A Functional 1/0 System *

or, Fun for Freshman Kids

Robert Bruce Findler
Northwestern University

Matthias Felleisen
Northeastern University

Abstract

Functional programming languages ought to play a cential ro
in mathematics education for middle schools (age rangel4)0—
After all, functional programmings a form of algebra and pro-
gramming is a creative activity about problem solving.ddiicing

it into mathematics courses would make pre-algebra cows®c
alive. If input and output were invisible, students coulglement
fun simulations, animations, and even interactive anditliged
games all while using nothing more than plain mathematics.

We have implemented this vision with a simple framework
for purely functional I/O. Using this framework, studentssayn,
implement, and test plain mathematical functions over rensib
booleans, string, and images. Then the framework wires tieta
devices and performs all the translation from externalrimftion
to internal data (and vice versa)—just like every other apieg
system. Once middle school students are hooked on this férm o
programming, our curriculum provides a smooth path for them
from pre-algebra to freshman courses in college on objeetizd
design and theorem proving.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design—methodologies; D.4.Dperating SystenfisOrga-
nization and Design—interactive systemsseneral Terms De-
sign, LanguagesKeywords Introductory Programming

1. Functionsfor Freshmen

Based on our decade-long experience (Felleisen et al. 2004a
novices to programming tend to accept languages that thegnha

Shriram Krishnamurthi
Brown University

Matthew Flatt
University of Utah

Surprisingly, even O’Sullivan et al. (2008)Real World Haskell
has difficulties explaining 1/0O, according to some on-liegiews.

Here we present our approach to reconciling 1/0 with purely
functional programming, especially for a pedagogicalisgttThe
1/0 framework extends the DrScheme (Findler et al. 2002z
languages for our textiow to Design Program@HtDP) (Felleisen
et al. 2001), but it is also accessible from other dialects.f@ame-
work does not require the use of any monads or other threading
devices, meaning middle school students can write animaitnol
interactive games as a bunch of mathematical functionsddde-
cause everything is just a function on numbers, stringsjrandes,
students can also test every step as they design their pnsgFeor
the past three years, the curriculum has been deployedtatreid-
dle schools (ages 10-14). The students tend to embraceapmoegr
ming enthusiastically after a nine-week course. Moreadhés kind
of programming experience seems to improve the performahce
these students in standard mathematics courses.

The purpose of our paper is to share our technical developmen
so that others can duplicate our pedagogical experiendesther
the functional I/O library is layered on top of an imperatil@ary
(as in our implementation) or on top of an I/O monad (as an im-
plementation for Haskell would be). The next section presidn
overview of our experiences to explain some of the socichlgi
context where we apply functional programming with 1/O. Sec
tion 3 illustrates how we start middle school students orcfional
programming. The rest of the paper focuses on the techrdoal f
dations.Sections 4 and 5 explain the 1/O library and how titis
Section 6 is about the college-level curricular contexséntion 7,

heard of—as long as they can quickly construct a program that We compare our approach to the Clean Event I/O system, which i

is like the applications they use on their computers. To ¢nid,

the chosen language must come with a rich framework for input
and output (1/O), ideally via graphical interfaces. Chakrsy and
Keller (2004) present corroborating evidence based on ratigh
analysis of their Haskell-based introductory coursesyTdiso re-
port, however, that most Haskell texts deemphasize 1/0.dwr
review shows that three (Thompson 1997; Bird and Wadler 1998
Hutton 2007) of four major Haskell-based text books intemlu
1/0 in the last third of the book or the final chapter; only Hikda
(2000) tackles it head-on, though in a quasi-imperative mean

*This research was partially supported by several grants fh@ National
Science Foundation.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31-September 2, 2009, Edinburgh, Scotland, UK.
Copyright(© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

closest to our framework, and to some other pieces of work.

2. Experience

Age group Since Framework Schools
middle school 2006 animation eight
two- or three-object games, simplistic sound
high school 2004 animation >30
N object games, simulations
college 2003 animation >20
N object games, simulations, visualization
college & MSprogram 2008 dist. prog. Chicago & NEU
distributed two-player games

Variants of our /O library have been in use since 2003 at & var
ety of places. The nearby table provides a concise overvigheo
kinds of students, sites, and projects that it enables.ri@)ahe
library is primarily useful in college-level freshman ceas. Start-

ing in 2004, we also introduced the library into the Teaclehob!
workshops; some 30 schools have run courses with it. Three
years ago, Emmanuel Schanzer derived the Bootstrap curricu
lum (wwv. boot st rapwor | d. or g) from HtDP for Citizen Schools
(wwv. ci tizenschool s. org), which runs after-school programs

on a wide range of topics in poor neighborhoods across the US. often the same ones at both places (2008: Snake, Chat Nb&). T
At this point, eight sites (in Austin, the Bay Area, Bostondan first project (between 500 and 1,000 lines) is repeated twitee to
surroundings, and New York City) have used Bootstrap withea s ensure students can implement suggestions and a secord iime
cialized variant of the I/O library. Finally, the first authases the troduce abstraction via higher-order functions. The seqmoject

library in an immersion course for Northeastern’s MS progra (some 1,000-2,000 loc) is typically an end-of-semestartgu
Middle school students in the Bootstrap after-school aesirs project where students have some creative freedom, tooatlihe

typically have little background in mathematics. They aagety thors have repeatedly observed that students continue o avo

comfortable with calculations on numbers; they struggliwari- their game programs after the semester/quarter ends.

ables, if they have encountered them at all; and many areutisc . . .
aged about the entire topic. Occasionally some of the stadea 3. Arithmetic, Algebra, and Movies

concurrently enrolled in a first pre-algebra course.. ~ Inmiddle school, mathematics teachers often ask studewlstér-
One gogl of Bootstrap is to brl.n.g across the notion of aflqmctl mine the next number in a sequence such,ds9l Or they show

as something that relates quantities, though not necssarn- students a series of shapes and ask what the next shape kstoduld

bers.. Naturally, the citizen teachers (volunteer instsctvorking like. Eventually these series are arranged in the form désale.g.,

for Citizen Schools) do not tell students that they are abmatudy i

a parenthesized form of algebra. Instead, they demonsttatac- x=]0|1]2]|3|4|...] i

tive computer games and encourage students to think ateattray y=10[1]4]79]?2]...]y0)

such games on their own. and students are asked to fill in the result for 4 and to determi

A normal Citizen Schools course lasts nine weeks, with one 5 genera| formula for determininany element in the sequence.
two-hour session per week and no homework assignmentsiiVith - Next comes an algebra course where students experienceythe
this time, most students design and systematically impieaein- of such exciting problems as two trains leaving from Chicagd
teractive game of their choice that involves a fixed numbenaof- Philadelphia and colliding in Pittsburgh.
ing objects, object collisions, and score keeping. Theyedbese Functional programmers know that these students are encoun
games in the "Beginning Student” language of HDP, extendié tering their first core concept in their mathematical ediecatunc-
our new library. Citizen teachers report that the majorftgtadents tions and “variable expressions.” They also know that fiamstand

gctively and enthusiastically participate in these casjrs®ny ask- expressions don't need to be restricted to numbers and tapesa
ing for more when the course enti$. » _onnumbers. Itis perfectly acceptable to speak of the agthrand
By the end of the course, some of the citizen teachers sh#ne wi algebra of booleans, chars, strings, etc.
the students that their game prograans mathematics. Anecdotal DrScheme programmers also formulate functions and expres-

evidence suggests that making mathematics come alive $n thi gjons that compute with images as first-class values, e.g.,
manner has a direct impact on students’ performance in qubsé

mathematics courses. Numerous instructors report caatiens (enpty-scene 100 100)

with mathematics teachers on how the students have chahgied t i

attitude about mathematics and how their grades have iragrov returns a blank square of 100 by 100 pixels, and
The I/O library plays a similarly important role in high saio

courses and first-year college curricula as it does for Baxis N é)

Many high school teachers and college instructors haveceubti (place-image 10 20 (enpty-scene 100 100))

that students fail to understand mathematical functiomsindro- combines the image of the rocket with the blank square byingac
ductory curriculum that makes functions critical and fundaima- the former 10 pixels to the right of the left margin and 20 fsxe
tions, simulations, and interactive and multi-playerficdmputer down from the top margin of the latter.

games can thus play a central role in enhancing studentsapae Now imagine teaching in this context. Teachers can ask stade
tion. Once students understand the basic idea of a fundtias, what the next image in the following series is:

easy to motivate them to study the systematic design of ifumet

as advertised in HtDP (Felleisen et al. 2004b). After altigieing)z(: | 0| 1] 2 | 3]4

properly enables them to write more interesting simulatjamni-
mations, games, etc. As we explain in section 6, this kindrsf fi =] e
course also prepares students well for the rest of the fiest y& é

cluding applicative and imperative object-oriented pasgming.

Some typical examples are the freshman courses at the Uni-
versity of Chicago and Northeastern University. Althoudticago
uses a quarter system, its course reaches the same mikestone
Northeastern’s, due to the small class size at Chicago adests’
strong academic preparation. In both courses, students oudr
at least two complete game project in a purely functionairsgt

?

and what the general formula is for the image. As before esttsd
would struggle and eventually come up with an answer.

At this point, teachers could explain that displaying 25 @ 3
of these scenes per second would create the effect of a “imovie
that simulates a rocket landing. Students know movies, amgats
find movies more interesting than trains colliding in Pittgih. So
!Due to the demand, Schanzer [personal communication, D288] s the teacher could show them how to play this movie in DrScheme
working on a second-level course for next summer.
2Qver the past few years, Alical[i ce. or g] and Scratchdcrat ch. nit.
edu] have been touted as frameworks for teaching middle schiadkests . .
how to program. Both efforts are incomparable with Bootsfa two rea- (place-image 50 i (enpty-scene 100 100)))

sons. First, both Alice and Scratch are mostly imperativeé tanis fail to . o ,
have direct benefits for the students’ mathematics educa8econd, as The function definition captures the general answer to thehier's

others also note (Powers et al. 2007), these GUI-orientstemys come ~ Juestion, though in parentheical syntax. Although thi¥ idose to
without a natural transition to full-fledged programmingeséas our cur- the historically grown infix notation of mathematics (or tat of
riculum spells out a natural path from middle school mathtésao the fashionable languages), our experience shows that stidentt
second semester in college. seem to mind after some initial reluctance. If the student no

(define (rocket-scene i)

applies the library functiomun-si mul ati on to rocket - scene,
the library generates a series of scenes. More precisalyplies its
argument (herer ocket - scene) to 0, 1, 2, 3,

. and displays the resulting series of image
in a separate window, like the one embedde
in this paragraph, at the rate of 28 numbers p
second.

The rest of the paper shows how to general
ize this idea so that the language i grade
school mathematics can be used to design interactive, amddis-
tributed, games.

B O 7 World

A

4. Designinga World

The HtDP curriculum heavily emphasizes functional prograng.
DrScheme (Findler et al. 2002), HtDP’s accompanying IDEp-su
ports a series of five teaching languages, each expandingxthe
pressive power of its predecessor. The first four of thesehieg
languages are purely functional, and they are usually theares
used in courses for novice programmers.

Universe

type WorldSt

... body ...

type KeyEvt = ...
type MouseEvt = ...
val big-bang: WorldSt
x (WorldSt -> WorldSt)
x (WorldSt KeyEvt -> WorldSt)
x (WorldSt Nat Nat MouseEvt -> WorldSt)
-> WorldSt

WorldProgram I

type KeyEvt;
type MouseEvt;
val big-bang: WorldSt
x (WorldSt -> WorldSt)
x (WorldSt KeyEvt -> WorldSt)
x (WorldSt Nat Nat MouseEvt -> WorldSt)
-> WorldSt

... body ...

type WorldSt

Figure 1. A unit perspective of world programs anaIVERSE

Our I/O framework comes as a library, dubbesiVERSE. The
library implements and exports two expression forms fontding
world and universeprograms. This section explains worlds; the
next one is about universes.

4.1 TheWorldisa Virtual Machine

To a student, the@NIVERSE library represents the computer’s op-
erating system and hardware. As such the library is the kespe
a representation of the state of the world. When the hardwaare
operating system notices certain events, the library hamdsthe
state of the world to a function in the student’'s program axd e
pects another state back. We call this stateodd, and the phrase
world programdenotes the collection of functions that interact with
the library. Combining the library and a world program cesaan
executable program.

The library is parameterized over the kinds of states—dalle
Wr | dSt —that the world program wishes to deal with as well as the

event handlers that process these states. A world progrdohesa
these two parameters with a data definition for the collectid
states and with a collection of functions. Figure 1 expreshes
dependency between the library and a student’s program via a
unit diagram (Flatt and Felleisen 1998). The universe fipiia
parameterized over the typr| dSt ; it exports two types and a
function that consume#r | dSt -processing functions. Conversely,
a world program is a unit that imports all of this, exportingéturn
aWrl dSt type. Linking the two creates the executable.

In reality, though, programs specify types as comments, and
UNIVERSEdoes not export a function for specifying event handlers
but a syntactic extension, dubbkdg- bang:

(bi g- bang Worl dSt at e- expr
(on-tick tock-expr rate-expr™)T
(on-key react-expr) '
(on-nouse click-expr) T
(stop-when done-expr)
(on-draw render-expr wi dth-exprt
hei ght - expr))

A bi g- bang expression has one required sub-expression—the
initial state of the world—and five optional clauses (indézhvia

T superscripts). These clauses are introduced via one of éiye k
words on-ti ck, on-key, on- nouse, st op- when, andon- dr aw),
mimicking keyword-based parameter passing. Each clausg-sp
fies at least one sub-expression; two have additional cgitiurb-
expressions (seesuperscripts).

When PLT Scheme encounterbiag- bang expression, it first
evaluates all sub-expressions and checks some basic fesper
The result ofWor | dSt at e- expr becomes the initial state of the
world. The remaining values give access to a subset of therlyad
ing platform’s events:

1. Ifanon-ti ck clause existdyi g- bang starts a clock that ticks
at a rate of 28 times per second or as often as the result of
r at e- expr —a natural number—specifies.

The expressiomock- expr must evaluate to a function of one
argument:

oo WorldSt — Worl dSt

Specifically, the function consumes a state of the world and
produces one. Theni ver se library invokes it on the current
state every time the clock ticks; its result becomes the stexe.

2. An on-key clause specifies how a world program reacts to a
keyboard event. Its sub-expression must evaluate to aifumct
of two arguments:

7, Wrldst KeyEvt — WorldSt

The first is again the current state of the world; the secord is
data representation of the keyboard event.

In UNIVERSE, a keyboard event is represented as either a one-
character string (e.g"a") or a number of special strings (e.g.,
"left", "rel ease"). The former denote regular keys on the
keyboard; the latter are used to represent arrow keys, other
special keys, and the event of releasing a key.

The library invokes this function for every keyboard evend a
uses the result of the invocation as the new state of the world

3. Similarly, aron- nouse clause determines how a world program
reacts to a mouse event with a function of four arguments:

oo WorldSt Nat Nat MouseBEvt — Worl dSt

As always, the first argument is the current state of the world
The next two arguments capture thandy coordinates of the

Figure2. A state transition diagram for world programs

event, measured in the number of pixels from the left and top
of the screen. Finally, thebuseEvt argument determines what
kind of mouse action has taken place. It is one of the follgwin

six strings:"but t on-up", "button-down", "drag", "move",
"enter","l eave".

Like the underlying operating system, thenIVERSE library
does not notify a world program of every mouse event, but it
samples the mouse events at a reasonably high rate.

The result of applying the mouse-event handler function be-
comes the next world.

. The st op-when clause determines when the world ends. Its
sub-expression must evaluate to a predicate:

., WrldSt — Bool ean

After handling an event with one of the above event-handling
functions,UNIVERSEuUSses this predicate to find out whether the
resulting state of the world is final state. If the result state
satisfies the predicate, no further events are processed.

. Last but not least, bi g- bang expression may come with an
on- dr aw clause, which has either one or three sub-expressions.
The first sub-expression must evaluate to a function of one
argument:

o WorldSt — Image

If the bi g- bang expression specifies such a function, the-
VERSE library opens a separate window whose size is deter-
mined by the size of the first image that the function produces
Alternatively, a program may specify the size of the canvas
explicitly via the two additional sub-expressions, whiclhign
evaluate to natural numbers.

The function specified ion- dr awis used every time an event-
handling function produces a state. The resulting imageris r
dered in the separate window.

Once the world enddyi g- bang returns the final stat®.

As figure 2 suggests, the core of an executable world program
denotes a state machine. Each elemient, w”, ...of Wrl dSt is
a state of this machine. For each state and for each kind ot,eve
the event handlers (plus event-specific inputs) specifgticeessor
state; that is, each state—except for final ones—is the saafrc
three (family of) arrows (with distinct targets). The fintdtes are
those for which the predicate specified in gteop- when clause
produceg r ue.

3|t is instructive to contrast this to the type dact i mat e in Fran (Elliot
and Hudak 1997).

What the figure does not show is the orthogonally specified
rendering of each state as a scene or image. Although thegem
are values in PLT Scheme, they are usually not a component of
world states. One way to imagine this rendering process éltb
a different kind of arrow to each state and connecting thievato
the scene that then- dr aw function produces for this state.

Given this explanation, we can explain the workings of the
run-si mul ati on function. Its world is the world of natural num-
bers, i.e., the state of the world represents the numbemefstihe
clock has ticked so far:

o0 WorldSt = Nat
;; interp. the nunber of clock ticks

As forrun-si nul ati on, it consumes a function from natural num-
bers toScenes. Its purpose is to start the world, to count the number
of clock ticks, and to invoke the given function on each cléck

to render a series @tenes:

(Nat — Scene) — Nat
efine (run-sinulation render)
(bi g-bang 0 (on-tick addl) (on-draw render)))

(d

The result of un- si mul ati on is a natural number: specifically, the
number of clock ticks that have passed (once the simulatts)h

4.2 Designing a World Program

Designing a world program is surprisingly easy. The firspdte
to design a data representation for the information thaesaand
that is to be tracked through the duration of the programi@t.
We recommend expressing the data representation as ayjada (t
definition (or several) and equipping it with comments thétipret
this data in terms of the visible canvas (world). Naturats data
definition fills in for theWor | dSt type from the preceding section.
The second step is to tease out constants that describetespe
of the world. This includes both quasi-physical constagatg,, the
width and height of the screen, as well as image constaugts tlee
background or a fixed shape that moves across the scenery.
The third step is to design the event-handling functiongeHe
“design” refers to the design recipe from HtDP. Given that we
already have data definitions (from the first step and tharifr we
also have contracts for all the top-level functions. Heree riext
step is to think through examples and to turn them into t&sts.
creation of templates usually (but not always) uses\Wrd dSt
type for orientation. After coding, it is important to ruretkests.
Also following HtDP, iterative development is the most ap-
propriate approach for world programs. Specifically, weorec
mend that students provide a minimally useful data defimifar
Wrl dSt and then design one state-processing event handler and
the rendering function. This enables them to test the corhef
program and interact with it. From here, they can pursue tif+o d
ferent directions: enriching the data and adding eventleeand

4.3 Contrallinga UFO

Let us illustrate how to design world programs with an exampl
from the second or third week in a college freshman course. Th
goal of the exercise is to move a UFO (“flying saucer”) acrbss t
canvas in a continuous manner. Later we add functions trat al
“players” to control the UFO’s movements via the arrow keys o
the keyboard and via mouse clicks.

A moving object on a flat canvas has (at least) four properties
meaning we need to use a strucflierepresent the essential data:

41n teaching languages, a structure definition like this o®duces three
kinds of functions: a constructongke- uf 0), a predicateyf 0?), and one
selector per field to extract the values ¢- x, uf o-y, uf o- dx, uf o- dy).
PLT Scheme also adds imperative mutators on demand.

7 Worldst KeyEvt — Worl dSt
;; control the ufo's direction via the arrow keys

1

(check- expect

(control (make-ufo 5 8 -1 -1) "down")

(make-ufo 5 8 -1 +1)) v
nore test cases ...

1

(define (control w ke)

; WorldSt Nat Nat MouseEvt — Worl dSt
;; move the ufo to a new position on the canvas
(check- expect (hyper (make-ufo 10 20 -1 +1)

(define (hyper wx y a)
(cond
[(mouse=? "button-down" a)

[el se wW))

40 30 "button-up")
(make-ufo 10 20 -1 +1))
nore test cases ...

(make-ufo x y (ufo-dx w) (ufo-dy w)]

(cond
[(key=? ke "up") (set-ufo-dy w-1)]
[(key=? ke "down") (set-ufo-dy w +1)]
[(key=? ke "left") (set-ufo-dx w-1)]
[(key=? ke "right") (set-ufo-dx w +1)] v
[el se w)) i

oo Worldst Int — WorldSt
(define (set-ufo-dy u dy) s
(make-ufo (ufo-x u) (ufo-y u)

(ufo-dx u) dy))

Worl dSt — Bool ean
has the ufo | anded?
(check- expect (landed? (make-ufo 5 (- SIZE 5) -1 +1))

(define (landed? w) (>= (ufo-y w) SIZE))

fal se)
nore test cases ...

Figure 3. Using keyboard and mouse events to control a ufo

(define-struct ufo (x y dx dy))

7 WorldSt = (make-ufo Nat Nat Int Int)
;; interp. the location (pixels)

o and vel ocity (pixels/tick)

Because nothing else in this “game” changes over time, wiifgle
the state of the world with the state of the UFO.

Next we fix the size of the canvas, the background (an empty

scene), and the shape of the UFO:

(define SIZE 400)
(define MI (enpty-scene SIZE Sl ZE))
(define UFO
(overlay (circle 10 "solid" "green")
(rectangle 40 2 "solid" "green")))
(define UFQ version2 —e—)

This time we use basic image creation and manipulation prim-
itives to create the right kind of shape; using the definitan
UFQ. ver si on2 instead ofUFOwould of course work equally well.

With the above data definition, we have determined the com-
plete type signature of the event-handling functions fockltick
events. Of course we should add a purpose statement:

WorldSt — Worl dSt
move the ufo for one tick of the clock

The next step in our design recipe calls for examples thatritbes
the behavior of the function. We formulate these exampleaém
diately in the unit testing framework that comes with DrSuleé&s
teaching languages:

(check-expect (move (make-ufo 10 20 -1 +1))
(make-ufo 9 21 -1 +1))

The example illustrates that the function’s purpose is to tm
velocity to the current position and to use it as the new posit

(define (nove w
(make-ufo (+ (ufo-x w) (ufo-dx w)
(+ (ufo-y w) (ufo-dy w)
(ufo-dx w
(ufo-dy wW))

5DrScheme collects attheck- expect expressions and evaluates them
after all definitions and expressions are evaluated. It thegputs the results
and tabulates failed test cases with hyper-links to thecgotaxt of the test.

Before we can interact with the program, we must design one
more function, namely, a function for rendering the curstate of
the world as a scene:
oo WrldSt — Scene
;7 place the ufo into M at its current position
(check- expect (render (make-ufo 10 20 -1 +1))
(place-i mge UFO 10 20 MI))

(define (render w
(place-image UFO (ufo-x w) (ufo-y w) M))

Designing such a function proceeds according to the sanigerec
as designing theove function. Also notice that we can test the
outcome of this function as if it were a function on the re8ls-
cause images are first-class values, it makes sense touszirtbie
expected output and to compare it to the actual result ofuhe-f
tion. PLT Scheme’s standasdjual ? function works for images,
too. While we recommend that students develop such “exgecte
results” expression (interactively in the REPL) to gain samder-
standing of how the function should proceed, it is indeedsibs

to insert an actual image instead of such an expression:

+

(check- expect
(render (make-ufo 10 20 -1 +1)))

Equipped withnmove andr ender , it is possible to define a main
function and to watch these first two definitions in action:
v WorldSt — Wrl dst
;; run a conplete world program
;; starting in state wo
(define (min wo)
(bi g-bang w0 (on-tick nove) (on-draw render)))

In short, we have finished the first stage of our iterative gtesi
cycle, creating a first useful part of the overall program.

From here, it is easy to design the rest of the function. See
the left-hand side of figure 3 for the definition of a functidrat
controls the movements of the UFO via arrow keys. The functio
key=? compares two keyboard events. The right-hand side of the
same figure displays functions for making the UFO jump to the
position of a mouse clickmpuse=? of course compares mouse
events. The last function checks whether the UFO has landed.

5. Universe: A World isNot Enough

Designing interactive graphical programs via purely fioral pro-
gramming is only half the game. The other half is about desgn
distributed programs, especially distributed games. Tireiples
remain the same, but the differences deserve a close look.

5.1 Universes

A universe consists of a distributed collection of world gmams
that communicate with each other via a programmable server:

Eniverse

We make no assumption about where the programs run, in partic
lar, UNIVERSE cannot find servers automatically.

The communication links rely on TCP/IP connections, megnin
messages sent from a world to a server (or vice versa) aramuar
teed to arrive in the order in which they are dispatched. Qfs®,
when two distinct world programs send messages to the server
there is no guarantee that the messages arrive in the oreler th
were sent; similarly, if the server broadcasts messagesotod of)
the participating worlds, the messages may again arrivestihct
worlds in an unrelated order.

In order to design a universe based onuinevERSEteachpack,
students design a communication protocol, which they implet
via a “server” program. Some protocols simply pass messages
one world program to another and back, with the server ptayin
the role of a conduit. Other protocols assume that the sés\am
arbiter, enforcing the rules of a game or directing trafficoam
the participants, as in a chat room. Finally, the server c:dng
configured in such a way that the world programs simulatespeer
in a peer-to-peer neighborhood.

5.2 A Worldin theUniverse

For a world program to participate in a universe, it registeith the
server using @regi ster ip-expr) clause in itsi g- bang ex-
pression. The sub-expression designates an IP addresst(ama

A registered world program sends messages via its event han-
dlers. To this end, theNIvVERSElibrary definegpackage structures
and exports its constructor and predicate:

(define-struct package (world nsg))
;; Package = (make-package Wrld S-exp)

Moreover, the library actually deals with event handleet tieturn
one of two kinds of results, meaning the signature of, sayekent
handlers is really

;; WorldSt KeyEvt — (U Package WorldSt)

instead of the one specified in the preceding section. If @mtev
handler produces a package, the library uses the value ifirshe
field as the next state of the world, and the value in the sefieltd
is sent off to the server. Otherwise, the library assumeseahdt is
just the state of the world.

To receive messages, a world program installs an eventihgnd
function via anon-recei ve clause inbi g- bang. It subexpres-
sion must evaluate to a function with the following signatur

;; WorldSt S-exp — (U Package WorldSt)

When a message in the form of an S-expression arrives, taig ev
handler is applied to the current state of the world and thesage.
Like all other event handlers, this handler may retuRaekage.

Figure 4. State transition view of worldommunicatingorograms

Figure 4 is a revision of figure 2 for communicating worlds.
Again, all elements ofr | dSt are states, but now all states come
with four kinds of transition arrows. The fourth one is theet/
handler that deals with message receipts. In addition, aachv
now comes with an optionabutput labelin the form of an S-
expression. Just asNIVERSE displays the rendering of a state as
an image for a world program, it also implements the sendirge
messages from state transitions to the universe’s server.

5.3 TheUniverse and its Server

The UNIVERSE library supports the design skrversin a manner
that is analogous to the design of world programs. A programm
describes a server via a pair of specifications: a data definit
of universe states, dubbedhi St, and auni ver se description,
which is analogous to i g- bang description.

For a server, three kinds of events matter most: the entryof a
additional world into the universe, a world’s disappeasrand the
arrival of a message from a participating world. Accordynggrver
programs must deal with representations of participatioglds,
anduUNIVERSE supports this:

(define-struct iworld (nane in out))
;7 IWd = (make-iworld String Port Port)
., interp. internal representation

of a participating world

Theiworl d structure keeps track of a world program’s name, its
input TCP port, and its output port, though a server prograsy m
only access the name field bfor | d structures. Other than that,
server programs must compare worlds and do so iwith | d=?.

Here is the core grammar ofumi ver se description:

(uni verse Uni St-expr
(on-new new expr)
(on-nsg nsg- expr)
(on-di sconnect di sc-expr disc-expr) T

-)

The first, required sub-expression determines the initiiesof
the server. Furthermore, eveuyi ver se description comes with
anon- new clause and awnn-nsg clause. Optionally, it may also
contain aron- di sconnect clause.

Every server’'s event handler consumes the current state of
the universe—as perceived and maintained by the servegist ev
handlers—and the representatin of a participating wotlanay
also consume a message received from such a world. An event

handler produces a bundle, i.e.,uailvERSE-specified structure
that contains three distinct pieces of information: the rsamwer

state Uni St); a list of messages to designated worlds; and the list

of worlds to be discarded:

(define-struct bundle (state nails to-discard))
(define-struct miil (to msg))

;; Bundle = (make-bundle Uni St Mailx | Wdx)

;7 Mailx = [Listof (make-mail IWd S-exp)]

;o IWdx = [Listof 1Wd]

Event handlers may only construmind| es andnai | s; they may
not destructure them.
The event handlers function as follows:

1. Anon- newhandler has the signature

o UniSt IWd — Bundle

i.e., it consumes the server state and a representatioreof th

world that wishes to join. The resulting bundle may conthis t

new world as one that should be discarded, which effectively

represents a rejection of the request. Optionally, the leand
may send out messages about the event.

2. An optionalon- di sconnect event handler has the same signa-
ture as aron- new handler, but it deals with the disappearance

of a world from the universe:

;7 UniSt IWd — Bundle

This kind of event is usually due to a severed connection or

because the corresponding world program shut down.

3. The signature foon- nsg handlers also includes the message

that arrived in the form of an S-expression:

;7 UniSt IWd S-exp — Bundle

When theon- msg event handler is invoked, it is applied to the
state of the server, the world that sent in a message, and the
message itself. The result bundle determines how this ésent

Our experimentation with theNIVERSE library suggests that
interaction diagrams—Ilike those used for object-orierdedigns
based on UML—are a good medium for discussing ideas. Instead
of spelling out this recommendation in detail, however, lustrate
it with a simple example.

55 ServingaTurn

As mentioned, the coordination among the worlds of a unéers
depends on the server and the message protocol it employs. We
and our students have implemented a number of servers. Here w
illustrate the power of theNIVERSE library with the design of a
server and some UFO controller clients where each cliers get
turn to control a (local) UFO. We start with the protocol dgsi
followed by the design of the server, and then the adaptaticime

UFO program from section 4 to support distribution.

Protocol Design The prose suggests the following, informal and
schematic interaction diagram:

shared with other worlds in the universe.

Optional handlers may drive the server via clock ticks, ezrttie
current state of the server in a console, or deal with othentsv

A complete universe program—as specified inrd ver se
expression—is best thought of as a state-transition macist
like the one for world programs depicted in figure 4. Each elem

of Uni St is a state of the machine; each event handler (and its

auxiliary parameters) represents one possible trandit@mn one

Uni St element to another. In contrast to world programs, the state

transitions in a universe program come with two labels: ame f
sending mail to a list of participating worlds, and anothee dor
deleting worlds from the list of participants.

5.4 Designing aUniverse

Designing a universe requires two different perspectiaeglobal
one concerning coordination and local ones for the servertize

server
world1: sam
register:" sani world2: carl
“your-turn"
register:"carl "
n doneu
“your-turn"
"done"
"your-turn"

The three vertical lines are “world life-lines,” while theiizontal
lines are registration or message sending steps.

This particular diagram shows the key properties of our pro-
posed universe. The server is on the left; the participatingds
are to its right. After creation, a world registers with trerr,
which we assume sends along a name for the world. Our diagram
shows that as soon as a first world has registered, the sdvesr g
this world a turn without waiting for any other world to show.u
If another world shows up—possibly during some turn—theeser
becomes aware of it but continues to wait fdrdane" signal from
the world whose turn it is. Once the active world ends its tthia
server gives a turn to the next world on the list. Finally, tha-
gram also shows what happens when a world disappears, say due
to the closure of a connection. The server notes the diseqpea

world programs. Once the global view has been developed, the @nd gives a turn to (one of) the remaining worlds.

local design of the servers and world programs proceeddilast
stand-alone world programs.

Server Design From here, the design of the server proceeds just
like the design of a world program, though we must observe the

The global perspective demands the design of a coordination .qnstraints imposed by the protocol. We start with the mregLdata

and communication protocol. This protocol design has thed gb
creating and maintaining an invariant for the universe.rtheoto
achieve this goal, we teach students to consider the stgriase,
the steady-state phase, and the shut-down phase of a enifers
all cases, it is important to understand (1) the order in tvieients
occur and (2) which S-expressions encode which messages.

definition:
co Uni St o= I Wdsx
;; interp. list of worlds in the order they take

0 turns, starting with the active one
i the active world (if any) is first

;; UniSt IWd — Bundle

;7 NWis joining the universe

(check- expect

(add-world (list iworld2) iworldl)

(make-bundl e (list iworld2 iworldl) "() "()))

;; ... nore test cases ...

(define (add-world ust nw

(i f (enmpty? ust)
(make-bundl e (list nw) (n2 nw) '())
(make-bundl e (append ust (list nw)) () "())))

;7 UniSt ITWd "done" — Bundle
;; mv sent nessage m assume mw = (first ust), m= "done"
(check- expect
(switch (list iworldl iworld2) iworldl "done")
(make-bundl e (list iworld2 iworldl) (nR2 iworld2) '()))
;; ... more test cases ...
(define (switch ust mv
(local ((define | (append (rest ust) (list my)))
(define nxt (first 1)))
(make-bundle | (n2 nxt) "())))

;; UniSt IWd — Bundle
. dw di sconnected fromthe universe
(check- expect
(del -world (list iworldl iworld3) iworld3)
(make-bundl e (list iworldl) () '()))
;; ... more test cases ...
(define (del-world ust dw
(if (not (iworld=? (first ust) dw)
(make-bundl e (reng dw ust) ' () '
t)))

(local ((define | (rest us
(if (empty? I)
(make-bundle " () "() "())
(local ((define nxt (first 1))
(define m!| (n2 nxt)))
(meke-bundle I m1 "()))))))

0)

o IWd — Ml
;; create single-itemlist of mail tow
;. no test cases
(define (nm2 w
(list (make-mail w "your-turn")))

Figure5. A primitive functional server program

Note again interpretation that comes with the data defimitithas
several implications for the design of the event handlers.

Since this server deals with three kinds of events—registra
of a world, message receipt, and disconnection of a worlthfro
the universe—we need three event handlers. Jfe/ERSE spec-
ifications and the agreement to send certain messagesedib&at

(uni verse " ()

(on-new add- wor | d)
(on-nsg switch)
(on-di sconnect del -world))

Adding this expression to the bottom launches a processvidug
for TCP/IP events and deals with them by invoking one of thegh

contract statements:

;ooadd-world : UniSt IWd — Bundl e
;; switch : UniSt IWd "done" — Bundle
;o del-world : UniSt IWd — Bundl e

event handlers.

Client Design To illustrate how the client side works, let us
consider a small change to our UFO controller from the prieced
section. Suppose we give each “player” a turn to land a UFO and
The names of the three functions are suggestive of theioserp that when the UFO touches the ground, it is the next world. tu
Just as in the case of the UFO controller, we can design theseOne obvious implication is that there is now a distinct nendkof
functions in a systematic manner. In support of unit tests fo State of the world:
event handlers in a serverNnIVERSE exports three sample worlds v, WrldSt is one of:
iworldl, iworld2, andiworl d3; of course, it does not export vy o--- "rest”
the capability of creating representations of participgtworlds. 7y --- (make-ufo Nat Nat Int Int)
Otherwise, the design of these three server functions pdscim a
straightforward fashion.
The three definitions and fragments of their test suites &re d
played in figure

When it isn’t this world’s turn, the world is in‘&rest " state.
Next we replace the event handler for ticks with a functicat th
sends out messages when the UFO lands:
1. the top-left box contains the code for adding a world; éije\ﬁrrlugSt(mT/e.(g;IJ O\G‘;r'l ?IVS)t Package)
2. the box in the bottom-left defines the function for dealivith (cond
a message from the active world, which is the only kind of [(string? w) w
messages that the server expects; [el se (Il ocal ((define v (mve w))
(if (not (landed? v))
v
(make- package "rest" "done")))]))

3. the top-right box concerns the event of a world discoringct
from the universe; and

4. the final box in the bottom right contains the definition of a

auxiliary function for creating a list of mail to a single vidr The function distinguishes the two cases from the data diefni

For a string, it returns the world as is. Otherwise, it movesworld

As far as the server is concerned, the only task leftto dofsrto ysing the oldrove function and then checks whether the UFO has

reply to start the server: In addition, we need a handler foyour -t urn" messages:
o WorldSt "your-turn" — WorldSt

6The definitions use theéocal construct from the HtDP teaching lan- » . .
guages. Roughly speaking, ocal defs body) introduces the mutually v assume. Nessages arrive Pnl y N
recursive definitionglef s for the evaluation obody. Unlike Scheme’s 1 i if t_he state Is "rest
internal definitions) ocal definitions have the exact same semantics as (define (receive w nsg)

global definitions but come with a restricted lexical scope. (make-ufo 20 10 -1 +1))

1

N
o Worl dst

(define (big-bangF w0 tickH keyH nouseH | 0e0)
(local (... dispatch: see below, on the right

’(’defi ne (big-bangF w | oe)
(cond
[(empty? loe) W

(bi g-bangF w0 1 0e0)))

v WorldSst (WorldSt — WorldSt) (WorldSt KeyEvt — Worl dSt) (WorldSt Nat Nat MouseEvt — WorldSt) [Listof Event]
;; process a list of events given the initial world and event handlers

accunul ator design: wis the result of dealing with all events between [0e0 and | oe (inclusive)

[el se (big-bangF (dispatch w (first loe)) (rest loe))])))

define-struct tick

((
(define-struct key (kind))
(

)
)
in
defi ne-struct nouse (x
; An Event is one of:
7y --- (make-tick)
;7 --- (make-key KeyEvt)

;7 --- (make-mouse Nat Nat MouseEvt)

(cond

o; WorldSt Event — Worl dSt
) ;; deal with a single event, given the state of the world
y kind)) (define (dispatch we)

[(tick? e) (tickH w]
[(key? e) (keyH w (key-kind e))]
[(mouse? e) (mouseH w (mouse-x e) (mouse-y e) (mouse-kind €))]))

Figure6. The semantics of functional event handling

Unlike nove. gl obal , r ecei ve does not distinguish two kinds of
worlds. Whether the world is in a resting state or not, thefiom
returns some UFO.

The revisedrai n function registers the world with the server
and specifies a name for the world that is used for registratio

7, String — WorldSt
(define (main-for-client n)
(bi g-bang "rest"

(on-tick move)
(on-draw renderR)
(on-rec receive)
(name n)
(regi ster LOCALHOST)))

the third and fourth part of the book (and its teaching laggsa
| anbda and local definitions are added.

Programming is developed as the systematic design of compu-
tational solutions to “word” problems. The design of indiwal
functions follows a general six-step procedure paired &ithys-
tematic development of data definitions. The design of Enogr
is presented as an iterative refinement process, compamtie
scientific process of developing models of the world. Speslify
the program is the model, and the world is the set of our (or our
client’s) objectives. As we refine the program, our modelkfias
more and more of the objectives.

Obviously, this design recipe also applies to the desigri®f |
functions for world and universe programs. The key is that-
VERSE translates external information into internal data and in-

Here we assume the server is running on the same compute as thvokes the event handlers on the latter. Furthermore, thet éem-

client and that ender Rrenders the new kind of worlds.

dlers produce only internal data, whiohivERSEthen displays as

Note: The design assumes that all participating worlds and the external information. The translations are hidden frorrstoeents’

server implement the protocol correctly. The assumptidre/e
suggest how functions may protect themselves againssdrrone
implementations or attacks. The reader may wish to exploge t
small changes needed to check those assumptions.

6. Design and Curriculum

Designing reactive programs in a purely functional manmenes
with several advantages. For one, it is straightforwardxalagn

bi g- bang as if it were a function. As figure 6 shows, this function
traverses a list of evenfsaccumulating the changes to the initial
world. Also, it uniquely fits in with our design curriculum,hich
covers functional design followed by courses on logicatosing
and object-oriented design.

6.1 Design Recipe

HtDP introduces its teaching programming languages asergen
ization of school mathematics. Instead of functions ovst jum-
bers, these languages can express functions and expesisain
deal with atomic data (humbers, symbols, chars, stringagées,
boolean data) and compound data (structures, vectorsisasid In

7Our implementation replaces the list with an imperativeain of events,
plus a thread for receiving messages from the server. Tearstdispatcher
and the thread are coordinated via the CML-inspired symibation prim-
itives of PLT Scheme.

transformations. Hence, the process of formulating cotgrdunc-
tional examples, etc. remains the same. Because imagessire j
another form of atomic data, the design recipe even apmiéiset
rendering functions that produce complex graphical scenes
The separation of the actual act of performing 1/0 from the pr

cessing or production of 1/O data is critical for effectiessting. It
empowers a programmer to unit-test every single functiorec
ing the complete chain from where input data appears to the po
of where output data is delivered. As a matter of fact, thieethe
testing of image-producing functions for which we recomahemo
different testing strategies. The first is to develop an esgion in
the read-eval-print loop of DrScheme that creates an imaggrh-
ple inputs. This kind of experimentation suggests both apéeted
value” expression as well as the body for the desired funcfibie
second strategy is to create the expected image separately:

(check-expect (create-ufo) —e—)
(check- expect (render-world (make-ufo ...))
(place-i nage —e—

.(.e'npi.y.-scene SI ZE Sl ZE))

As the secondheck- expect specification shows, itis of course
possible to mix and match those two strategies.

Once tests are developed, DrScheme’s built-in test coeeoay
pin-points those expressions that haven't been evaluatgdgda

(

(define world%
(cl ass (super - new)

(init-field ufo)

(field [M (enpty-scene 500 500)])

;; deal with atick event in this world

(defi ne/ augnent (tick)
|(newwor|d%[ufo (send ufo move/tick)]) [)

7, — scene<%>

;; render this world as a scene

(defi ne/ augnment (render)
(send ufo render MI))))

define worl d%

cl ass |inp-world%| (super-ne
(cl i I d%| (W)
(init-field ufo)
(field [M (enpty-scene 500 500)])
— void
;; deal with atick event inthis world
(defi ne/ augnent (tick)
|(send ufo nove/tick) |)
;. — scene<%>
;; render this world as a scene
(define/ augnent (render)
(send ufo render MI))))

(define ufo%
(cl ass object% (super - new)
(init-field x y dx dy)
(field [UFO (overlay (rectangle ..
-
;; move this ufo for one tick
(define/ public (nmoveltick)
[(new ufo% [x (+ x dx)][y (+y dy)][dx dx][dy dy]))
;7 — scene<%>
;; add this ufo to the given scene s
(define/public (render s) (place-image UFOX y s))))

(

.) (circle

)

define uf 0%
(cl ass object% (super-new)
(init-field x y dx dy)
(field [UFO (overlay (rectangle ..
;; effect: change this ufo’s coordinates, for a nove
(define/ public (noveltick)
[(begin (set! x (+x dx)) (set! y (+ydy))))

; — scene<%>
;; add this ufo to the given scene s
(define/public (render s) (place-image UFOXx y s))))

.) (circle ..

NN

Figure7. Applicative and imperative world classes

test run. We want novice programmers to attempt to covenall e
pressions, except for those that connect the event handlrs un-
derlying operating systenb{ g- bang, uni ver se). While com-
plete coverage is a good first goal, the design of reactivgrprms
tends to demonstrate that unit testing does not suffice. Exm
an individual reactive function passes all unit tests, ttragosition
of all the reactive functions to deal with a large stream @freg of-
ten concocts scenarios that the unit tests don’t cover.ifetehtly,
reactive programming demands some amount of integratstim¢g
too. Given our “list of events” semantics, programmers csuraily
mimic these scenarios with the composition of event haedler
Last but not least, because the event handlers are justdoact
we can also subject them to the functional random testinag€den
and Hughes 2000) tools now built into DrScheme or its theorem
proving environment (Eastlund 2009). Indeed, programmagrs
learn to formulate conjectures and validate conjecturasamdom
testing are ideally prepared to study the automated vetiicaf
interactive/reactive programs.

6.2 Reasoning about Worlds and Univer ses

During their second semester at Northeastern Universitpputer
science majors study the logic of computation. The course-co
bines a standard theoretical introduction into logic witagical
hands-on exercises based on the ACL2 system (Boyer and Moore
1996); see our experience report on the test run of this eqiast-
lund et al. 2007). Roughly speaking, the ACL2 system cossist
of an applicative Common Lisp and an automatic theorem prove
based on first-order classical logic.

Two years ago we extended the ACL2 system with the-
VERSE library, enabling students to write reactive games, formu-
late conjectures about the safety of their game prograndspave
them correct via the ACL2 theorem prover (Eastlund and Belfe
2009). Here is a typical theorem from such experiments:

(defthmpreserve-safety
(inplies (safe-state gane-state)
(safe-state (tick ganme-state)))

When the theorem prover fails, students are encouragedijectu
their conjectures to our ACL2 random tester (Eastlund 2009)

The mechanized proofs are based on the semantics of the

bi g- bang function in figure 6 and a more general version for
universes of world programs. Specifically, a macro unfoldsts
about a specific instance bf g- bang expressions into an appli-
cation of a function likeoi g- bangF to all possible lists of events.

6.3 OntoClasses

At the same time as freshmen learn to formulate claims abeirt t
functional animation programs and to prove them correely tire
enrolled in a parallel course on design in the context ofsclzssed
object-oriented languages. We prepare the transitioneagtial of
the first semester with some simple conventions and arraggism
Specifically, instead of arranging functions by featurey.(eall
rendering functions in one place, all key-event relateccfioms
somewhere else), we organize functions around data defisiti
For example, we start with all event handlers\r| dSt :

WrldSt is one of

1

oo WorldSt — Worl dSt
(define (world-tickh w) ...)

;o WrldSt — Scene
(define (world-render w) ...)

7, Wrldst KeyEvt — WorldSt

(define (world-keyh wke) ...)

and follow it up with an arrangement aroudgo:

:: UFOis one of

;. UFO — UFO
(define (ufo-nmove u) ...)

. UFO Scene — Scene
(define (ufo-add-to-scene us) ...)
;7 UFO Synbol — UFO

(define (ufo-chg u dir) ...)

We always make the current state the first parameter of aifumct
analogous to the implicthis parameter in methods.

An experienced programmer can immediately see that pregram
ming functional 1/0 methods is notationally even more canent
in a class-based context than in a functional language. itrast
to functions, methods are defined in a context where all thegsi
of a world are accessible as fields.

Consider the left-hand side of figure 7. It displays a versibn
the UFO program in PLT Scheme'’s class system (Flatt et aB)?00
The functions from section 4 have been turned into methods of
classwor | d%anduf 0% Each event-handling method returns a new
instance of the class. Instead of selectors, the methods$ialde
names to access the current values of the world state. Forthe,
the wor | d% class is derived from an abstract class that provides
default functionality for all event handlers and the impiseafunc-
tionality for connecting event-handling methods to the hiae’'s
devices. It naturally motivates inheritance and overgdin

Finally, while an applicative world design with classes & n
tationally superior to a structure-based design, it stiffeys from
the notational overhead of creating new objects for evenytior-
mation. Thenove/ ti ck (“move per tick”) method iruf 0% for in-
stance, copies both thix and thedy field into the new instance.
Compare this method withove/ ti ck in the imperative variant
of uf 0% on the right-hand side of figure 7. In general, the tran-
sition from a state-transforming functional program to enpér-
ative object-oriented program is straightforward, easgxplain,
and thus clarifies to students how the design principlesaf fhist,
functional experience carries over to the languages thpgaxo
encounter in college.

7. Related Work

From a technical perspectiyéhe Clean Event I/O system (Achten
and Plasmeijer 1995) comes closest to our appréabhe Clean
programming language supports so-called abstract I/Ccdsuio
which programs attach event handlers. In contrast to ounteve
handlers, a Clean event handler has the following signature

Worl dSt x *DeviceSt — WorldSt x «Devi ceSt

whereDevi ceSt type represents the state of an abstract 1/0 de-
vice. Thex notation on a type adds a linearity constraint on the
type; the type system enforces this linearity constraiotstfie
matching function parameter. For event handlers, thelityezon-
straint means that reading and writing to the I/O devices#bied
and translated into efficient imperative actions. Natyrdithearity
constraint also has implications for the design and orgsdioia of
event handlers, making them look like imperative functions

Our I/O framework supports only devices (windows, keybeard
mouse clicks, clocks) whose state can be supplied all atwhea
an event handler is invoked. Conversely, if a state needsaoge,
the event handlers don't write to the device. Instead, theaty
uses an orthogonal rendering function to translate the stab
an image that it displays, or it allows event handlers torrein
additional value that it writes to a TCP port. In short, bessaour
framework completely decouples event processing froningio
a device, there is no need in our framework to use linearipgsy
and to thread the state of a device through an event handler.

An additional difference between Clean audIVERSE con-
cerns the nature of the devices. In Clean 1/0O devices areaaibst
types; inUNIVERSE the rendering functions translate states into

81n our courses and workshops, we use Java.

9 Acten (with Weirich, 2000) turned the Clean Event I/O sysieto the

Clean Object 1/0 system and later ported it to Haskell (Actdad Jones
2001). Daan Leijen provided a binding to the wx media kit, rowwn as
the wxHaskell toolkit [Achten, personal communicationbF2009].

concrete types (images). This concreteness enalblp&ERSEpro-
grammers to test all functions of an interactive graphicagpam,
including those that produce output. Contrast this situatiith
the use of an abstract device type in Clean and of the I/O misnad
Haskell. The testing of I/O functions in such a frameworkitisigr

to the testing of imperative procedures, requiring elateosat-up
and tear-down steps. We consider this activity out of reacimid-
dle school students and distracting for courses that foswkesign.

Functional reactive programming (FRP) (Elliot and Hudak
1997) overcomes this problem by enabling programmers ttewri
in a functional style over imperative values (event stredyabav-
iors). The programmer effectively describes a dataflow lynap
expression dependencies; the run-time system updatessuading
this graph. While programming with event streams and beingvi
is truly elegant, our pedagogic experience has been thatettes-
sity of operators likeswi t ch puts it out of the reach of novices.
Technically, FRP also has the disadvantage of requiringcdsv
to be adapted to behave as reactive elements, which is achsea
problem that has been solved only partially (Ignatoff e2@D6).

Erlang (Armstrong et al. 1996) factors its I/O framework in
a different but related manner. A distributed program inagkgl
also consists of world-transforming event handlers, thosgch a
program also need a process-local loop to keep track of #ie.st
Our UNIVERSE library naturally separates these two concerns by
factoring out the common loop from the server and the paxitts.

From a pedagogical perspectivean Dam and his colleagues
(1987, 1995) pioneered the event-oriented approach fahieg
novices in the 1980s, but via imperative object-orienteatypm-
ming. Bruce et al. (2001, 2004) resumed this direction inchy
2000s. We consider the functional alternative presenteel éen
more useful than an imperative, object-oriented appro@chone
hand, a functional approach is close to the mathematicssthat
dents encounter, meaning our approach promises a stxaightt
skill transfer. While we have only anecdotal evidence so iar
are convinced that a formal evaluation would confirm this-con
jecture. On the other hand, we consider object-orientedrpro-
ming for novices an overkill because beginners don't haxe pr
grams of enough complexity to benefit from the structurinat th
object-orientation provides and demands.

Chakravarty and Keller (2004) share our analysis concgithie
teaching of functional programming languages in the firstrse
as well as the problems of Haskell 1/0. Their reaction is tamtu
this weakness of Haskell into an advantage. Specificalyctiurse
switches perspective, emphasizing the imperative chara€t/O
actionsand the need foordering actions While we acknowledge
the pedagogical need for a transition to imperative prognarg,
we consider this strategy a kludge and prefer the systeraptic
proach via objects explained in section 6.3. After all, posing
1/0 suggests that functional programming can’t cope withftl
spectrum of programming tasks and fails to exploit it for mineti-
vational aspects of assignments.

An alternative and appealing solution is due to Achten (2008
who packaged up one special-purpose case study (playingr3oc
along the lines of our framework. Sadly focusing on socauit$
the appeal of the framework to certain cultures and cowatrie

Finally, Hudak and Peterson each briefly taught Haskeléthas
functional programming to small groups of selective midstibool
and high school students. Both arranged lectures arounkiokas
and Pan but did not use any texts [Hudak and Peterson, indepen
personal communication, Feb. 2009.]

8. Conclusion

Our work demonstrates that with a suitable 1/0 frameworkefyu
functional programming is an engaging medium for studehtdlo
ages. The Bootstrap effort routinely guides middle schaalents

without apparent mathematical talent to write interactiaenes in
a language that is basically equivalent to high school aldgor
freshman students, we exploit the same framework to simeHta
ously strengthen their mathematical skills and to intredihnem to
the basics of program design. In one second-semester ¢atuse
dents even use an automatic theorem prover to establishstitey
properties about such interactive games. At the same tivesite

Kim B. Bruce, Andrea Danyluk, and Thomas P. Murtagh. Eveivet
programming is simple enough for cs3IGCSE Bull.33(3):1-4, 2001.

Kim B. Bruce, Andrea Danyluk, and Thomas P. Murtagh. Eveivieth
programming facilitates learning standard programmingcepts. In
Object-oriented programming systems, languages, andicgjgns:
Educators Symposiumpages 96—-100, 2004.

Manuel Chakravarty and Gabriele Keller. The risks and benefiteaching

driven programming can also be used to prepare freshmen for a purely functional programming in first yead. Funct. Program.14(1):

course on object-oriented programming.

Our work relies on two key insights and one technicalitysgir
it is important to leave the translation of external infotioa into
internal data (structures) to the framework and vice veksdar as
students are concerned, these are tasks that the compditer gne
operating systems takes on for the program. Second, thewark
must separate event handling (as state transitions) froaterang
(from states to images, sounds, or message transmisstur)sdp-
aration of concerns empowers novice programmers to design o
function per task, without worrying about ordering any catap
tional actions. One DrScheme-specific technicality ftatidis the
second step: turning images into first-class values. Aljhansert-
ing images into programs and dealing with them directly ainan
teractive read-eval-print can be especially helpful, we'dexpect
this technicality to be critical for an adaptation of our eggzh to
other functional languages. In short, we conjecture thatyefunc-
tional language can easily supplement its I/O system witbrary

113-123, 2004.

Koen Claessen and John Hughes. QuickCheck: a lightweigit ftw
random testing of Haskell programs. ACM SIGPLAN International
Conference on Functional Programmirgages 268—-279, 2000.

Carl Eastlund. DoubleCheck your theorems. Pioc. 8th Intern. Works.
ACL2 and its Applicationgpages 41-46. Lulu Press, 2009.

Carl Eastlund and Matthias Felleisen. Automatic verifaatfior interactive
graphical programs. IRroc. 8th Intern. Works. ACL2 and its Applica-
tions pages 33-41. Lulu Press, 2009.

Carl Eastlund, Dale Vaillancourt, and Matthias Felleis&&L2 for fresh-
men: First experiences. IRroc. 7th Intern. ACL2 Symposiyrpages
200-211. ACM Press, 2007.

Conal Elliot and Paul Hudak. Functional reactive animatioim ACM
SIGPLAN International Conference on Functional Programgnpages
196-203, 1997.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatig &hriram Kr-
ishnamurthi. How to Design Programs MIT Press, 2001. URL

such as ours and could thus become an appealing medium for a http://ww. htdp.org/.

range of educational applications.

Acknowledgments We gratefully acknowledge the help of many
people: Carl Eastlund for feedback on the design and fomusisc
sions concerning its logical content; Kathi Fisler for @sexperi-
mental releases of the library in her courses; Emmanuelr&ehna
for creating and coordinating the Bootstrap outreach pnogrand
Danny Yoo for extending the library with hierarchical GUafares.

References

Peter Achten. Teaching functional programming with soéeer In Proc.
2008 International Workshop on Functional and Declaratf®gram-
ming in Educationpages 61-72, 2008.

Peter Achten and Simon L. Peyton Jones. Porting the Cleattolhp li-
brary to Haskell. InFL '00: Selected Papers from the 12th International
Workshop on Implementation of Functional Languageges 194-213,
London, UK, 2001. Springer-Verlag.

Peter Achten and Marinus J. Plasmeijer. The ins and outsesfrQlO. J.
Funct. Program.5(1):81-110, 1995.

Peter Achten and Martin Wierich. A tutorial to the Clean @bjO library
(version 1.2). Technical report, University of NijmegembFuary 2000.

Joe Armstrong, Robert Virding, Claes Wikstrom, and Mikdlifins. Con-
current Programming in Erlang (2nd EditionPrentice-Hall, 1996.

Bird and Wadler. Introduction to Functional Programming (2nd Edition)
Prentice Hall PTR, 1998.

Robert S. Boyer and J Strother Moore. Mechanized reasotingtgro-
grams and computing machines. In R. Veroff, editsufomated Rea-
soning and Its Applications: Essays in Honor of Larry Wepsges
146-176. The MIT Press, Cambridge, Massachusetts, 1996.L UR
citeseer.ist.psu.edu/ boyer 96nmechani zed. htn .

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt] &hriram Kr-
ishnamurthi. The TeachScheme! project: Computing andrproging
for every studentComputer Science Educatioi¥:55-77, 2004a.

Matthias Felleisen, Robert Bruce Findler, Matthew Flati] &hriram Kr-
ishnamurthi. The structure and interpretation of the caepscience
curriculum. J. Funct. Program.14(4):365-378, 2004b.

Robert Findler, John Clements, Cormac Flanagan, Matthett, Bhriram
Krishnamurthi, Paul Steckler, and Matthias Felleisen. dbeSne: A
programming environment for Schem&.Funct. Program.12(2):159—
182, March 2002.

Matthew Flatt and Matthias Felleisen. Units: Cool modules HOT
languages. IMACM SIGPLAN Conference on Programming Language
Design and Implementatippages 236—248, June 1998.

Matthew Flatt, Robert Bruce Findler, and Matthias Felleis8cheme with
classes, mixins, and traits. Hsian Symposium on Programming Lan-
guages and Systems (APLAS) 2Q8ges 270-289, November 2006.

Paul Hudak. The Haskell School of Expression: Learning Functional
Programming through MultimediaCambridge Univ. Press, 2000.

Graham HuttonProgramming in HaskellCambridge Univ. Press, 2007.

Daniel Ignatoff, Gregory H. Cooper, and Shriram KrishnattiurCrossing
state lines: Adapting object-oriented frameworks to fiomel reactive
languages. Irinternational Symposium on Functional and Logic Pro-
gramming pages 259-276, 2006.

Bryan O’Sullivan, Donald Stewart, and John Goerzeeal World Haskell
O’Reilly Media, Inc., 2008.

Kris Powers, Stacey Ecott, and Leanne Hirshfield. Throughltioking
glass: teaching CS0 with Alic&SIGCSE Bulletin39(1):213-217, 2007.

Simon ThompsonHaskell: the Craft of Functional Programmindddison
Wesley Longman Publishing Co., Inc., 1997.

