
A Functional I/O System ∗

or, Fun for Freshman Kids

Matthias Felleisen
Northeastern University

Robert Bruce Findler
Northwestern University

Matthew Flatt
University of Utah

Shriram Krishnamurthi
Brown University

Abstract

Functional programming languages ought to play a central role
in mathematics education for middle schools (age range: 10–14).
After all, functional programmingis a form of algebra and pro-
gramming is a creative activity about problem solving. Introducing
it into mathematics courses would make pre-algebra course come
alive. If input and output were invisible, students could implement
fun simulations, animations, and even interactive and distributed
games all while using nothing more than plain mathematics.

We have implemented this vision with a simple framework
for purely functional I/O. Using this framework, students design,
implement, and test plain mathematical functions over numbers,
booleans, string, and images. Then the framework wires themup to
devices and performs all the translation from external information
to internal data (and vice versa)—just like every other operating
system. Once middle school students are hooked on this form of
programming, our curriculum provides a smooth path for them
from pre-algebra to freshman courses in college on object-oriented
design and theorem proving.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design—methodologies; D.4.7 [Operating Systems]: Orga-
nization and Design—interactive systemsGeneral Terms De-
sign, LanguagesKeywords Introductory Programming

1. Functions for Freshmen
Based on our decade-long experience (Felleisen et al. 2004a),
novices to programming tend to accept languages that they haven’t
heard of—as long as they can quickly construct a program that
is like the applications they use on their computers. To thisend,
the chosen language must come with a rich framework for input
and output (I/O), ideally via graphical interfaces. Chakravarty and
Keller (2004) present corroborating evidence based on a thorough
analysis of their Haskell-based introductory courses. They also re-
port, however, that most Haskell texts deemphasize I/O. Ourown
review shows that three (Thompson 1997; Bird and Wadler 1998;
Hutton 2007) of four major Haskell-based text books introduce
I/O in the last third of the book or the final chapter; only Hudak
(2000) tackles it head-on, though in a quasi-imperative manner.

∗ This research was partially supported by several grants from the National
Science Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

Surprisingly, even O’Sullivan et al. (2008)’sReal World Haskell
has difficulties explaining I/O, according to some on-line reviews.

Here we present our approach to reconciling I/O with purely
functional programming, especially for a pedagogical setting. The
I/O framework extends the DrScheme (Findler et al. 2002) teaching
languages for our textHow to Design Programs(HtDP) (Felleisen
et al. 2001), but it is also accessible from other dialects. Our frame-
work does not require the use of any monads or other threading
devices, meaning middle school students can write animation and
interactive games as a bunch of mathematical functions. Indeed, be-
cause everything is just a function on numbers, strings, andimages,
students can also test every step as they design their programs. For
the past three years, the curriculum has been deployed at eight mid-
dle schools (ages 10–14). The students tend to embrace program-
ming enthusiastically after a nine-week course. Moreover,this kind
of programming experience seems to improve the performanceof
these students in standard mathematics courses.

The purpose of our paper is to share our technical development
so that others can duplicate our pedagogical experiences, whether
the functional I/O library is layered on top of an imperativelibrary
(as in our implementation) or on top of an I/O monad (as an im-
plementation for Haskell would be). The next section provides an
overview of our experiences to explain some of the sociological
context where we apply functional programming with I/O. Sec-
tion 3 illustrates how we start middle school students on functional
programming. The rest of the paper focuses on the technical foun-
dations.Sections 4 and 5 explain the I/O library and how to use it.
Section 6 is about the college-level curricular context. Insection 7,
we compare our approach to the Clean Event I/O system, which is
closest to our framework, and to some other pieces of work.

2. Experience

Age group Since Framework Schools

middle school 2006 animation eight
two- or three-object games, simplistic sound

high school 2004 animation ≥ 30
N object games, simulations

college 2003 animation ≥ 20
N object games, simulations, visualization

college & MS program 2008 dist. prog. Chicago & NEU
distributed two-player games

Variants of our I/O library have been in use since 2003 at a vari-
ety of places. The nearby table provides a concise overview of the
kinds of students, sites, and projects that it enables. Clearly, the
library is primarily useful in college-level freshman courses. Start-
ing in 2004, we also introduced the library into the TeachScheme!
workshops; some 30 schools have run courses with it. Three
years ago, Emmanuel Schanzer derived the Bootstrap curricu-
lum (www.bootstrapworld.org) from HtDP for Citizen Schools
(www.citizenschools.org), which runs after-school programs

on a wide range of topics in poor neighborhoods across the US.
At this point, eight sites (in Austin, the Bay Area, Boston and
surroundings, and New York City) have used Bootstrap with a spe-
cialized variant of the I/O library. Finally, the first author uses the
library in an immersion course for Northeastern’s MS program.

Middle school students in the Bootstrap after-school courses
typically have little background in mathematics. They are barely
comfortable with calculations on numbers; they struggle with vari-
ables, if they have encountered them at all; and many are discour-
aged about the entire topic. Occasionally some of the students are
concurrently enrolled in a first pre-algebra course.

One goal of Bootstrap is to bring across the notion of a function
as something that relates quantities, though not necessarily num-
bers. Naturally, the citizen teachers (volunteer instructors working
for Citizen Schools) do not tell students that they are aboutto study
a parenthesized form of algebra. Instead, they demonstrateinterac-
tive computer games and encourage students to think about creating
such games on their own.

A normal Citizen Schools course lasts nine weeks, with one
two-hour session per week and no homework assignments. Within
this time, most students design and systematically implement an in-
teractive game of their choice that involves a fixed number ofmov-
ing objects, object collisions, and score keeping. They code these
games in the “Beginning Student” language of HtDP, extendedwith
our new library. Citizen teachers report that the majority of students
actively and enthusiastically participate in these courses, many ask-
ing for more when the course ends.1,2

By the end of the course, some of the citizen teachers share with
the students that their game programsare mathematics. Anecdotal
evidence suggests that making mathematics come alive in this
manner has a direct impact on students’ performance in subsequent
mathematics courses. Numerous instructors report conversations
with mathematics teachers on how the students have changed their
attitude about mathematics and how their grades have improved.

The I/O library plays a similarly important role in high school
courses and first-year college curricula as it does for Bootstrap.
Many high school teachers and college instructors have noticed
that students fail to understand mathematical functions. An intro-
ductory curriculum that makes functions critical and fun for anima-
tions, simulations, and interactive and multi-player/multi-computer
games can thus play a central role in enhancing students’ prepara-
tion. Once students understand the basic idea of a function,it is
easy to motivate them to study the systematic design of functions
as advertised in HtDP (Felleisen et al. 2004b). After all, designing
properly enables them to write more interesting simulations, ani-
mations, games, etc. As we explain in section 6, this kind of first
course also prepares students well for the rest of the first year, in-
cluding applicative and imperative object-oriented programming.

Some typical examples are the freshman courses at the Uni-
versity of Chicago and Northeastern University. Although Chicago
uses a quarter system, its course reaches the same milestones as
Northeastern’s, due to the small class size at Chicago and students’
strong academic preparation. In both courses, students work out
at least two complete game project in a purely functional setting,

1 Due to the demand, Schanzer [personal communication, Dec. 2008] is
working on a second-level course for next summer.
2 Over the past few years, Alice [alice.org] and Scratch [scratch.mit.
edu] have been touted as frameworks for teaching middle school students
how to program. Both efforts are incomparable with Bootstrap for two rea-
sons. First, both Alice and Scratch are mostly imperative and thus fail to
have direct benefits for the students’ mathematics education. Second, as
others also note (Powers et al. 2007), these GUI-oriented systems come
without a natural transition to full-fledged programming whereas our cur-
riculum spells out a natural path from middle school mathematics to the
second semester in college.

often the same ones at both places (2008: Snake, Chat Noir). The
first project (between 500 and 1,000 lines) is repeated twice, once to
ensure students can implement suggestions and a second timeto in-
troduce abstraction via higher-order functions. The second project
(some 1,000–2,000 loc) is typically an end-of-semester/quarter
project where students have some creative freedom, too. Theau-
thors have repeatedly observed that students continue to work on
their game programs after the semester/quarter ends.

3. Arithmetic, Algebra, and Movies
In middle school, mathematics teachers often ask students to deter-
mine the next number in a sequence such as 1,4,9. Or they show
students a series of shapes and ask what the next shape shouldlook
like. Eventually these series are arranged in the form of tables, e.g.,

x = 0 1 2 3 4 . . . i
y = 0 1 4 9 ? . . . y(i)

and students are asked to fill in the result for 4 and to determine
a general formula for determiningany element in the sequence.
Next comes an algebra course where students experience the joys
of such exciting problems as two trains leaving from Chicagoand
Philadelphia and colliding in Pittsburgh.

Functional programmers know that these students are encoun-
tering their first core concept in their mathematical education: func-
tions and “variable expressions.” They also know that functions and
expressions don’t need to be restricted to numbers and operations
on numbers. It is perfectly acceptable to speak of the arithmetic and
algebra of booleans, chars, strings, etc.

DrScheme programmers also formulate functions and expres-
sions that compute with images as first-class values, e.g.,

(empty-scene 100 100)

returns a blank square of 100 by 100 pixels, and

(place-image 10 20 (empty-scene 100 100))

combines the image of the rocket with the blank square by placing
the former 10 pixels to the right of the left margin and 20 pixels
down from the top margin of the latter.

Now imagine teaching in this context. Teachers can ask students
what the next image in the following series is:

x = 0 1 2 3 4
z=

?

and what the general formula is for the image. As before, students
would struggle and eventually come up with an answer.

At this point, teachers could explain that displaying 25 to 30
of these scenes per second would create the effect of a “movie”
that simulates a rocket landing. Students know movies, and students
find movies more interesting than trains colliding in Pittsburgh. So
the teacher could show them how to play this movie in DrScheme:

(define (rocket-scene i)

(place-image 50 i (empty-scene 100 100)))

The function definition captures the general answer to the teacher’s
question, though in parentheical syntax. Although this isn’t close to
the historically grown infix notation of mathematics (or to that of
fashionable languages), our experience shows that students don’t
seem to mind after some initial reluctance. If the student now

applies the library functionrun-simulation to rocket-scene,
the library generates a series of scenes. More precisely, itapplies its
argument (here:rocket-scene) to 0, 1, 2, 3,
. . . and displays the resulting series of images
in a separate window, like the one embedded
in this paragraph, at the rate of 28 numbers per
second.

The rest of the paper shows how to general-
ize this idea so that the language of 9th grade
school mathematics can be used to design interactive, and even dis-
tributed, games.

4. Designing a World
The HtDP curriculum heavily emphasizes functional programming.
DrScheme (Findler et al. 2002), HtDP’s accompanying IDE, sup-
ports a series of five teaching languages, each expanding theex-
pressive power of its predecessor. The first four of these teaching
languages are purely functional, and they are usually the only ones
used in courses for novice programmers.

Universe

 type WorldSt

... body ...

 type KeyEvt = ...
 type MouseEvt = ...
 val big-bang: WorldSt
 x (WorldSt -> WorldSt)
 x (WorldSt KeyEvt -> WorldSt)
 x (WorldSt Nat Nat MouseEvt -> WorldSt)
 -> WorldSt

WorldProgram

 type KeyEvt;
 type MouseEvt;
 val big-bang: WorldSt
 x (WorldSt -> WorldSt)
 x (WorldSt KeyEvt -> WorldSt)
 x (WorldSt Nat Nat MouseEvt -> WorldSt)
 -> WorldSt

... body ...

 type WorldSt

Figure 1. A unit perspective of world programs andUNIVERSE

Our I/O framework comes as a library, dubbedUNIVERSE. The
library implements and exports two expression forms for launching
world and universeprograms. This section explains worlds; the
next one is about universes.

4.1 The World is a Virtual Machine

To a student, theUNIVERSE library represents the computer’s op-
erating system and hardware. As such the library is the keeper of
a representation of the state of the world. When the hardwareor
operating system notices certain events, the library handsover the
state of the world to a function in the student’s program and ex-
pects another state back. We call this state aworld, and the phrase
world programdenotes the collection of functions that interact with
the library. Combining the library and a world program creates an
executable program.

The library is parameterized over the kinds of states—called
WorldSt—that the world program wishes to deal with as well as the

event handlers that process these states. A world program matches
these two parameters with a data definition for the collection of
states and with a collection of functions. Figure 1 expresses this
dependency between the library and a student’s program via a
unit diagram (Flatt and Felleisen 1998). The universe library is
parameterized over the typeWorldSt; it exports two types and a
function that consumesWorldSt-processing functions. Conversely,
a world program is a unit that imports all of this, exporting in return
aWorldSt type. Linking the two creates the executable.

In reality, though, programs specify types as comments, and
UNIVERSEdoes not export a function for specifying event handlers
but a syntactic extension, dubbedbig-bang:

(big-bang WorldState-expr
(on-tick tock-expr rate-expr†)†

(on-key react-expr)†

(on-mouse click-expr)†

(stop-when done-expr)†

(on-draw render-expr width-expr†

height-expr†)†)

A big-bang expression has one required sub-expression—the
initial state of the world—and five optional clauses (indicated via
† superscripts). These clauses are introduced via one of five key-
words (on-tick, on-key, on-mouse, stop-when, andon-draw),
mimicking keyword-based parameter passing. Each clause speci-
fies at least one sub-expression; two have additional optional sub-
expressions (see† superscripts).

When PLT Scheme encounters abig-bang expression, it first
evaluates all sub-expressions and checks some basic properties.
The result ofWorldState-expr becomes the initial state of the
world. The remaining values give access to a subset of the underly-
ing platform’s events:

1. If anon-tick clause exists,big-bang starts a clock that ticks
at a rate of 28 times per second or as often as the result of
rate-expr—a natural number—specifies.

The expressiontock-expr must evaluate to a function of one
argument:

;; WorldSt → WorldSt

Specifically, the function consumes a state of the world and
produces one. Theuniverse library invokes it on the current
state every time the clock ticks; its result becomes the nextstate.

2. An on-key clause specifies how a world program reacts to a
keyboard event. Its sub-expression must evaluate to a function
of two arguments:

;; WorldSt KeyEvt → WorldSt

The first is again the current state of the world; the second isa
data representation of the keyboard event.

In UNIVERSE, a keyboard event is represented as either a one-
character string (e.g.,"a") or a number of special strings (e.g.,
"left", "release"). The former denote regular keys on the
keyboard; the latter are used to represent arrow keys, other
special keys, and the event of releasing a key.

The library invokes this function for every keyboard event and
uses the result of the invocation as the new state of the world.

3. Similarly, anon-mouse clause determines how a world program
reacts to a mouse event with a function of four arguments:

;; WorldSt Nat Nat MouseEvt → WorldSt

As always, the first argument is the current state of the world.
The next two arguments capture thex andy coordinates of the

W

W′

W′′

W′′′

...

W′′′′

...

tickH

keyH

mouseH

tickH keyH mouseH

tickH
keyH

mouseH

Figure 2. A state transition diagram for world programs

event, measured in the number of pixels from the left and top
of the screen. Finally, theMouseEvt argument determines what
kind of mouse action has taken place. It is one of the following
six strings:"button-up", "button-down", "drag", "move",
"enter", "leave".

Like the underlying operating system, theUNIVERSE library
does not notify a world program of every mouse event, but it
samples the mouse events at a reasonably high rate.

The result of applying the mouse-event handler function be-
comes the next world.

4. The stop-when clause determines when the world ends. Its
sub-expression must evaluate to a predicate:

;; WorldSt → Boolean

After handling an event with one of the above event-handling
functions,UNIVERSEuses this predicate to find out whether the
resulting state of the world is afinal state. If the result state
satisfies the predicate, no further events are processed.

5. Last but not least, abig-bang expression may come with an
on-draw clause, which has either one or three sub-expressions.
The first sub-expression must evaluate to a function of one
argument:

;; WorldSt → Image

If thebig-bang expression specifies such a function, theUNI-
VERSE library opens a separate window whose size is deter-
mined by the size of the first image that the function produces.
Alternatively, a program may specify the size of the canvas
explicitly via the two additional sub-expressions, which must
evaluate to natural numbers.

The function specified inon-draw is used every time an event-
handling function produces a state. The resulting image is ren-
dered in the separate window.

Once the world ends,big-bang returns the final state.3

As figure 2 suggests, the core of an executable world program
denotes a state machine. Each elementW, W′, W′′, . . . of WorldSt is
a state of this machine. For each state and for each kind of event,
the event handlers (plus event-specific inputs) specify thesuccessor
state; that is, each state—except for final ones—is the source of
three (family of) arrows (with distinct targets). The final states are
those for which the predicate specified in thestop-when clause
producestrue.

3 It is instructive to contrast this to the type ofreactimate in Fran (Elliot
and Hudak 1997).

What the figure does not show is the orthogonally specified
rendering of each state as a scene or image. Although these images
are values in PLT Scheme, they are usually not a component of
world states. One way to imagine this rendering process is toadd
a different kind of arrow to each state and connecting this arrow to
the scene that theon-draw function produces for this state.

Given this explanation, we can explain the workings of the
run-simulation function. Its world is the world of natural num-
bers, i.e., the state of the world represents the number of times the
clock has ticked so far:

;; WorldSt = Nat
;; interp. the number of clock ticks

As for run-simulation, it consumes a function from natural num-
bers toScenes. Its purpose is to start the world, to count the number
of clock ticks, and to invoke the given function on each clocktick
to render a series ofScenes:

;; (Nat → Scene) → Nat
(define (run-simulation render)

(big-bang 0 (on-tick add1) (on-draw render)))

The result ofrun-simulation is a natural number: specifically, the
number of clock ticks that have passed (once the simulation halts).

4.2 Designing a World Program

Designing a world program is surprisingly easy. The first step is
to design a data representation for the information that varies and
that is to be tracked through the duration of the program execution.
We recommend expressing the data representation as a data (type)
definition (or several) and equipping it with comments that interpret
this data in terms of the visible canvas (world). Naturally,this data
definition fills in for theWorldSt type from the preceding section.

The second step is to tease out constants that describe properties
of the world. This includes both quasi-physical constants,e.g., the
width and height of the screen, as well as image constants, e.g., the
background or a fixed shape that moves across the scenery.

The third step is to design the event-handling functions. Here
“design” refers to the design recipe from HtDP. Given that we
already have data definitions (from the first step and the library), we
also have contracts for all the top-level functions. Hence the next
step is to think through examples and to turn them into tests.The
creation of templates usually (but not always) uses theWorldSt
type for orientation. After coding, it is important to run the tests.

Also following HtDP, iterative development is the most ap-
propriate approach for world programs. Specifically, we recom-
mend that students provide a minimally useful data definition for
WorldSt and then design one state-processing event handler and
the rendering function. This enables them to test the core ofthe
program and interact with it. From here, they can pursue two dif-
ferent directions: enriching the data and adding event handlers.

4.3 Controlling a UFO

Let us illustrate how to design world programs with an example
from the second or third week in a college freshman course. The
goal of the exercise is to move a UFO (“flying saucer”) across the
canvas in a continuous manner. Later we add functions that allow
“players” to control the UFO’s movements via the arrow keys on
the keyboard and via mouse clicks.

A moving object on a flat canvas has (at least) four properties,
meaning we need to use a structure4 to represent the essential data:

4 In teaching languages, a structure definition like this one introduces three
kinds of functions: a constructor (make-ufo), a predicate (ufo?), and one
selector per field to extract the values (ufo-x, ufo-y, ufo-dx, ufo-dy).
PLT Scheme also adds imperative mutators on demand.

;; WorldSt KeyEvt → WorldSt
;; control the ufo’s direction via the arrow keys

(check-expect
(control (make-ufo 5 8 -1 -1) "down")
(make-ufo 5 8 -1 +1))

;; ... more test cases ...

(define (control w ke)
(cond

[(key=? ke "up") (set-ufo-dy w -1)]
[(key=? ke "down") (set-ufo-dy w +1)]
[(key=? ke "left") (set-ufo-dx w -1)]
[(key=? ke "right") (set-ufo-dx w +1)]
[else w]))

;; WorldSt Int → WorldSt
(define (set-ufo-dy u dy)

(make-ufo (ufo-x u) (ufo-y u)
(ufo-dx u) dy))

;; WorldSt Nat Nat MouseEvt → WorldSt
;; move the ufo to a new position on the canvas
(check-expect (hyper (make-ufo 10 20 -1 +1)

40 30 "button-up")
(make-ufo 10 20 -1 +1))

;; ... more test cases ...

(define (hyper w x y a)
(cond

[(mouse=? "button-down" a)
(make-ufo x y (ufo-dx w) (ufo-dy w))]
[else w]))

;; WorldSt → Boolean
;; has the ufo landed?
(check-expect (landed? (make-ufo 5 (- SIZE 5) -1 +1))

false)
;; ... more test cases ...

(define (landed? w) (>= (ufo-y w) SIZE))

Figure 3. Using keyboard and mouse events to control a ufo

(define-struct ufo (x y dx dy))
;; WorldSt = (make-ufo Nat Nat Int Int)
;; interp. the location (pixels)
;; and velocity (pixels/tick)

Because nothing else in this “game” changes over time, we identify
the state of the world with the state of the UFO.

Next we fix the size of the canvas, the background (an empty
scene), and the shape of the UFO:

(define SIZE 400)
(define MT (empty-scene SIZE SIZE))
(define UFO

(overlay (circle 10 "solid" "green")
(rectangle 40 2 "solid" "green")))

(define UFO.version2)

This time we use basic image creation and manipulation prim-
itives to create the right kind of shape; using the definitionof
UFO.version2 instead ofUFO would of course work equally well.

With the above data definition, we have determined the com-
plete type signature of the event-handling functions for clock tick
events. Of course we should add a purpose statement:

;; WorldSt → WorldSt
;; move the ufo for one tick of the clock

The next step in our design recipe calls for examples that describe
the behavior of the function. We formulate these examples imme-
diately in the unit testing framework that comes with DrScheme’s
teaching languages:5

(check-expect (move (make-ufo 10 20 -1 +1))
(make-ufo 9 21 -1 +1))

The example illustrates that the function’s purpose is to add the
velocity to the current position and to use it as the new position:

(define (move w)
(make-ufo (+ (ufo-x w) (ufo-dx w))

(+ (ufo-y w) (ufo-dy w))
(ufo-dx w)
(ufo-dy w)))

5 DrScheme collects allcheck-expect expressions and evaluates them
after all definitions and expressions are evaluated. It thenoutputs the results
and tabulates failed test cases with hyper-links to the source text of the test.

Before we can interact with the program, we must design one
more function, namely, a function for rendering the currentstate of
the world as a scene:
;; WorldSt → Scene
;; place the ufo into MT at its current position

(check-expect (render (make-ufo 10 20 -1 +1))
(place-image UFO 10 20 MT))

(define (render w)
(place-image UFO (ufo-x w) (ufo-y w) MT))

Designing such a function proceeds according to the same recipe
as designing themove function. Also notice that we can test the
outcome of this function as if it were a function on the reals.Be-
cause images are first-class values, it makes sense to construct the
expected output and to compare it to the actual result of the func-
tion. PLT Scheme’s standardequal? function works for images,
too. While we recommend that students develop such “expected
results” expression (interactively in the REPL) to gain some under-
standing of how the function should proceed, it is indeed possible
to insert an actual image instead of such an expression:

(check-expect
(render (make-ufo 10 20 -1 +1)))

Equipped withmove andrender, it is possible to define a main
function and to watch these first two definitions in action:
;; WorldSt → WorldSt
;; run a complete world program,
;; starting in state w0
(define (main w0)

(big-bang w0 (on-tick move) (on-draw render)))

In short, we have finished the first stage of our iterative design
cycle, creating a first useful part of the overall program.

From here, it is easy to design the rest of the function. See
the left-hand side of figure 3 for the definition of a function that
controls the movements of the UFO via arrow keys. The function
key=? compares two keyboard events. The right-hand side of the
same figure displays functions for making the UFO jump to the
position of a mouse click;mouse=? of course compares mouse
events. The last function checks whether the UFO has landed.

5. Universe: A World is Not Enough
Designing interactive graphical programs via purely functional pro-
gramming is only half the game. The other half is about designing
distributed programs, especially distributed games. The principles
remain the same, but the differences deserve a close look.

5.1 Universes

A universe consists of a distributed collection of world programs
that communicate with each other via a programmable server:

Universe

World 2 World 3

World 1 Server World 4

We make no assumption about where the programs run, in particu-
lar, UNIVERSEcannot find servers automatically.

The communication links rely on TCP/IP connections, meaning
messages sent from a world to a server (or vice versa) are guaran-
teed to arrive in the order in which they are dispatched. Of course,
when two distinct world programs send messages to the server,
there is no guarantee that the messages arrive in the order they
were sent; similarly, if the server broadcasts messages to (some of)
the participating worlds, the messages may again arrive at distinct
worlds in an unrelated order.

In order to design a universe based on theUNIVERSEteachpack,
students design a communication protocol, which they implement
via a “server” program. Some protocols simply pass messagesfrom
one world program to another and back, with the server playing
the role of a conduit. Other protocols assume that the serveris an
arbiter, enforcing the rules of a game or directing traffic among
the participants, as in a chat room. Finally, the server could be
configured in such a way that the world programs simulate peers
in a peer-to-peer neighborhood.

5.2 A World in the Universe

For a world program to participate in a universe, it registers with the
server using a(register ip-expr) clause in itsbig-bang ex-
pression. The sub-expression designates an IP address (as astring).

A registered world program sends messages via its event han-
dlers. To this end, theUNIVERSElibrary definespackage structures
and exports its constructor and predicate:
(define-struct package (world msg))
;; Package = (make-package World S-exp)

Moreover, the library actually deals with event handlers that return
one of two kinds of results, meaning the signature of, say, key event
handlers is really

;; WorldSt KeyEvt → (∪ Package WorldSt)

instead of the one specified in the preceding section. If an event
handler produces a package, the library uses the value in thefirst
field as the next state of the world, and the value in the secondfield
is sent off to the server. Otherwise, the library assumes theresult is
just the state of the world.

To receive messages, a world program installs an event-handling
function via anon-receive clause inbig-bang. It subexpres-
sion must evaluate to a function with the following signature:

;; WorldSt S-exp → (∪ Package WorldSt)

When a message in the form of an S-expression arrives, this event
handler is applied to the current state of the world and the message.
Like all other event handlers, this handler may return aPackage.

W*

W

W′

W′′

W′′′

...

W′′′′

... ...

tickH

S-exp

keyH

S-exp

mouseH

S-exp

recH

S-exp

tickH

S-exp

keyH S-exp

mouseH

S-exp

recH

S-exp

tickH

S-exp

keyH

S-exp

mouseH

S-exp

recH

S-exp

tickH

S-exp

keyH

S-exp

mouseH S-exp

Figure 4. State transition view of worldcommunicatingprograms

Figure 4 is a revision of figure 2 for communicating worlds.
Again, all elements ofWorldSt are states, but now all states come
with four kinds of transition arrows. The fourth one is the event
handler that deals with message receipts. In addition, eacharrow
now comes with an optionaloutput label in the form of an S-
expression. Just asUNIVERSE displays the rendering of a state as
an image for a world program, it also implements the sending these
messages from state transitions to the universe’s server.

5.3 The Universe and its Server

The UNIVERSE library supports the design ofserversin a manner
that is analogous to the design of world programs. A programmer
describes a server via a pair of specifications: a data definition
of universe states, dubbedUniSt, and auniverse description,
which is analogous to abig-bang description.

For a server, three kinds of events matter most: the entry of an
additional world into the universe, a world’s disappearance, and the
arrival of a message from a participating world. Accordingly server
programs must deal with representations of participating worlds,
andUNIVERSEsupports this:

(define-struct iworld (name in out))
;; IWld = (make-iworld String Port Port)
;; interp. internal representation
;; of a participating world

Theiworld structure keeps track of a world program’s name, its
input TCP port, and its output port, though a server program may
only access the name field ofiworld structures. Other than that,
server programs must compare worlds and do so withiworld=?.

Here is the core grammar of auniverse description:

(universe UniSt-expr
(on-new new-expr)
(on-msg msg-expr)
(on-disconnect disc-expr disc-expr)†

...)

The first, required sub-expression determines the initial state of
the server. Furthermore, everyuniverse description comes with
an on-new clause and anon-msg clause. Optionally, it may also
contain anon-disconnect clause.

Every server’s event handler consumes the current state of
the universe—as perceived and maintained by the server’s event
handlers—and the representatin of a participating world; it may
also consume a message received from such a world. An event

handler produces a bundle, i.e., aUNIVERSE-specified structure
that contains three distinct pieces of information: the newserver
state (UniSt); a list of messages to designated worlds; and the list
of worlds to be discarded:

(define-struct bundle (state mails to-discard))
(define-struct mail (to msg))
;; Bundle = (make-bundle UniSt Mail∗ IWld∗)
;; Mail∗ = [Listof (make-mail IWld S-exp)]
;; IWld∗ = [Listof IWld]

Event handlers may only constructbundles andmails; they may
not destructure them.

The event handlers function as follows:

1. An on-new handler has the signature

;; UniSt IWld → Bundle

i.e., it consumes the server state and a representation of the
world that wishes to join. The resulting bundle may contain this
new world as one that should be discarded, which effectively
represents a rejection of the request. Optionally, the handler
may send out messages about the event.

2. An optionalon-disconnect event handler has the same signa-
ture as anon-new handler, but it deals with the disappearance
of a world from the universe:

;; UniSt IWld → Bundle

This kind of event is usually due to a severed connection or
because the corresponding world program shut down.

3. The signature foron-msg handlers also includes the message
that arrived in the form of an S-expression:

;; UniSt IWld S-exp → Bundle

When theon-msg event handler is invoked, it is applied to the
state of the server, the world that sent in a message, and the
message itself. The result bundle determines how this eventis
shared with other worlds in the universe.

Optional handlers may drive the server via clock ticks, render the
current state of the server in a console, or deal with other events.

A complete universe program—as specified in auniverse
expression—is best thought of as a state-transition machine, just
like the one for world programs depicted in figure 4. Each element
of UniSt is a state of the machine; each event handler (and its
auxiliary parameters) represents one possible transitionfrom one
UniSt element to another. In contrast to world programs, the state
transitions in a universe program come with two labels: one for
sending mail to a list of participating worlds, and another one for
deleting worlds from the list of participants.

5.4 Designing a Universe

Designing a universe requires two different perspectives:a global
one concerning coordination and local ones for the server and the
world programs. Once the global view has been developed, the
local design of the servers and world programs proceeds justlike
stand-alone world programs.

The global perspective demands the design of a coordination
and communication protocol. This protocol design has the goal of
creating and maintaining an invariant for the universe. In order to
achieve this goal, we teach students to consider the start-up phase,
the steady-state phase, and the shut-down phase of a universe. For
all cases, it is important to understand (1) the order in which events
occur and (2) which S-expressions encode which messages.

Our experimentation with theUNIVERSE library suggests that
interaction diagrams—like those used for object-orienteddesigns
based on UML—are a good medium for discussing ideas. Instead
of spelling out this recommendation in detail, however, we illustrate
it with a simple example.

5.5 Serving a Turn

As mentioned, the coordination among the worlds of a universe
depends on the server and the message protocol it employs. We
and our students have implemented a number of servers. Here we
illustrate the power of theUNIVERSE library with the design of a
server and some UFO controller clients where each client gets a
turn to control a (local) UFO. We start with the protocol design,
followed by the design of the server, and then the adaptationof the
UFO program from section 4 to support distribution.

Protocol Design The prose suggests the following, informal and
schematic interaction diagram:

server

world1: sam

world2: carl��

register:"sam"

��

register:"carl"
-

"your-turn"

�

"done"

-

"your-turn"

�

"done"

-

"your-turn"

The three vertical lines are “world life-lines,” while the horizontal
lines are registration or message sending steps.

This particular diagram shows the key properties of our pro-
posed universe. The server is on the left; the participatingworlds
are to its right. After creation, a world registers with the server,
which we assume sends along a name for the world. Our diagram
shows that as soon as a first world has registered, the server gives
this world a turn without waiting for any other world to show up.
If another world shows up—possibly during some turn—the server
becomes aware of it but continues to wait for a"done" signal from
the world whose turn it is. Once the active world ends its turn, the
server gives a turn to the next world on the list. Finally, thedia-
gram also shows what happens when a world disappears, say due
to the closure of a connection. The server notes the disappearance
and gives a turn to (one of) the remaining worlds.

Server Design From here, the design of the server proceeds just
like the design of a world program, though we must observe the
constraints imposed by the protocol. We start with the required data
definition:

;; UniSt = IWld∗
;; interp. list of worlds in the order they take
;; turns, starting with the active one
;; the active world (if any) is first

;; UniSt IWld → Bundle
;; nw is joining the universe
(check-expect
(add-world (list iworld2) iworld1)
(make-bundle (list iworld2 iworld1) ’() ’()))
;; ... more test cases ...
(define (add-world ust nw)

(if (empty? ust)
(make-bundle (list nw) (m2 nw) ’())
(make-bundle (append ust (list nw)) ’() ’())))

;; UniSt IWld "done" → Bundle
;; mw sent message m; assume mw = (first ust), m = "done"
(check-expect
(switch (list iworld1 iworld2) iworld1 "done")
(make-bundle (list iworld2 iworld1) (m2 iworld2) ’()))
;; ... more test cases ...
(define (switch ust mw m)

(local ((define l (append (rest ust) (list mw)))
(define nxt (first l)))

(make-bundle l (m2 nxt) ’())))

;; UniSt IWld → Bundle
;; dw disconnected from the universe
(check-expect
(del-world (list iworld1 iworld3) iworld3)
(make-bundle (list iworld1) ’() ’()))
;; ... more test cases ...
(define (del-world ust dw)

(if (not (iworld=? (first ust) dw))
(make-bundle (remq dw ust) ’() ’())
(local ((define l (rest ust)))

(if (empty? l)
(make-bundle ’() ’() ’())
(local ((define nxt (first l))

(define mll (m2 nxt)))
(make-bundle l mll ’()))))))

;; IWld → Mail∗
;; create single-item list of mail to w
;; no test cases
(define (m2 w)

(list (make-mail w "your-turn")))

Figure 5. A primitive functional server program

Note again interpretation that comes with the data definition. It has
several implications for the design of the event handlers.

Since this server deals with three kinds of events—registration
of a world, message receipt, and disconnection of a world from
the universe—we need three event handlers. TheUNIVERSE spec-
ifications and the agreement to send certain messages dictate the
contract statements:

;; add-world : UniSt IWld → Bundle
;; switch : UniSt IWld "done" → Bundle
;; del-world : UniSt IWld → Bundle

The names of the three functions are suggestive of their purpose.
Just as in the case of the UFO controller, we can design these

functions in a systematic manner. In support of unit tests for
event handlers in a server,UNIVERSE exports three sample worlds
iworld1, iworld2, and iworld3; of course, it does not export
the capability of creating representations of participating worlds.
Otherwise, the design of these three server functions proceeds in a
straightforward fashion.

The three definitions and fragments of their test suites are dis-
played in figure 5:6

1. the top-left box contains the code for adding a world;

2. the box in the bottom-left defines the function for dealingwith
a message from the active world, which is the only kind of
messages that the server expects;

3. the top-right box concerns the event of a world disconnecting
from the universe; and

4. the final box in the bottom right contains the definition of a
auxiliary function for creating a list of mail to a single world.

As far as the server is concerned, the only task left to do is tofor-
mulate theuniverse expression and to evaluate it at DrScheme’s
reply to start the server:

6 The definitions use thelocal construct from the HtDP teaching lan-
guages. Roughly speaking,(local defs body) introduces the mutually
recursive definitionsdefs for the evaluation ofbody. Unlike Scheme’s
internal definitions,local definitions have the exact same semantics as
global definitions but come with a restricted lexical scope.

(universe ’()
(on-new add-world)
(on-msg switch)
(on-disconnect del-world))

Adding this expression to the bottom launches a process thatwaits
for TCP/IP events and deals with them by invoking one of the three
event handlers.

Client Design To illustrate how the client side works, let us
consider a small change to our UFO controller from the preceding
section. Suppose we give each “player” a turn to land a UFO and
that when the UFO touches the ground, it is the next world’s turn.
One obvious implication is that there is now a distinct new kind of
state of the world:

;; WorldSt is one of:
;; --- "rest"
;; --- (make-ufo Nat Nat Int Int)

When it isn’t this world’s turn, the world is in a"rest" state.
Next we replace the event handler for ticks with a function that

sends out messages when the UFO lands:

;; WorldSt → (∪ WorldSt Package)
(define (move.global w)

(cond
[(string? w) w]
[else (local ((define v (move w)))

(if (not (landed? v))
v
(make-package "rest" "done")))]))

The function distinguishes the two cases from the data definition.
For a string, it returns the world as is. Otherwise, it moves the world
using the oldmove function and then checks whether the UFO has
landed; if so, the new event handler produces a package.

In addition, we need a handler for"your-turn" messages:

;; WorldSt "your-turn" → WorldSt
;; assume: messages arrive only
;; if the state is "rest"
(define (receive w msg)

(make-ufo 20 10 -1 +1))

;; WorldSt (WorldSt → WorldSt) (WorldSt KeyEvt → WorldSt) (WorldSt Nat Nat MouseEvt → WorldSt) [Listof Event]
;; →
;; WorldSt
;; process a list of events given the initial world and event handlers
(define (big-bangF w0 tickH keyH mouseH loe0)

(local (... dispatch: see below, on the right ...
;; accumulator design: w is the result of dealing with all events between loe0 and loe (inclusive)
(define (big-bangF w loe)

(cond
[(empty? loe) w]
[else (big-bangF (dispatch w (first loe)) (rest loe))])))

(big-bangF w0 loe0)))

(define-struct tick ())
(define-struct key (kind))
(define-struct mouse (x y kind))
;; An Event is one of:
;; --- (make-tick)
;; --- (make-key KeyEvt)
;; --- (make-mouse Nat Nat MouseEvt)

;; WorldSt Event → WorldSt
;; deal with a single event, given the state of the world
(define (dispatch w e)

(cond
[(tick? e) (tickH w)]
[(key? e) (keyH w (key-kind e))]
[(mouse? e) (mouseH w (mouse-x e) (mouse-y e) (mouse-kind e))]))

Figure 6. The semantics of functional event handling

Unlike move.global, receive does not distinguish two kinds of
worlds. Whether the world is in a resting state or not, the function
returns some UFO.

The revisedmain function registers the world with the server
and specifies a name for the world that is used for registration:

;; String → WorldSt
(define (main-for-client n)

(big-bang "rest"
(on-tick move)
(on-draw renderR)
(on-rec receive)
(name n)
(register LOCALHOST)))

Here we assume the server is running on the same computer as the
client and thatrenderR renders the new kind of worlds.

Note: The design assumes that all participating worlds and the
server implement the protocol correctly. The assumptions above
suggest how functions may protect themselves against errors in the
implementations or attacks. The reader may wish to explore the
small changes needed to check those assumptions.

6. Design and Curriculum
Designing reactive programs in a purely functional manner comes
with several advantages. For one, it is straightforward to explain
big-bang as if it were a function. As figure 6 shows, this function
traverses a list of events,7 accumulating the changes to the initial
world. Also, it uniquely fits in with our design curriculum, which
covers functional design followed by courses on logical reasoning
and object-oriented design.

6.1 Design Recipe

HtDP introduces its teaching programming languages as a general-
ization of school mathematics. Instead of functions over just num-
bers, these languages can express functions and expressions that
deal with atomic data (numbers, symbols, chars, strings, images,
boolean data) and compound data (structures, vectors, and lists). In

7 Our implementation replaces the list with an imperative stream of events,
plus a thread for receiving messages from the server. The stream dispatcher
and the thread are coordinated via the CML-inspired synchronization prim-
itives of PLT Scheme.

the third and fourth part of the book (and its teaching languages)
lambda and local definitions are added.

Programming is developed as the systematic design of compu-
tational solutions to “word” problems. The design of individual
functions follows a general six-step procedure paired witha sys-
tematic development of data definitions. The design of programs
is presented as an iterative refinement process, comparableto the
scientific process of developing models of the world. Specifically
the program is the model, and the world is the set of our (or our
client’s) objectives. As we refine the program, our model satisfies
more and more of the objectives.

Obviously, this design recipe also applies to the design of I/O
functions for world and universe programs. The key is thatUNI-
VERSE translates external information into internal data and in-
vokes the event handlers on the latter. Furthermore, the event han-
dlers produce only internal data, whichUNIVERSE then displays as
external information. The translations are hidden from thestudents’
transformations. Hence, the process of formulating contracts, func-
tional examples, etc. remains the same. Because images are just
another form of atomic data, the design recipe even applies to the
rendering functions that produce complex graphical scenes.

The separation of the actual act of performing I/O from the pro-
cessing or production of I/O data is critical for effective testing. It
empowers a programmer to unit-test every single function, cover-
ing the complete chain from where input data appears to the point
of where output data is delivered. As a matter of fact, this covers the
testing of image-producing functions for which we recommend two
different testing strategies. The first is to develop an expression in
the read-eval-print loop of DrScheme that creates an image for sim-
ple inputs. This kind of experimentation suggests both an “expected
value” expression as well as the body for the desired function. The
second strategy is to create the expected image separately:

(check-expect (create-ufo))
(check-expect (render-world (make-ufo ...))

(place-image
... ...
(empty-scene SIZE SIZE))

As the secondcheck-expect specification shows, it is of course
possible to mix and match those two strategies.

Once tests are developed, DrScheme’s built-in test coverage tool
pin-points those expressions that haven’t been evaluated during a

(define world%
(class fun-world% (super-new)

(init-field ufo)
(field [MT (empty-scene 500 500)])

;; → world%
;; deal with a tick event in this world
(define/augment (tick)

(new world% [ufo (send ufo move/tick)]))
;; → scene<%>
;; render this world as a scene
(define/augment (render)

(send ufo render MT))))

(define ufo%
(class object% (super-new)

(init-field x y dx dy)
(field [UFO (overlay (rectangle ...) (circle ...))])

;; → ufo%
;; move this ufo for one tick
(define/public (move/tick)

(new ufo% [x (+ x dx)][y (+ y dy)][dx dx][dy dy]))

;; → scene<%>
;; add this ufo to the given scene s
(define/public (render s) (place-image UFO x y s))))

(define world%
(class imp-world% (super-new)

(init-field ufo)
(field [MT (empty-scene 500 500)])

;; → void
;; deal with a tick event in this world
(define/augment (tick)

(send ufo move/tick))
;; → scene<%>
;; render this world as a scene
(define/augment (render)

(send ufo render MT))))

(define ufo%
(class object% (super-new)

(init-field x y dx dy)
(field [UFO (overlay (rectangle ...) (circle ...))])

;; → void
;; effect: change this ufo’s coordinates, for a move
(define/public (move/tick)

(begin (set! x (+ x dx)) (set! y (+ y dy))))

;; → scene<%>
;; add this ufo to the given scene s
(define/public (render s) (place-image UFO x y s))))

Figure 7. Applicative and imperative world classes

test run. We want novice programmers to attempt to cover all ex-
pressions, except for those that connect the event handlersto the un-
derlying operating system (big-bang, universe). While com-
plete coverage is a good first goal, the design of reactive programs
tends to demonstrate that unit testing does not suffice. Evenwhen
an individual reactive function passes all unit tests, the composition
of all the reactive functions to deal with a large stream of events of-
ten concocts scenarios that the unit tests don’t cover. Put differently,
reactive programming demands some amount of integration testing,
too. Given our “list of events” semantics, programmers can usually
mimic these scenarios with the composition of event handlers.

Last but not least, because the event handlers are just functions,
we can also subject them to the functional random testing (Claessen
and Hughes 2000) tools now built into DrScheme or its theorem
proving environment (Eastlund 2009). Indeed, programmerswho
learn to formulate conjectures and validate conjectures via random
testing are ideally prepared to study the automated verification of
interactive/reactive programs.

6.2 Reasoning about Worlds and Universes

During their second semester at Northeastern University, computer
science majors study the logic of computation. The course com-
bines a standard theoretical introduction into logic with practical
hands-on exercises based on the ACL2 system (Boyer and Moore
1996); see our experience report on the test run of this course (East-
lund et al. 2007). Roughly speaking, the ACL2 system consists
of an applicative Common Lisp and an automatic theorem prover
based on first-order classical logic.

Two years ago we extended the ACL2 system with theUNI-
VERSE library, enabling students to write reactive games, formu-
late conjectures about the safety of their game programs, and prove
them correct via the ACL2 theorem prover (Eastlund and Felleisen
2009). Here is a typical theorem from such experiments:

(defthm preserve-safety
(implies (safe-state game-state)

(safe-state (tick game-state)))

When the theorem prover fails, students are encouraged to subject
their conjectures to our ACL2 random tester (Eastlund 2009).

The mechanized proofs are based on the semantics of the
big-bang function in figure 6 and a more general version for
universes of world programs. Specifically, a macro unfolds claims
about a specific instance ofbig-bang expressions into an appli-
cation of a function likebig-bangF to all possible lists of events.

6.3 On to Classes

At the same time as freshmen learn to formulate claims about their
functional animation programs and to prove them correct, they are
enrolled in a parallel course on design in the context of class-based
object-oriented languages. We prepare the transition at the end of
the first semester with some simple conventions and arrangements.
Specifically, instead of arranging functions by feature (e.g., all
rendering functions in one place, all key-event related functions
somewhere else), we organize functions around data definitions.

For example, we start with all event handlers forWorldSt:

;; WorldSt is one of ...

;; WorldSt → WorldSt
(define (world-tickh w) ...)

;; WorldSt → Scene
(define (world-render w) ...)

;; WorldSt KeyEvt → WorldSt
(define (world-keyh w ke) ...)

and follow it up with an arrangement aroundUFO:

;; UFO is one of ...

;; UFO → UFO
(define (ufo-move u) ...)

;; UFO Scene → Scene
(define (ufo-add-to-scene u s) ...)

;; UFO Symbol → UFO
(define (ufo-chg u dir) ...)

We always make the current state the first parameter of a function,
analogous to the implicitthisparameter in methods.

An experienced programmer can immediately see that program-
ming functional I/O methods is notationally even more convenient
in a class-based context than in a functional language. In contrast
to functions, methods are defined in a context where all the pieces
of a world are accessible as fields.

Consider the left-hand side of figure 7. It displays a versionof
the UFO program in PLT Scheme’s class system (Flatt et al. 2006).8

The functions from section 4 have been turned into methods ofa
classworld% andufo%. Each event-handling method returns a new
instance of the class. Instead of selectors, the methods usefield
names to access the current values of the world state. Furthermore,
the world% class is derived from an abstract class that provides
default functionality for all event handlers and the imperative func-
tionality for connecting event-handling methods to the machine’s
devices. It naturally motivates inheritance and overriding.

Finally, while an applicative world design with classes is no-
tationally superior to a structure-based design, it still suffers from
the notational overhead of creating new objects for every transfor-
mation. Themove/tick (“move per tick”) method inufo%, for in-
stance, copies both thedx and thedy field into the new instance.
Compare this method withmove/tick in the imperative variant
of ufo% on the right-hand side of figure 7. In general, the tran-
sition from a state-transforming functional program to an imper-
ative object-oriented program is straightforward, easy toexplain,
and thus clarifies to students how the design principles of their first,
functional experience carries over to the languages they expect to
encounter in college.

7. Related Work
From a technical perspective, the Clean Event I/O system (Achten
and Plasmeijer 1995) comes closest to our approach.9 The Clean
programming language supports so-called abstract I/O devices to
which programs attach event handlers. In contrast to our event
handlers, a Clean event handler has the following signature

;; WorldSt × ∗DeviceSt → WorldSt × ∗DeviceSt

whereDeviceSt type represents the state of an abstract I/O de-
vice. The∗ notation on a type adds a linearity constraint on the
type; the type system enforces this linearity constraints for the
matching function parameter. For event handlers, the linearity con-
straint means that reading and writing to the I/O devices is enabled
and translated into efficient imperative actions. Naturally, linearity
constraint also has implications for the design and organization of
event handlers, making them look like imperative functions.

Our I/O framework supports only devices (windows, keyboards,
mouse clicks, clocks) whose state can be supplied all at oncewhen
an event handler is invoked. Conversely, if a state needs to change,
the event handlers don’t write to the device. Instead, the library
uses an orthogonal rendering function to translate the state into
an image that it displays, or it allows event handlers to return an
additional value that it writes to a TCP port. In short, because our
framework completely decouples event processing from writing to
a device, there is no need in our framework to use linearity types
and to thread the state of a device through an event handler.

An additional difference between Clean andUNIVERSE con-
cerns the nature of the devices. In Clean I/O devices are abstract
types; in UNIVERSE the rendering functions translate states into

8 In our courses and workshops, we use Java.
9 Acten (with Weirich, 2000) turned the Clean Event I/O systeminto the
Clean Object I/O system and later ported it to Haskell (Achten and Jones
2001). Daan Leijen provided a binding to the wx media kit, nowknown as
the wxHaskell toolkit [Achten, personal communication, Feb. 2009].

concrete types (images). This concreteness enablesUNIVERSEpro-
grammers to test all functions of an interactive graphical program,
including those that produce output. Contrast this situation with
the use of an abstract device type in Clean and of the I/O monadin
Haskell. The testing of I/O functions in such a framework is similar
to the testing of imperative procedures, requiring elaborate set-up
and tear-down steps. We consider this activity out of reach for mid-
dle school students and distracting for courses that focus on design.

Functional reactive programming (FRP) (Elliot and Hudak
1997) overcomes this problem by enabling programmers to write
in a functional style over imperative values (event streams, behav-
iors). The programmer effectively describes a dataflow graph via
expression dependencies; the run-time system updates values using
this graph. While programming with event streams and behaviors
is truly elegant, our pedagogic experience has been that theneces-
sity of operators likeswitch puts it out of the reach of novices.
Technically, FRP also has the disadvantage of requiring devices
to be adapted to behave as reactive elements, which is a research
problem that has been solved only partially (Ignatoff et al.2006).

Erlang (Armstrong et al. 1996) factors its I/O framework in
a different but related manner. A distributed program in Erlang
also consists of world-transforming event handlers, though such a
program also need a process-local loop to keep track of the state.
Our UNIVERSE library naturally separates these two concerns by
factoring out the common loop from the server and the participants.

From a pedagogical perspective, van Dam and his colleagues
(1987, 1995) pioneered the event-oriented approach for teaching
novices in the 1980s, but via imperative object-oriented program-
ming. Bruce et al. (2001, 2004) resumed this direction in theearly
2000s. We consider the functional alternative presented here even
more useful than an imperative, object-oriented approach.On one
hand, a functional approach is close to the mathematics thatstu-
dents encounter, meaning our approach promises a straightforward
skill transfer. While we have only anecdotal evidence so far, we
are convinced that a formal evaluation would confirm this con-
jecture. On the other hand, we consider object-oriented program-
ming for novices an overkill because beginners don’t have pro-
grams of enough complexity to benefit from the structuring that
object-orientation provides and demands.

Chakravarty and Keller (2004) share our analysis concerning the
teaching of functional programming languages in the first course
as well as the problems of Haskell I/O. Their reaction is to turn
this weakness of Haskell into an advantage. Specifically, the course
switches perspective, emphasizing the imperative character of I/O
actionsand the need forordering actions. While we acknowledge
the pedagogical need for a transition to imperative programming,
we consider this strategy a kludge and prefer the systematicap-
proach via objects explained in section 6.3. After all, postponing
I/O suggests that functional programming can’t cope with the full
spectrum of programming tasks and fails to exploit it for themoti-
vational aspects of assignments.

An alternative and appealing solution is due to Achten (2008),
who packaged up one special-purpose case study (playing soccer)
along the lines of our framework. Sadly focusing on soccer limits
the appeal of the framework to certain cultures and countries.

Finally, Hudak and Peterson each briefly taught Haskell-based
functional programming to small groups of selective middleschool
and high school students. Both arranged lectures around Haskore
and Pan but did not use any texts [Hudak and Peterson, independent
personal communication, Feb. 2009.]

8. Conclusion

Our work demonstrates that with a suitable I/O framework, purely
functional programming is an engaging medium for students of all
ages. The Bootstrap effort routinely guides middle school students

without apparent mathematical talent to write interactivegames in
a language that is basically equivalent to high school algebra. For
freshman students, we exploit the same framework to simultane-
ously strengthen their mathematical skills and to introduce them to
the basics of program design. In one second-semester course, stu-
dents even use an automatic theorem prover to establish interesting
properties about such interactive games. At the same time, event-
driven programming can also be used to prepare freshmen for a
course on object-oriented programming.

Our work relies on two key insights and one technicality. First,
it is important to leave the translation of external information into
internal data (structures) to the framework and vice versa.As far as
students are concerned, these are tasks that the computer and/or the
operating systems takes on for the program. Second, the framework
must separate event handling (as state transitions) from rendering
(from states to images, sounds, or message transmission). This sep-
aration of concerns empowers novice programmers to design one
function per task, without worrying about ordering any computa-
tional actions. One DrScheme-specific technicality facilitates the
second step: turning images into first-class values. Although insert-
ing images into programs and dealing with them directly at anin-
teractive read-eval-print can be especially helpful, we don’t expect
this technicality to be critical for an adaptation of our approach to
other functional languages. In short, we conjecture that every func-
tional language can easily supplement its I/O system with a library
such as ours and could thus become an appealing medium for a
range of educational applications.

Acknowledgments We gratefully acknowledge the help of many
people: Carl Eastlund for feedback on the design and for discus-
sions concerning its logical content; Kathi Fisler for using experi-
mental releases of the library in her courses; Emmanuel Schanzer
for creating and coordinating the Bootstrap outreach program; and
Danny Yoo for extending the library with hierarchical GUI features.

References
Peter Achten. Teaching functional programming with soccer-fun. In Proc.

2008 International Workshop on Functional and DeclarativeProgram-
ming in Education, pages 61–72, 2008.

Peter Achten and Simon L. Peyton Jones. Porting the Clean object I/O li-
brary to Haskell. InIFL ’00: Selected Papers from the 12th International
Workshop on Implementation of Functional Languages, pages 194–213,
London, UK, 2001. Springer-Verlag.

Peter Achten and Marinus J. Plasmeijer. The ins and outs of Clean I/O. J.
Funct. Program., 5(1):81–110, 1995.

Peter Achten and Martin Wierich. A tutorial to the Clean Object I/O library
(version 1.2). Technical report, University of Nijmegen, February 2000.

Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Con-
current Programming in Erlang (2nd Edition). Prentice-Hall, 1996.

Bird and Wadler. Introduction to Functional Programming (2nd Edition).
Prentice Hall PTR, 1998.

Robert S. Boyer and J Strother Moore. Mechanized reasoning about pro-
grams and computing machines. In R. Veroff, editor,Automated Rea-
soning and Its Applications: Essays in Honor of Larry Wos, pages
146–176. The MIT Press, Cambridge, Massachusetts, 1996. URL
citeseer.ist.psu.edu/boyer96mechanized.html.

Kim B. Bruce, Andrea Danyluk, and Thomas P. Murtagh. Event-driven
programming is simple enough for cs1.SIGCSE Bull., 33(3):1–4, 2001.

Kim B. Bruce, Andrea Danyluk, and Thomas P. Murtagh. Event-driven
programming facilitates learning standard programming concepts. In
Object-oriented programming systems, languages, and applications:
Educators Symposium, pages 96–100, 2004.

Manuel Chakravarty and Gabriele Keller. The risks and benefits of teaching
purely functional programming in first year.J. Funct. Program., 14(1):
113–123, 2004.

Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. InACM SIGPLAN International
Conference on Functional Programming, pages 268–279, 2000.

Carl Eastlund. DoubleCheck your theorems. InProc. 8th Intern. Works.
ACL2 and its Applications, pages 41–46. Lulu Press, 2009.

Carl Eastlund and Matthias Felleisen. Automatic verification for interactive
graphical programs. InProc. 8th Intern. Works. ACL2 and its Applica-
tions, pages 33–41. Lulu Press, 2009.

Carl Eastlund, Dale Vaillancourt, and Matthias Felleisen.ACL2 for fresh-
men: First experiences. InProc. 7th Intern. ACL2 Symposium, pages
200–211. ACM Press, 2007.

Conal Elliot and Paul Hudak. Functional reactive animation. In ACM
SIGPLAN International Conference on Functional Programming, pages
196–203, 1997.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi. How to Design Programs. MIT Press, 2001. URL
http://www.htdp.org/.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi. The TeachScheme! project: Computing and programming
for every student.Computer Science Education, 14:55–77, 2004a.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi. The structure and interpretation of the computer science
curriculum. J. Funct. Program., 14(4):365–378, 2004b.

Robert Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Paul Steckler, and Matthias Felleisen. DrScheme: A
programming environment for Scheme.J. Funct. Program., 12(2):159–
182, March 2002.

Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT
languages. InACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 236–248, June 1998.

Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with
classes, mixins, and traits. InAsian Symposium on Programming Lan-
guages and Systems (APLAS) 2006, pages 270–289, November 2006.

Paul Hudak. The Haskell School of Expression: Learning Functional
Programming through Multimedia. Cambridge Univ. Press, 2000.

Graham Hutton.Programming in Haskell. Cambridge Univ. Press, 2007.

Daniel Ignatoff, Gregory H. Cooper, and Shriram Krishnamurthi. Crossing
state lines: Adapting object-oriented frameworks to functional reactive
languages. InInternational Symposium on Functional and Logic Pro-
gramming, pages 259–276, 2006.

Bryan O’Sullivan, Donald Stewart, and John Goerzen.Real World Haskell.
O’Reilly Media, Inc., 2008.

Kris Powers, Stacey Ecott, and Leanne Hirshfield. Through the looking
glass: teaching CS0 with Alice.SIGCSE Bulletin, 39(1):213–217, 2007.

Simon Thompson.Haskell: the Craft of Functional Programming. Addison
Wesley Longman Publishing Co., Inc., 1997.

