
A
t some point, every language design
has to end. The design of Java, for
example, includes constructs from for
loops to inner classes, but does not

include a foreach construct, a lex/yacc-style
parser-generator form, call-by-reference
methods, or many other constructs.

Macro systems let programmers contin-
ue where language designers left off and
extend languages with new constructs. Fur-
thermore, macro-extended languages con-
tinue to work with the basic tool chain—
in contrast to lex- and yacc-style language
extensions, for example, which require
modified code generators, makefiles, and
the like. Finally, if the macro system uses
patterns to specify language extensions,
macros are easily defined and understood
in terms of a simple rewriting process.

One apparent drawback of pattern-
based macros is that they cannot express

interesting language extensions, such as
new forms of variable binding or new
forms of control. Macros in C are certain-
ly limited in this regard, but pattern-based
macros can be considerably more ex-
pressive in principle. In this article, we
show how pattern-based macros in
Scheme can express interesting language
extensions, such as a call-by-reference ex-
tension of a call-by-value language.

A second drawback of macros in gen-
eral is that they interact poorly with pro-
gramming tools, such as type checkers
and debuggers, which have difficulty cor-
relating a program’s original source and
its macro-expanded version. Again, C
macros certainly exhibit this problem, but
Scheme macros play well with source-
correlating tools, and they play well for
much the same reason that they can im-
plement interesting language extensions.
Scheme macros thus provide a foundation
for building little languages that fit neatly
into existing programming environments.

Pattern-Based Macros
Most programmers are familiar with C-
style pattern-based macros. In general,
pattern-based macro definitions include
pattern variables that match syntax frag-
ments in a macro use. To expand a macro
use, each pattern variable in the macro’s
template is replaced by the matching syn-
tax fragment. For instance, in the ever-

popular swap in Example 1(a), the
swap(x,y) part is the pattern, x and y are
pattern variables, and the {int tmp=y; y=x;
x=tmp;} part is the template. Example 1(b)
matches the pattern swap(x,y), where x
is matched to c.red and y is matched to
d->blue. Expansion proceeds by substi-
tuting c.red for x and d->blue for y in the
template, producing Example 1(c). Al-
though C macros are easy to understand,
they have a deservedly poor reputation in
that expansion is the only way to under-
stand the macro. In particular, Example
1(d) expands to Example 1(e), which does
not actually swap the values in tmp and
other. The underlying problem is that the
macro system manipulates plaintext in-
stead of structured syntax fragments. As a
result, the macro cannot implement your
true intent, which is to have a private tem-
porary variable, and it cannot help pro-
gramming tools accurately relate the orig-
inal source and its macro-expanded
version. These problems with C macros
are absent from Scheme’s macro system.

Scheme Macro Basics
For simple tasks, Scheme macros look sim-
ilar to C macros. The C macro header in
Example 2(a) translates to Scheme as in
Example 2(b). The syntax-rules part of the
definition indicates that the macro takes
“arguments,” just as the parentheses after
swap in C indicate a macro with arguments.

Building
Little Languages

With Macros
Picking up where
language designers
leave off

Matthias Felleisen, Robert Bruce
Findler, Matthew Flatt, and

Shriram Krishnamurthi

Matthias is a professor at the College of Com-
puter Science at Northeastern University;
Robert is an assistant professor of comput-
er science at the University of Chicago;
Matthew is an assistant professor in the
School of Computing at the University of
Utah; and Shriram is an assistant professor
of computer science at Brown University.
They can be contacted at matthias@
ccs.neu.edu, robby@cs.uchicago.edu, mflatt@
cs.utah.edu, and sk@cs.brown.edu, re-
spectively.

(a)
#define swap(x,y) {int tmp=y; y=x; x=tmp;}

(b)
swap(c.red, d->blue)

(c)
{ int tmp=d->blue; d->blue=c.red; c.red=tmp; }

(d)
swap(tmp, other)

(e)
{ int tmp=other; other=tmp; tmp=tmp; }

Example 1: swap.

http://www.ddj.com Dr. Dobb’s Journal, April 2004 45

A C macro with arguments matches only
one pattern— a certain number of comma-
separated elements within parentheses. In
contrast, a Scheme macro can match mul-
tiple patterns, and each pattern can have
a specific structure, such as auxiliary key-
words or nested parentheses. Therefore,
syntax-rules in a macro definition is fol-
lowed by a sequence of auxiliary key-
words (to distinguish them from pattern
variables), then a sequence of pattern-
template pairs. For swap, you have no
keywords and you have only one pattern,
as in Example 2(c).

A use of swap such as in Example 3(a)
roughly expands to Example 3(b), which
is Scheme notation for introducing a local
variable tmp1, then assigning y=x and
x=tmp1. In other words, let acts like a new
block for variable bindings, and set! acts
like “=” for assignment.

The macro system adds the subscript
in tmp1 to indicate that tmp was intro-

duced by the macro, and it has no rela-
tionship to other existing syntax. Thus,
even if swap is used with a variable named
tmp, as in Example 3(c), this use of swap
behaves as expected because the variables
tmp and tmp1 are different in the expan-
sion; see Example 3(d). Introducing sub-
scripts, as in tmp1, ensures that language
extensions play well with the lexically
scoped base language. Avoiding uninten-
tional capture by introduced variable dec-
larations, as in Example 3(d), is only half
of the problem, however. The macro sys-
tem must also prevent unintended cap-
ture of introduced variables, as in Exam-
ple 3(e) where (define (f x) ...) is Scheme
notation for defining a function f that takes
a single argument, x. The body of the
function contains a local macro definition,
swap-with-arg, followed by a block with
local bindings of z and x and a body that
uses swap-with-arg.

The local macro swap-with-arg swaps
a variable’s value with the value of f ’s x
argument. Even if x has a different bind-
ing in the context where swap-with-arg
is used, the x introduced by the macro
expansion always refers to the function
argument. In other words, in expanding
the aforementioned definition, the second
x must be renamed to preserve lexical
scope; see Example 3(f).

In general, the macro system adds sub-
scripts and superscripts as necessary to pre-
serve lexical scope for the original identifiers.

Matching Multiple Patterns
A natural generalization of swap is the ro-
tate macro, which rotates the values of a
set of variables to the left. For example,
(rotate bucket box bin) moves the value
of box to bucket, the value of bin to box,
and the value of bucket to bin. The ro-
tate form should also work on four vari-
ables, as in (rotate n e s w), or any num-
ber of variables.

Rotating a set of variables is the same
as swapping the first two, then rotating
all but the first variable. Rotating a single
variable has no effect. Based on these two
observations, you can implement the ro-
tate macro as in Example 4(a). The first
pattern, (rotate a), matches when a sin-
gle variable is supplied, and the expan-
sion is the nonoperational (void) expres-
sion. The second pattern, (rotate a b c ...),
contains ellipses that allow any number
of matches for c— including zero match-
es. Thus, the macro use (rotate n e s w)
matches the second case, and expands to
Example 4(b), which in turn expands to
Example 4(c), and so on, ending with Ex-
ample 4(d). The Scheme begin form com-
bines and orders statements, so the ex-
pansion in Example 4 rotates n through
w by bubbling n’s value through the oth-
er variables.

46 Dr. Dobb’s Journal, April 2004 http://www.ddj.com

(a)
#define swap(...) ...

(b)
(define-syntax swap (syntax-rules))

(c)
(define-syntax swap

(syntax-rules ()
((swap a b) (let ((tmp b))

(set! b a)
(set! a tmp)))))

Example 2: Scheme macro basics.

Example 3: Expanding swap.

(a)
(swap x y)

(b)
(let ((tmp1 x))

(set! y x)
(set! x tmp1))

(c)
(swap tmp other)

(d)
(let ((tmp1 tmp))

(set! other tmp)
(set! tmp tmp1))

(e)
(define (f x)

(define-syntax swap-with-arg
(syntax-rules ()

((swap-with-arg y) (swap x y))))
(let ((z 12)

(x 10))
; Swaps z with original x:
(swap-with-arg z)))

(f)

(define (f x)
(let ((z 12)

(x1 10))
(swap x z)))

http://www.preemptive.com/dobbs/tryit

Instead of bubbling one value through
all of the variables, you can define a ro-
tate macro that directly moves each val-
ue to its target. The new rotate uses a
helper macro, and it shows how ellipses
can be placed after any subpattern or sub-
template to generate multiple instantia-
tions of the subpattern or subtemplate;
see Example 5(a). Using these definitions,
(rotate n e s w) expands to a kind of par-
allel assignment in Example 5(b), which
in turn expands to Example 5(c). The use
of ellipses after the subtemplate (set! to
from) causes to and from matches to be
paired up and instantiated together. The
shift-to macro fails if the number of from
matches is not the same as the number of
to matches, but the use in rotate always
creates the same number of each.

Identifier Macros
The C macro system supports two kinds
of macros— function-shaped macros like
swap, and identifier-shaped macros that
match only the macro name. For example:

#define MAX_INT 0x7ffffff

defines a macro MAX INT so that it is re-
placed in any context with 0x7ffffff. A
syntax-rules macro is always a swap-style
macro. A syntax-id-rules macro is more
like MAX INT, but the identifier’s expan-
sion can be made sensitive to the way
that it’s used— as the target of a set! as-
signment, immediately after an open
parenthesis, or as an immediate expres-
sion. (In Scheme, the position after set!
or after an open parenthesis is generally
special.)

http://www.ddj.com Dr. Dobb’s Journal, April 2004 47

(a)
(define-syntax rotate

(syntax-rules ()
((rotate a) (void)) ; i.e., do nothing
((rotate a b c ...) (begin

(swap a b)
(rotate b c ...)))))

(b)
(begin

(swap n e)
(rotate e s w))

(c)
(begin

(swap n e)
(begin

(swap e s)
(rotate s w)))

(d)
(begin

(swap n e)
(begin

(swap e s)
(begin

(swap s w)
(void))))

Example 4: rotate macro.

Example 5: New rotate macro.

(a)
(define-syntax rotate

(syntax-rules ()
((rotate a c ...)
(shift-to (c ... a) (a c ...)))))

(define-syntax shift-to
(syntax-rules ()

((shift-to (from0 from ...) (to0 to ...))
(let ((tmp from0))

(set! to from) ...
(set! to0 tmp)))))

(b)
(shift-to (n e s w) (w n e s))

(c)
(let ((tmp n))

(set! n e)
(set! e s)
(set! s w)
(set! w n))

http://www.franz.com

For example, the definition in Example
6 causes clock to act like a normal Scheme
variable, but assignments and uses of the
variable are implemented through a set-
time! mutator function and a get-time ac-
cessor function. With this macro, clock ex-
pands to (get-time), while (set! clock 5)
expands to (set-time! 5).

The middle case in the macro causes
(clock 8) to expand to an error because
applying clock as a function is useless. For
other macros, the middle case is useful. In
fact, the syntax-rules form could be con-
sidered a special case of syntax-id-rules
with only the middle case.

Macro-Generating Macros
Macro-generating macros let you create
new forms for defining other macros. For
example, suppose you want to convert
many sets of mutator-accessor functions to
pseudovariables like clock. Instead of copy-
ing the definition of clock and replacing
the names, you would instead prefer to
write Example 7(a). The define-get/set-var
form can be implemented as a macro-
generating macro, as in Example 7(b).

48 Dr. Dobb’s Journal, April 2004 http://www.ddj.com

Example 8: Call-by-reference. Example 10: Replacement for ???.

(a)
(define-syntax define-cbr

(syntax-rules ()
((_ (id arg ...) body)
(begin

???
(define-syntax id

(syntax-rules ()
((id actual (... ...))

(do-f (lambda () actual)
(... ...)
(lambda (v)

(set! actual v))
(... ...)))))))))

(b)
(define (do-f get set)

(define-get/set-var arg get set)
body)

Example 9: define-cbr macro that expands.

(define-syntax clock
(syntax-id-rules (set!)

((set! clock e) (set-time! e))
((clock a ...) (error "clock is not a function"))
(clock (get-time))))

Example 6: Identifier macros.

(a)
(define-get/set-var clock get-time set-time!)
(define-get/set-var pwd getcwd setcwd)
(define-get/set-var user getuid setuid)
...

(b)
(define-syntax define-get/set-var

(syntax-rules ()
((define-get/set-var id get set)
(define-syntax id

(syntax-id-rules (set!)
((set! id e) (set e))
((id a (... ...)) ((get) a (... ...)))
(id (get))))])))

Example 7: Macro-generating macros.

(a)
(define-cbr (f a b)

(swap a b))

; Produces 2:
(let ((x 1) (y 2))

(f x y)
x)

(b)

(define (do-f get1 get2 set1 set2)
(define-get/set-var a get1 set1)
(define-get/set-var b get2 set2)
(swap a b))

(c)
(let ((x 1) (y 2))

(f x y)
x)

(d)
(let ((x 1) (y 2))

(do-f (lambda () x)
(lambda () y)
(lambda (v) (set! x v))
(lambda (v) (set! y v)))

x)

(e)
(begin

(define (do-f get1 get2 set1 set2)
(define-get/set-var a get1 set1)
(define-get/set-var b get2 set2)
(swap a b))

(define-syntax f
(syntax-rules ()
((f actual ...)
(do-f (lambda () actual)

...
(lambda (v)

(set! actual v))
...)))))

(a)
(define-cbr-as-cbv do-f (arg ...)

() body)

(b)
(define-cbr (f a b)

(swap a b))

(c)
(begin

(define-cbr-as-cbv do-f (a b)
() (swap a b))

(define do-f . . .))

(d)

(begin
(define-cbr-as-cbv do-f ()

((a get1 set1) (b get2 set2)) (swap a b))
(define do-f . . .))

The (... ...) combination in a template
produces a plain ... in the macro expan-
sion. In other words, the first ellipses es-
cape the second ellipses so that the macro-
produced macro contains pattern- and
template-duplicating ellipses.

Extended Example: Call-by-Reference
The swap and rotate examples are spe-
cial cases of call-by-reference functions.
Using only the pattern-based macro tools
described so far, you can implement an
extension of Scheme for defining call-by-
reference functions. Our new define-cbr
form allows programs such as Example
8(a). Since f is a call-by-reference func-
tion, the swap in f swaps the values of
the x and y variables passed to f in the
example call.

The expansion of define-cbr consists of
two parts. The first part introduces a do-f
call-by-value function that acts like a call-
by-reference version of f. Instead of ac-
cepting f ’s arguments directly, it accepts
accessor and mutator functions. In partic-
ular, the f definition in Example 8(a) ex-
pands to 8(b). Where the original function
had two arguments, a and b, the expand-
ed function has four arguments: get1 and
set1, which are functions to get and set a;
and get2 and set2, which get and set b. In-
side the function, a and b are mapped to
the accessor and mutator functions using
our define-get/set-var macro. The other half
of the transformation affects uses of f. The
use of f in Example 8(c) expands to a call
to do-f, where the arguments x and y are
replaced with functions that get and set the
values of x and y; see Example 8(d).

The lambda keyword in Scheme means
“anonymous function,” and (lambda ()
x) is an anonymous function that accepts
no arguments and returns x. Similarly,
(lambda (v) (set! x v)) is an anonymous
function that accepts one argument and
puts it into x.

The key to connecting the definition of
f to uses of f is that define-cbr is a macro-
defining macro. It defines f as a macro that
expands to uses of do-f. In other words,
the (define-cbr (f a b) (swap a b)) defini-
tion actually expands to Example 8(e).

Our task, then, is to implement a define-
cbr macro that expands as above. Half of
this macro is straightforward; see Exam-
ple 9(a). The ??? part turns out to be more
complex. If define-cbr allowed only a sin-
gle arg for the defined function, then ???
could be simply Example 9(b). To sup-
port multiple arguments, however, you
must generate many distinct get and put
names to go with many args. To gener-
ate the names, you can exploit the way
the macro expander adds subscripts to in-
troduced variables. The idea is to take one
arg at a time and introduce a corre-
sponding get and set, leaving the rest of

the args to further expansion. Each ex-
pansion then adds a unique subscript to
the just-introduced get and put.

The name-generating sequence of ex-
pansions requires a helper macro, which
we name define-cbr-as-cbv, so that the
??? in define-cbr is replaced with Exam-
ple 10(a). Then the extra () in this tem-
plate provides a place to accumulate gen-
erated names. Initially, Example 10(b)
expands to 10(c), but after two expan-
sions, this code changes to 10(d), at which
point it is easily converted to the final def-
inition of do-f, since a is grouped with
get1 and set1 and b is grouped with get2
and set2.

The implementation of define-cbr-as-
cbv in Example 11 implements both phas-
es of this translation.

Beyond Patterns
With the definitions of the define-get/set-
var, define-cbr, and define-cbr-as-cbv
macros, we have added call-by-reference
functions to Scheme, using only 33 lines
of pattern-based macro definitions. For
many purposes, the implementation is
complete, though it suffers some obvious
limitations:

• Call-by-value functions in Scheme are
higher order, which means that they can
be passed to other functions or returned
from other functions. Our call-by-ref-
erence functions are first-order, which
means they can only be used in a di-
rect call.

• When arguments are not variables, as
in (f 1 2), the result is a set! syntax er-
ror. In most languages with call-by-
reference functions, nonvariable argu-
ments are effectively placed into a fresh
dummy variable at the call site.

These problems cannot be solved using
only pattern-matching macros in Scheme,
and many other kinds of language exten-
sions fall outside the capabilities of pattern-
matching macros. Nevertheless, the ideas
behind Scheme’s pattern-matching macros
provide a solid foundation for more elab-
orate macro systems.

The next level of macro sophistication
in Scheme is the syntax-case macro sys-
tem. A syntax-case macro can perform ar-
bitrary computation (using Scheme) on
the results of a pattern match. For exam-
ple, a syntax-case macro can distinguish
call-by-reference calls that have variable
arguments from those that do not, and
it can produce a different expansion in
each case.

A syntax-case macro does not manip-
ulate plain text, or even plain symbols
and lists (as does a Lisp macro). Instead,
the macro manipulates syntax objects,
which encode the lexical context and
source locations of program fragments.
Consequently, just like a syntax-rules
macro, a syntax-case macro respects the
lexical structure of the source program
(by default) and it plays well with source-
correlating tools.

Syntax objects enable the implementa-
tion of most any little language or lan-
guage extension. Using syntax-case, we
have implemented a Java-like class sys-
tem for Scheme, lex- and yacc-like forms
for building parsers, and constructs for
defining and linking program components.
Programmers using these constructs do
not reason about them in terms of their
expansion. Instead, syntax objects allow
the expansion to be hidden behind ab-
stract definitions of the constructs, just as
the inner workings of any compiler are
hidden behind a language definition.

A language’s concrete syntax need not
be parenthesized to make use of syntax
objects. In particular, we are currently de-
veloping implementations of Java and ML
for our programming environment,
DrScheme (see “Fostering Little Lan-
guages,” DDJ, March 2004). Since our pars-
ing tools produce syntax objects, we can
treat Java and ML like macro extensions of
Scheme. These macro implementations re-
semble typical Java-to-Scheme and ML-to-
Scheme compilers, but little additional
work is needed to adapt our entire pro-
gramming environment to new languages.

DDJ

http://www.ddj.com Dr. Dobb’s Journal, April 2004 49

Example 11: define-cbr-as-cbv macro.

(define-syntax define-cbr-as-cbv
(syntax-rules ()

; The first case is for generating one get and set
((define-cbr-as-cbv do-f (arg0 arg ...)

(gens ...) body)
(define-cbr-as-cbv do-f (arg ...)

(gens ... (arg0 get set)) body))
; The second case finishes the expansion
((define-cbr-as-cbv do-f ()

((arg get set) ...) body)
(define (do-f get ... set ...)

(define-get/set-var arg get set) ...
body))))

	next toc:

