
The DrScheme Project� An Overview

Matthias Felleisen� Robert Bruce Findler� Matthew Flatt� Shriram Krishnamurthi

Department of Computer Science

Rice University

Houston� Texas

URL� http���www�cs�rice�edu�CS�PLT�

Abstract

DrScheme provides a graphical user interface for edit�
ing and interactively evaluating Scheme programs on
all major graphical platforms �Windows ���nt� MacOs�
Unix�X�� The environment is especially well�suited to
beginning programmers because it supports a tower of
Scheme subsets� Each level corresponds to a particular
stage in a typical introductory Scheme course and im�
plements a stringent set of syntactic checks� The envi�
ronment also pinpoints run�time exceptions in a graph�
ical manner and implements a mostly functional read�
eval�print loop�

DrScheme�s most advanced component is a power�
ful static debugger� It permits programmers to inspect
programs for potential safety violations before running
them� If the debugger discovers a potential problem� it
explains the problem by drawing a value�	ow graph over
the program text� The value�	ow graphs shows how an
inappropriate value may reach a program operation and
trigger a run�time check�

The development of DrScheme in Scheme validated
the strengths of Scheme� but also revealed several weak�
nesses� To overcome the latter� the underlying Scheme
implementation was extended with a class�based object
system� a language of program units� and a sophisti�
cated GUI engine� All of these extensions are available
to the programmer� who can thus interactively create
fully portable� graphical applications�

� Origins and Goals

Over the past ten years� Scheme 
�� has become the most
widely used functional programming language in intro�
ductory courses in the United States 
��� ��� When
Rice University implemented an introductory course us�
ing Scheme� the instructors noticed three signi�cant
problems with its popular implementations� First� al�
though Scheme�s parenthesized pre�x notation is ex�
tremely simple� beginning students often encounter sur�
prising syntactic and run�time errors due to the transi�

tion from in�x algebraic syntax to pre�x Scheme syntax�
Second� Scheme implementations provide little or no
source information about run�time errors� even though
such information is far more useful for Scheme than for
C�� because the former is safe and the latter isn�t�
Finally� the traditional Scheme read�eval�print loop ob�
scures the algebraic nature of values and introduces sub�
tle bugs due to its hidden state�
In response to these observations� Rice�s program�

ming languages team �PLT� decided to launch the
DrScheme project� From the beginning� the project had
two goals�

� The �rst goal is to develop a modern program�
ming environment for Scheme� The environment
must support the teaching of programming princi�
ples in a pedagogically meaningful way� As part of
this goal� we have always aimed for a completely
portable graphical environment�

� The second goal is to equip the environment with
�smart� �i�e�� semantics�based� programming tools
that assist advanced programmers with the devel�
opment of robust software� The �rst innovation
in this direction is MrSpidey � a static debugger�
This new kind of software tool statically analyzes
programs� reports potential facult sites to the pro�
grammer� and constructs graphical explanations of
its reasoning on demand�

At the same time� the project team realized that
the implementation of a large system would be a good
chance to evaluate the use of Scheme for non�trivial
software projects� In the past� Scheme has been used
successfully for the implementation of tools that pro�
cess languages� e�g�� abstract machines� compilers� in�
terpreters� and type checkers� Since these applications
are heavily tree�oriented� Scheme is a natural choice�
For other contexts� however� especially that of graphi�
cal programming environments� Scheme does not seem
to o�er any particular advantages� Still� Scheme�s ex�
pressiveness makes it a strong candidate for a thorough
evaluation�

�



Finally� the project naturally yields a signi�cant body
of Scheme code that is used on a daily basis� The exam�
ples and impetus provided by working with large pro�
grams are invaluable in improving the environment and
its smart tools� The eventual goal is to produce a self�
applicable programming environment and to prove the
usefulness of the smart tools in this context�

This column primarily addresses the �rst set of goals�
It presents DrScheme and MrSpidey and explains how
these tools support teaching and programming� qTwo
short sections brie	y discuss the remaining two goals�
The reference section provides some pointers for com�
plementary reports on the project and its contributions�

� DrScheme� The Environment

DrScheme integrates program editing and program eval�
uation in a seamless manner �see �gure ��� To over�
come the problems of traditional Scheme implemen�
tations� its editor and evaluator support� a hierarchy
of four Scheme subsets whose choice is pedagogically
motivated� source correlation at all execution steps�
and a new kind of read�eval�print loop� In addition�
DrScheme also o�ers two pedagogic tools� a symbolic
evaluator and a context�sensitive syntax checker� Fi�
nally� DrScheme includes a static debugger� which an�
alyzes programs and exposes potential safety violations
prior to execution� The following three subsections pro�
vide an overview of DrScheme� for more detailed infor�
mation� we refer the reader to an extended report 
���

��� Pedagogic Enhancements

Language Levels� University courses typically intro�
duce students to Scheme in discrete segments� The �rst
segment covers �rst�order functional programming� the
second one higher�order functions and data structur�
ing� and the third one imperative facilities like set��
operations that mutate data� and call�cc� Given this
widespread practice� DrScheme permits users to choose
one of these levels and then strictly enforces correspond�
ingly restrictive syntactic rules�

The strict enforcement of syntactic rules solves nu�
merous notational problems for beginners who� through
school mathematics and high school programming
courses� have become used to in�x operators and opera�
tor precedence� For example� the author of the program

�de�ne �length l�
�cond

�null� l� ��

else � � �length �rest l�����

has lapsed into algebraic syntax in the second clause
of the cond�expression� Since in standard Scheme the
value of a cond�clause is the value of its last expres�
sion� this version of length always returns �� regardless
of its input� Other lapses into algebraic syntax may
yield similarly inexplicable results or� even worse� error
messages from the run�time system that make no sense
for a beginning student�

In DrScheme� beginners are protected from such
mishaps� By choosing the language level �Beginner�� a
programmer installs a stringent set of syntactic checks�
which recognizes lapses into algebraic notation as easily
explicable syntax mistakes� A beginner can then �x
these mistakes before they cause additional run�time
problems� The other language levels ��Intermediate��
�Advanced�� and �QuasiR�RS�� address similar� but
less severe problems with Scheme�s syntax�

Run�Time Errors� Many modern Pascal and C��
environments highlight a source location when a pro�
gram causes a core dump� Unfortunately� this source
correlation is in general completely useless because the
corresponding segmentation fault or bus error is not
a direct consequence of the abuse of a computational
primitive� The primitive has been misapplied much ear�
lier� but since low�level languages do not enforce ab�
straction invariants between the computer architecture
and the programming language� nonsensical bit patterns
may 	ow through the program arbitrarily long before an
error is signaled� if at all�

Scheme and other functional languages are safe and
through a mixture of syntatic and run�time checks en�
force invariants and� in turn� the intended level of data
abstraction� More technically� each primitive operation
�for which it is not possible to enforce its invariants stat�
ically� checks at run�time whether or not its arguments
and results are in the proper range� Examples of opera�
tions that check their arguments at run�time are arith�
metic operations� array indexing� and �pointer� deref�
erencing� When an operation detects a problem with its
arguments or results� it aborts the program execution�
Unfortunately� conventional Scheme environments do
not connect such run�time errors with the correspond�
ing source location and thus force the programmer to
search through the program for the error�

In contrast� in DrScheme a failed safety check does
not only signal the nature of an error but also high�
lights its location in the program� To implement the
second part� the underlying Scheme parser keeps track
of source locations even across general macro expan�
sions 
�� ���� The evaluator uses this source information�
if desired� by setting a special �source register� ahead
of primitive computational steps� This source register
contains enough information to highlight the primitive
application if it fails� The strategy ensures source cor�





Figure �� The DrScheme Window �Windows ���NT version�

relation and preserves the desired tail�call optimization
of Scheme 
���

A Transparent Repl� One distinct advantage of
Scheme over conventional languages is its read�eval�
print loop �Repl�� Using the Repl� students can easily
experiment with individual expressions� procedures� or
compilation units� They can also change a program dur�
ing execution to �x a bug on the 	y or to observe and
measure certain quantities� While the Repl is an excel�
lent tool for gentle introductions to computing� it often
causes subtle bugs in the various stages of an introduc�
tory course�

The traditional Repl interferes with teaching in two
ways� First� Scheme�s Repl inherited the LISP printer�
which displays results in a list�oriented notation that
ressembles but is not identical to the input notation�
Although this form of printing is useful for experienced
programmers� especially in the context of program�
writing programs� it is unintuitive for beginners who
learn to compute the value of a Scheme program us�
ing ordinary algebra� Second� a Repl uses a modi��
able table� the namespace� to keep track of de�nitions�
Consequently� the Repl is a state�oriented element in a
world that otherwise has the appearances of an imple�
mentation of algebra� If the Repl is used in a careless
manner� it can introduce or shadow program bugs in a
way that is utterly confusing to beginning students�

DrScheme overcomes both problems with a new
Repl� which di�ers from Scheme�s traditional read�eval�
print loop in that it is parameterized over the printer
and the namespace of the evaluator� The printer pa�
rameterization permits matching the language level and
the printer� Thus� for a beginner� DrScheme prints the
algebraic form of a value� After the introduction of

data mutation� it exposes the sharing among nodes in
a value� For 	exibility� the user can change the printer
that is provided by default� The choices also include
the traditional Scheme printer� and a printer that sup�
ports both program�writing programs and an algebraic
understanding of program execution �via quasiquote��

The namespace parameterization enables the environ�
ment to start each program execution with a clean slate�
That is� every time the programmer clicks on the �Exe�
cute� button �see �gure ��� the Repl loads the current
set of de�nitions into a new namespace� which elimi�
nates all legacy de�nitions from the preceding series of
interactions� The environment thus e�ciently mimics
an ine�cient and error�prone technique that is used by
experienced Scheme programmers to avoid legacy prob�
lems�

��� Pedagogic Tools

The Symbolic Stepper� Scheme courses invariably
introduce Scheme�s basic functional core via a reduction
semantics� The semantics extends three groups of alge�
braic laws that students are �or should be� intimately
familiar with� the laws of primitive operations �like ad�
dition�� the law of function application ��v�reduction��
and the law of replacement of equals by equals� This
reduction semantics scales up to full Scheme 
��

DrScheme includes a tool that enables students to re�
duce a program to a value� step by step� It can deal with
all the features used in Rice University�s course� includ�
ing the entire functional sub�language� structure de��
nitions� variable assignment� data structure mutation�
exceptions� and other control mechanisms� A student
invokes the stepper on the current program by choos�

�



Figure � MrSpidey� The static debugger �X version�

ing ToolsjStepper�� By default� the stepper shows every
reduction step of a program evaluation� While this de�
fault is useful for a complete novice� a full reduction se�
quence contains too much information for programmers
with some experience� Hence the stepper permits the
student to choose which reduction steps are shown or
which sub�expressions the stepper is to focus on� The
student can change these controls to view a more de�
tailed reduction sequence at each stop�

Students use the stepper for two purposes� First� they
use it to understand the meaning of new language fea�
tures as they are introduced in the course� A few ses�
sions with the stepper illustrates the behavior of new
language constructs better than any blackboard expla�
nation� Second� students use the stepper to �nd bugs in
small programs� The stepper stops when it encounters a
run�time error and permits students to move backwards
through the reduction sequence� This usage quickly ex�
plains the reasons for bugs and even suggests �xes�

Syntactic�Lexical Anotations� Beginning pro�
grammers need help understanding the syntactic and
lexical structure of their programs� DrScheme provides
a syntax checker that annotates the source text of syn�
tactically correct programs based on the syntactic and
lexical structure of the program� The syntax checker
marks up the source text based on �ve syntactic cate�
gories� primitives� keywords� bound variables� free vari�

�The stepper is not available in DrScheme Version ���

ables� and constants� On demand� the syntax checker
also displays arrows that point from bound identi�ers
to their binding occurrence� and from binding identi�
�ers to all of the their bound occurrences� Since the
checker processes the lexical structure of the program�
a program can use it to ��rename bound and de�ned
identi�ers�

��� Towards DrScheme II

For the second generation of DrScheme� we intend to
develop �smart tools� whose purpose it is to help the
programmer validate weak invariants of the program�
A �rst extension in this direction is MrSpidey� a static
debugger and soft typer
��� It subsumes the syntax
checker� but is computationally far more expensive�
MrSpidey analyzes the given program for potential

safety violations� That is� the tool attempts to prove
the legality of the arguments of primitive operations�
If it cannot establish that all possible arguments to a
primitive are in an appropriate range� it annotates the
operation in red� The underlying proof system is nec�
essarily conservative� Hence� the static debugger has a
mode that explains annotations by drawing� on demand�
the inferred value set for any expressions and arrows
describing the inferred 	ow of values that produced the
value set� Using these explanations� a programmer can
then decide whether the annotated operation may in�
deed fail or whether the underlying proof system is too
weak to prove the correctness of the invariant�

�



For an illustration of the tool� consider the buggy
program in the top part of �gure � The program is
simplistic and extremely small but su�ces to demon�
strate the capabilities of MrSpidey� After the static de�
bugger completes its analysis� it opens a window con�
taining the analyzed program� In this example add� is
colored red �underlined in the �gure�� which indicates
that the static debugger cannot prove that the argu�
ment will always be a number� The programmer can
then ask for the value set of add��s argument� to which
the static debugger responds by inserting the box to the
right of add��s argument� The box contains a descrip�
tion of the value set for the argument� which contains
null and which is why the static debugger concluded
that add� may be misapplied� To see how null can 	ow
into the argument of add�� the static debugger can also
overlay the program with a slice of the value 	ow graph
from the o�ending argument of add� to the source of
null� In this example� the graph is a single arrow from
null to length� since a recursive call may return this value
�see the bottom of �gure ��
WhenMrSpidey is used on realistic multi�module pro�

grams� it analyzes the entire program at a coarse level�
For the modules that the programmer wishes to inspect�
MrSpidey displays the required information� A 	ow of
values that crosses module boundaries is indicated with
arrows that leave or enter the displayed module window�
see �gure �� If a programmer demands to follow such
a cross�module graph� MrSpidey computes the neces�
sary information� opens a window� and displays the new
module�

� A Scheme for Large Systems

The development of DrScheme in Scheme has produced
valuable insight into Scheme�s capabilities for building
large systems� Not surprisingly� Scheme�s core language
has served its role well as a tool in which programmers
can quickly explore ideas and create prototypes� The
most important features proved to be the dynamic type
�unitype� system� higher�order procedures� and threads
�continuations�� Nevertheless� the project also demon�
strated that for the purpose of GUI�oriented projects�
Scheme should be extended with a number of features�
in particular an exception system� an object system for
interfacing with GUI libraries� facilities for encapsulat�
ing and linking program units� and a foreign function
interface�
We have overcome these de�ciencies with a new

Scheme implementation� MzScheme� and an accompa�
nying GUI engine� MrEd� As we gathered experience
developing DrScheme� we re�ned MzScheme and MrEd�
MzScheme�s object system now supports composable
classes� which greatly simplify the implementation of
DrScheme�s complex graphical interface� Its program

unit system permits the treatment of program units as
�rst�class values� mutually recursive references among
procedures across unit boundaries� and the dynamic
loading�linking of units� Finally� MrEd integrates GUI
classes with MzScheme�s object and thread systems�
providing multiple event spaces so that DrScheme�s GUI
can securely co�exist with a GUI program created by the
user� We report on our extensions to Scheme in more
detail elsewhere 
�� ���

� DrScheme on DrScheme

A signi�cant milestone towards our primary goal is to
develop a programming environment that we can use to
produce DrScheme itself� To prove the feasibility� we
have developed MrSpidey to the point where it can be
applied to large portions of DrScheme�s Scheme code
�around ��Kloc�� The experiment indicates the poten�
tial bene�ts and the problems we are facing� While a
smart tool like MrSpidey can reveal bugs that hundreds
of users have not been able to �nd� an appropriate pro�
gramming environment requires much more computa�
tional resources than typical workstations provide� For
more information on this experiment �and others�� we
refer the reader to Flanagan�s thesis 
��� We expect
that further experiments of this kind will yield addi�
tional insight into the requirements for smart tools and
the software engineering process�

� Conclusion

The construction of DrScheme overcomes the pedagogic
problems of Scheme with a strong integration of the
editing and evaluation process� Our experience with
DrScheme at Rice is positive� DrScheme has been used
in our introductory course on a large range of platforms�
It has signi�cantly strengthened our course� Starting
this fall DrScheme is also used in local secondary schools
for introductory programming at the ninth and tenth
grade level� The students are excited about the graphi�
cal� interactive mode of experimentation� Since we have
made DrScheme publicly available� over ��� non�Rice
users�sites have signed up for the DrScheme announce�
ment list� One �French� book on Scheme distributes
DrScheme on an enclosed CD�ROM�
Many aspects of DrScheme apply to languages other

than Scheme� Any language becomes more accessi�
ble to the beginner in an environment that provides a
tower of well�chosen language levels� a mostly functional
read�eval�print loop �outside of the debugger�� accurate
source highlighting for safety violations� and a stepping
tool that reinforces the algebraic view of computation�
In addition� typed languages can bene�t from graphi�
cal explanations of type errors like those of the static

�



Figure �� Analyzing Multiple Modules

debugger�
In conclusion� we believe that the continued develop�

ment of DrScheme will provide new inspiration into the
development of Scheme� related functional and object�
oriented languages� and programming environments�

Acknowledgements� The development of DrScheme
bene�ted from many contributions� Cormac Flanagan
�now at DEC SRC� created MrSpidey� the static de�
bugger� Stephanie Weirich �Cornell� produced a �rst
prototype� Gann Bierner �University of Pennsylvania�
implemented the �rst version of the symbolic stepper�
Richard Cobbe� Daniel Grossman �Cornell�� and Mark
Krentel contributed various pieces to the Scheme imple�
mentation and the environment� Corky Cartwright and
Bruce Duba made important suggestions in numerous
discussions� The authors also gratefully acknowledge
the patience of those people who used early versions
of DrScheme in various courses at Rice� Ian Barland�
Corky Cartwright� Mike Ernst� and Joe Warren� The
project is partially supported by several grants from
the National Science Foundation and the Department
of Education�

References


�� Clinger� W� and J� Rees� The revised� report on
the algorithmic language Scheme� Lisp Pointers�
����� �����


� Dybvig� R� K� The Scheme Programming Lan�

guage� Prentice�Hall� �����


�� Dybvig� R� K�� R� Hieb and C� Bruggeman� Syn�
tactic abstraction in Scheme� Lisp and Symbolic

Computation� ����������� �����


�� Felleisen� M� and R� Hieb� The revised report
on the syntactic theories of sequential control and
state� Theoretical Computer Science� ������
����


�� Findler� R� B�� C� Flanagan� M� Flatt� S� Krishna�
murthi and M� Felleisen� DrScheme� A pedagogic
programming environment for scheme� In Pro�

gramming Languages� Implementations� Logics�

and Programs� LNCS ��� �������� Southamp�
ton� UK� �����


�� Flanagan� C�� M� Flatt� S� Krishnamurthi�
S� Weirich� and M� Felleisen� Catching Bugs in
the Web of Program Invariants� In Programming

Language Design and Implementation� ���� May
�����


�� Flanagan� C� E�ective Static Debugging via Com�

ponential Set�Based Analysis� PhD thesis� Rice
University� �����


�� Flatt� M� and M� Felleisen� Units� Cool modules
for HOT languages� In Programming Languages�

Design � Implementation� �����


�� Flatt� M�� S� Krishnamurthi and M� Felleisen�
Classes and mixins� In Principles of Programming

Languages� Janurary �����


��� Krishnamurthi� S� Zodiac� A framework for build�
ing interactive programming tools� Technical Re�
port TR����� Rice University� �����


��� Reid� R� J� First�course language for computer sci�
ence majors� Posting to comp�edu� October �����


�� Schemer�s Inc� and Terry Kaufman� Scheme in col�
leges and high schools� Available on the web�
URL� http���www�schemers�com�schools�html�

�


