S -guarantee approximation.

6 Evaluation: Modeling Black’s

The American legal community has a well-developed taxonomy of obligations in their
standard reference, Black’s Law Dictionary [3, pages 1104-5]. It is therefore useful to
consider how many of Black’s obligation types can be captured in the framework we
have defined.

Black’s describes 30 distinct types of obligations (plus several synonyms and one,
correal, that combines other types). Two of these (moral and natural) discuss concepts
that lie outside the scope of computing systems. Four (contractual, conventional, obedi-
ential, and statutory) capture the source or rationale for introducing an obligation. Some
models of programs and their environments could include sufficient information to cap-
ture these variations, while others do not. We therefore do not consider these in our
analysis, but the data structure for obligations in our model could hold the information
needed to distinguish these forms given sufficient program models. The rest fall into 21
classes that have different implications for a model of obligations, including how they
arise and evolve. Figure 1 describes these classes and their implications for modeling.

The model that we have presented supports all but two of the Black’s classes once
obligation states are taken to be arbitrary data structures. Divisible obligations are not
supported, as we assume a single obligation condition. Substitute obligations could
be encoded, but are not supported naturally. Natural support would require the update
function to be able to change the condition, which is beyond the scope of the current
model (due to the type of the update function). While defining such an update function
is easy, defining the semantics of satisfying obligations in this context is harder. Assume
that conditions were expressed as temporal logic formulas; our definition of satisfaction
requires each condition to hold from the state at which it was created. If the condition
could change before being satisfied, the formula would have to be rewritten to capture a
statement roughly corresponding to “the specified formula holds unless the conditions
occur to change the condition”. One could encode a substitute obligation by writing



Category Description Requires
absolute condition must be discharged as origi-

nally stated, with no modification
update function cannot modify agents or
condition

accessory incidental to another obligation link obligations in data structure
alternative obliged may satisfy one of

several conditions
data structure with multiple conditions
or disjunction in condition formulas

bifactoral,
joint,
community,
solidary

multiple obligated or obligating agents
party to a single condition

data structure with multiple obligated or
obligating agents

conditional arises from an event that might
not occur

conditions in creation rules

conjunctive multiple conditions required which
may be enforced separately

data structure with multiple conditions;
conjunction in formulas insufficient as
sub-obligations have separate identity

current currently enforceable but not past due recognize when obligation is created
determinate condition refers to objects by identity object identity in condition language
divisible can be divided into parts (without the

consent of the parties)
ability to change condition and to
associate different subconditions with
different obligated agents

heritable successor of obligated may
become liable

ability to update agents

indeterminate condition refers to objects by attribute object attributes in condition language
perfect legally enforceable and binding “strong” interpretation of condition,

capturable in formulas
personal obligated must personally

fulfill obligation
notion of which agents act to fulfill obli-
gations (e.g., as expressed in ATL*)

primary arises from essential purpose
of an action

nothing

primitive must be satisfied before some others capture ordering on obligations and refer
to order during analysis

pure enforceable and past due detecting when obligations are created,
satisfied, discharged and violated

secondary incident to a primary obligation or
compensates for other
unsatisfied obligation

link obligations in data structure;
creation policy checks other obligations’
status

several different conditions required for dif-
ferent agents (obligated or obligating)

data structure groups obligations

simple arises unconditionally creation rules without conditions
single no penalty for non-fulfillment “weak” interpretation of condition,

capturable in formulas
substitute replaces another, extinguished,

obligation
ability to delete obligations and to tie
creation to status of other obligations

Fig. 1. Classes of obligations in Black’s and their implications for a comprehensive model.



such a condition formula at the outset, but an explicit specification through the update
function would be clearer, and we believe preferable.

The Black’s classes illustrate that the structure of obligations is both subtle and
important. Consider an obligation of the form “do A; otherwise do B and C”. This is
a default obligation with a conjunctive obligation in its secondary clause. Because of
such conditions, we cannot rely on just the conjunction of top-level obligations to cap-
ture all the desired obligation structure. Identity is critical for understanding divisible
obligations: the Black’s description is ambiguous on whether the component obligations
should have separate identities, but whether they do has implications for formal analy-
sis of obligations. In either case, it is clear that our model needs to have a way to refer
to an obligation as an identifiable entity, even as its condition potentially evolves. This
justifies our model containing both a set of obligations (effectively naming individual
obligations) and a separate association of obligation states with obligations.

7 Related Work

Deontic logic [15] is a formal system concerned with reasoning about obligations. In-
deed, deontic logic has frequently been used to analyze the structure of normative rea-
soning in the law. Standard deontic logic is a modal logic, with a unary modality ob,
so if φ is a formula then (ob φ) is a formula. Formulas are interpreted over Kripke
structures, where states represent possible worlds. Permission is precisely the dual of
obligation in this logic, so it is natural that several authors ([16–18] and others) have
approached the interaction between authorization and obligations in computing systems
from this perspective. The approach we pursue here is crucially different from the modal
logic approach. Since we view obligations as expressing constraints on computations,
it does not make sense to ask whether an obligation “holds” at a state.

Minsky and Lockman recognized the essential association of obligations with per-
missions some time ago [4]. Their informal syntax and semantics supports a rich taxon-
omy of obligations (including deadlines and both positive and negative obligations), but
does not handle state. Mont’s [19] rich taxonomy of privacy obligations for enterprises
provides more detailed implementation requirements and state contents for obligations
than ours, but lacks formal semantics and our theoretical treatment of analysis. Mont’s
model supports some features, such as compensatory actions and additional require-
ments on future actions, that are not cleanly expressible in our policy notations.

Irwin, Yu, and Winsborough [20] propose a formal model of obligations inspired
by the idea that an obligation is a contract between a system and a subject. They define
a notion of secure system state based the concept of accountability for violation of an
obligation, and explore the complexity of checking accountability properties. Though
there are many similarities between their approach and ours, we have a somewhat more
general system model and a richer semantics of obligations.

Several works focus mainly on specifying, rather than analyzing, obligations. Park
and Sandhu [21] view obligations as current or past conditions constraining access re-
quests (resembling provisions [22]). Constraints on future behavior are limited to a
predicate that must hold so long as the system retains access to an object. Our model
divorces obligations from the lifetime of permissions, and can also associate them with



denied requests. Sloman [23] distinguishes authorization (actions that may occur) from
obligation (actions that must or must not occur). The Ponder policy language [24] views
obligations as actions that must be executed when certain events occur, but these con-
ditions do not support temporal operators. Kudo and Hada [25] fix a set of primitive
obligations (such as logging) that happen when access is granted, but also fail to sup-
port temporal operators.

Some models support analysis of obligations policies outside the context of program
models. Abrahams, et al.’s [26] model allows for obligations to not be satisfied, and can
associate obligations with denials. Temporal constructs on obligations are implicit and
limited to eventuality (for positive obligations) and globally (for negative obligations).
Schaad and Moffett [27–29] explore interactions between agents in the context of obli-
gations, addressing delegation, review and supervision, and revocation. They represent
and analyze obligations using Alloy [30] but do not present a general formal semantics
for them. Bettini, et al. [22] model access-control policies with both provisions and obli-
gations. Their model, like ours, links obligations to policy rules and defines them using
a separate signature of terms. It includes actions to be executed when an obligation is
satisfied or fulfilled. They focus on a semantics for when obligations apply, but assume
that atomic obligations are interpreted by a server, which they do not model. Backes, et
al. [31] extend EPAL with a model of obligations and containment between them, and
also assume a server for atomic obligations. This assumption makes monitoring possi-
ble at the expense of less expressive obligations (Section 5.2). Neither work accounts
for the stateful nature of obligations, which this paper shows is extremely valuable for
modeling numerous scenarios (and complicates the definition of obligations).

Work that explores obligations in the context of program models tends to focus on
the impact of programs on obligations, whereas our more general model supports rea-
soning about the impact of obligations on programs. These works also fail to capture
obligations with state. Hilty, Basin and Pretschner [32] explore the role of obligations
for data providers, focusing on privacy and intellectual property management. They
specify obligations using Distributed Temporal Logic (DTL) [33], which supports a rich
notion of agents. They discuss a variety of strategies for enforcing non-monitorable
obligations by weakening them; we have outlined a systematic approach for approxi-
mating obligations motivated by enforcement. May, et al. [34] model privacy policies
with obligations using an extension of the classical access-control matrix. Their work
explores the interactions of policies and programs, but not the implications of this in-
teraction on the structure of obligations (as in our Section 4). Barth, et al. [35] model
privacy policies as rules conditioned on both past and future behaviors and programs
as sequences of events that transmit information. Unlike us, they assume agents cannot
violate obligations.

8 Conclusion and Future Work

This paper has presented a model of obligations and their interaction with an ambient
system. Obligations are viewed as a means for expressing constraints on the future
behavior of a system, have state, and can fail to be fulfilled. The combination of these
assumptions, the generality of our model, and our model of system-policy interaction



distinguish our work from other treatments of obligations. The paper has demonstrated
several useful analyses including a systematic means for approximating obligations for
monitoring.

Although the paper has demonstrated that this model of obligations is quite rich, it
cannot support some kinds of obligations that arise in practice, such as divisible and
substitute obligations (see Section 6), and obligations that require new behavior (such
as additional authentication checks) on every subsequent execution of a particular ac-
tion [19]. The latter reflects a fundamental assumption in our model that the policy
does not add, remove, or alter behaviors of the system. Relaxing this assumption is an
important topic for future work.

Next, because obligations may not be fulfilled, it is natural to speak of compensatory
actions (akin to those used in database transactions). While these can be encoded in the
obligation conditions in our model, they enjoy no distinguished status and thus cannot
be reasoned about directly. It could be useful to ask, for example, whether a system that
fails some property in the presence of unfulfilled obligations will satisfy the property
under a specific set of compensations, or to try to synthesize information about the
compensations that could cover all unfulfilled obligations.

Further, the ability to decide various questions about obligations using automata
theory points the way to a logic of obligations. This would offer a contrast to attempts
to apply deontic logic to obligations.

Finally, we would like to support richer notions of agents and analyses that account
for them. Section 3.3 raised the question of whether a particular agent could fulfill its
obligations. It would also be interesting to try synthesizing minimal models of agents
that guarantee satisfaction of their obligations. Both questions require closer attention to
agent-aware logics like ATL* for specifying conditions and their corresponding models
of system behavior.
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