
Programming Languages as Operating Systems
�or Revenge of the Son of the Lisp Machine�

Matthew Flatt Robert Bruce Findler Shriram Krishnamurthi Matthias Felleisen

Department of Computer Science�

Rice University

Houston� Texas ����������

Abstract

The MrEd virtual machine serves both as the implementa�
tion platform for the DrScheme programming environment�
and as the underlying Scheme engine for executing expres�
sions and programs entered into DrScheme�s read�eval�print
loop� We describe the key elements of the MrEd virtual
machine for building a programming environment� and we
step through the implementation of a miniature version of
DrScheme in MrEd� More generally� we show how MrEd de�
�nes a high�level operating system for graphical programs�

� MrEd� A Scheme Machine

The DrScheme programming environment ���� provides stu�
dents and programmers with a user�friendly environment
for developing Scheme programs� To make programming
accessible and attractive to novices� DrScheme provides a
thoroughly graphical environment and runs under several
major windowing systems 	Windows� MacOS� and Unix
X��
More than �� universities and high schools currently employ
DrScheme in their computing curriculum� and new schools
adopt DrScheme every semester�

We implemented DrScheme by �rst building MrEd ����
a portable Scheme ���� implementation with a graphical user
interface 	GUI� toolbox� MrEd serves both as the implemen�
tation platform for DrScheme� and as the underlying Scheme
engine for executing expressions and programs entered into
DrScheme�s read�eval�print loop 	repl�� This strategy fol�
lows a long tradition of meta�circular implementation that is
virtually synonymous with Lisp� and generally understood
for high�level languages as a whole ���� �� ����

Since DrScheme exposes MrEd�s language constructs di�
rectly to the repl� DrScheme can easily execute programs
that use the full MrEd language� including its GUI tool�
box� At the same time� DrScheme must protect its GUI
against interference from the programs it executes� and it
must be able to halt a program that has gone awry and

�This research was partially supported by a Lodieska Stockbridge
Vaughan Fellowship� NSF grants CCR��������� CDA�������	� and
CCR����
���� and a Texas ATP grant�

To appear� Intl� Conf� on Functional Programming
	ICFP� � Sept� ����� ����� Paris� France

reclaim the program�s resources�even though the program
and DrScheme share a single virtual machine�

To address this problem� MrEd provides a small set of
new language constructs� These constructs allow a program�
running program� such as DrScheme� to run nested programs
directly on the MrEd virtual machine without sacri�cing
control over the nested programs� As a result� DrScheme
can execute a copy of DrScheme that is executing its own
copy of DrScheme 	see Figure ��� The inner and middle
DrSchemes cannot interfere with the operation of the outer
DrScheme� and the middle DrScheme cannot interfere with
the outer DrScheme�s control over the inner DrScheme�

In this paper� we describe the key elements of the MrEd
virtual machine� and we step through the implementation
of a miniature version of DrScheme in MrEd� More gen�
erally� we show how MrEd de�nes a high�level operating
system 	OS� for graphical programs� As in other high�level
OSes� safety and security in MrEd derive from properties of
the underlying programming language� Mere safety� how�
ever� provides neither the level of protection between ap�
plications nor the kind of process control that conventional
OSes provide� Such protection and control is crucial for im�
plementing many kinds of programs� including programming
environments and scripting engines� By describing how we
implemented DrScheme in MrEd� we demonstrate how to
obtain key OS facilities through small extensions to a high�
level programming language�

The remainder of the paper is organized as follows� Sec�
tion � sketches a miniature DrScheme� called SchemeEsq�
and explains in more detail the implementation challenges
for creating a graphical programming environment� Sec�
tion � provides a brief overview of MrEd� Section � steps
through the implementation of SchemeEsq as a MrEd pro�
gram� Section explains how MrEd functions as a high�level
OS� Section � discusses some problems for future work� and
Section � compares MrEd to related systems�

� SchemeEsq� The Challenge

SchemeEsq� depicted in Figure �� is a simple programming
shell that captures the essential properties of DrScheme as
a program�running program� Roughly� SchemeEsq imple�
ments a read�eval�print loop 	repl� that consumes expres�
sions and evaluates them�

	define 	repl�
	print 	eval 	read���
	repl��

�

DrScheme

�

r

� �

� �run�drscheme�

outer

DrScheme

�

r

� �

� �run�drscheme�

middle

DrScheme

�

r

� �

�

inner

Figure �� DrScheme in DrScheme in DrScheme

Figure �� SchemeEsq

This rough repl sketch relies on extensive underlying ma�
chinery to implement each of the read� eval� and print steps�
SchemeEsq models DrScheme in more detail� showing how
read gets characters from the user� where print sends its out�
put� etc� Furthermore� unlike the repl function� SchemeEsq
demonstrates how to catch errors in the user�s program and
how to stop a program�s execution�

� SchemeEsq�s repl accepts expressions� evaluates them�
and displays the results� all within a GUI text edi�
tor� For simplicity� we assume that the user submits a
complete Scheme expression for evaluation by hitting
the Enter key� If a repl expression signals an error�
SchemeEsq prints the error message and creates a new
input prompt� At all times� the text preceding the
current prompt is locked so the user cannot modify it�

� In addition to standard Scheme� SchemeEsq�s repl

provides access to the entire MrEd toolbox� permit�
ting the user�s program to create threads and GUI ob�
jects� User�created GUI elements must not interfere
with SchemeEsq�s own GUI� For example� the user�s
program might create a modal dialog that disables all
of the user�s other windows� but it must not disable
the SchemeEsq window�

� SchemeEsq�s Reset button stops the current evalua�
tion� reclaiming all resources currently in use by the
user�s program� All active threads and GUI elements
created by the program must be destroyed�

� Although SchemeEsq redirects printed output from the
user�s program to its repl window� the program must
otherwise execute within SchemeEsq in exactly the

same way as it would execute within its own MrEd
virtual machine�

The crucial requirement for SchemeEsq is that it must run
any program securely� in the sense that the program can�
not interfere with SchemeEsq�s operation�� Indeed� since
SchemeEsq is itself a MrEd program� SchemeEsq must be
able to run copies of itself any number of times and to
any nesting depth� No matter how many SchemeEsqs are
running and how deeply they are nested� each instance of
SchemeEsq must be free from interference from its children�
At the same time� a single click to Reset in the outermost
SchemeEsq must terminate all of the other instances�

� MrEd Overview

MrEd acts as a high�level OS to service the GUI� security�
and scalability needs of SchemeEsq� In the same way that a
current production OS 	e�g�� Unix
X� Microsoft Windows�
de�nes a GUI API� a process model� and a library�linking
mechanism� MrEd de�nes constructs within Scheme for cre�
ating GUIs� securely executing untrusted code� and linking
together code modules�

� GUI construction � MrEd provides GUI elements via
built�in classes that a programmer can instantiate or
extend� Event dispatching is automatic and normally
synchronous� but MrEd also permits controlled� asyn�
chronous 	i�e�� parallel� event handling� In addition�
MrEd provides special support for multimedia editor
applications 	hence the Ed in MrEd�� such as word
processors and drawing programs�

� Embedding and security � MrEd provides multiple
threads of execution� thread�speci�c con�guration� and
resource control� These constructs support the secure
embedding of programs within other programs that
control the embedded execution environment and re�
source consumption�

� Modularity and extensibility � MrEd�s module and
class constructs enable the construction of reusable
components� These component constructs naturally
complement MrEd�s object�oriented GUI toolbox� al�
lowing a programmer to implement reusable and com�
posable extensions of GUI elements�

The following sections provide an overview of MrEd�s con�
structs� Section ��� describes a few details of MrEd�s GUI
toolbox� which we provide for the sake of de�ning a concrete
implementation of SchemeEsq� Section ��� describes MrEd�s

�Except by running out of memory� see Section ��

�

constructs for program embedding and security� The ideas
underlying these constructs form the main contribution of
the paper� Finally� Section ��� describes MrEd�s support for
modular and object�oriented programming� which is integral
to our model of programs and processes�

Recommendation� Skip the Experience and Rationale boxes for a
rst reading�

��� GUI Construction

MrEd provides the basic building blocks of GUI programs�
such as frames 	top�level windows�� modal dialogs� menus�
buttons� check boxes� and text �elds�via built�in classes
that the programmer can instantiate or extend� For ex�
ample� a programmer creates a frame by instantiating the
built�in frame� class��

	define frame

	make�object frame� �Example� �f ��� �����

MrEd�s make�object procedure takes a class and returns an
instance of the class� Extra arguments to make�object serve
as initialization arguments for the object� similar to argu�
ments provided with new in Java� For the frame� class� the
initialization arguments specify the frame�s title� its parent
window 	�f if none�� and its initial size� The above frame
is titled Example� has no parent� and is ��� pixels wide and
��� pixels tall�

The built�in classes provide various mechanisms for han�
dling GUI events� which MrEd dispatches automatically�
For example� when instantiating the button� class� the pro�
grammer supplies an event callback procedure to be invoked
when the user clicks the button� The following example cre�
ates a Close button that hides the frame when the user clicks
the button�

	make�object button� �Close� frame
	lambda 	button event�
	send frame show �f���

The button�s callback procedure uses MrEd�s send form�
which calls a method given an object� the method�s name�
and method arguments� A frame�s show method takes one
argument� a Boolean value that indicates whether to show
or hide the frame�

If a window receives multiple kinds of events� MrEd dis�
patches events to methods of the window instead of to a
callback procedure� For example� a drawing canvas receives
update events� mouse events� keyboard events� and sizing
events� to handle them� a programmer must derive a new
class from the built�in canvas� class and override the event�
handling methods�

	define my�canvas�
	class canvas� � my�canvas� extends canvas�
	override
	on�char 	lambda 	event� 	display �keyboard����
	on�scroll 	lambda 	event� 	display �scroll�����

�����

Callbacks� Experience and Rationale� For simple controls� such
as buttons� the control�s action is normally instance�specic�
so the action is best specied as a callback in the make�object
expression� For more complex GUI elements� such as can�
vases� event�handling is often common to a class of instances�
so method overriding provides a more extensible mechanism
for handling events�

�By convention� class names end with a percent sign ��� in MrEd�
The source code in this paper runs in MrEd version ����

MrEd�s GUI classes also handle the graphical layout of
windows� Our example frame demonstrates a simple layout�
the frame�s elements are lined up top�to�bottom� In general�
a programmer speci�es the layout of a window by assigning
each GUI element to a parent container� A vertical con�
tainer� such as a frame� arranges its children in a column�
and a horizontal container arranges its children in a row� A
container can be a child of another container� for example�
to place two buttons side�by�side in a frame� a programmer
creates a horizontal panel for the buttons�

	define panel 	make�object horizontal�panel� frame��
	make�object button� �Left� panel ����
	make�object button� �Right� panel ����

A programmer can adjust the minimum width� minimum
height� horizontal stretchability� and vertical stretchability
of each GUI element� Using these settings� MrEd picks an
initial size for each frame� and it repositions controls when
the user resizes a frame�

Containers� Experience and Rationale� Existing GUI tool�
boxes provide a variety of mechanisms for geometry manage�
ment� but our simple container model is intuitive and surpris�
ingly powerful� Although MrEd permits the denition of new
containers with arbitrary layout strategies� we implemented
DrScheme using only vertical and horizontal containers�

In addition to the basic GUI building blocks� MrEd pro�
vides a collection of classes that support a broad spectrum of
editor programs� from word processors to drawing programs�
The editor framework addresses a wide range of real�world
issues for an editor�including cut�and�paste� extensible �le
formats� and layered text styles�while supporting a high
level of extensibility through the class system�

Editors� Experience and Rationale� MrEd�s editor toolbox pro�
vides a foundation for two common kinds of applications�

�� programs that include a sophisticated text editor�
MrEd�s simple text eld control is inadequate for text�
intensive applications� Many programs need editors that
can handle multiple fonts and non�text items�

	� programs that include a canvas with dragable objects�
MrEd�s drawing toolbox provides a generic drawing sur�
face for plotting lines and boxes� but many applications
need an interactive canvas� where the user can drag and
resize individual objects�

The power and �exibility of the editor toolbox make it fairly
complex� and using the toolbox requires a solid understanding
of its structure and terminology� Nevertheless� enough appli�
cations t one �or both� of the descriptions above to justify the
depth and complexity of the toolbox and the learning invest�
ment required to use it�

��� Embedding and Security

Conventional operating systems support multiple programs
through a process abstraction that gives each program its
own control �ow� I
O environment� and resource controls�
A process is distinguished primarily by its address space�
where separate address spaces serve both as a protection
barrier between programs and as a mechanism for de�ning
a program�s environment� e�g�� the stdout global variable in
a Unix C program contains a process�speci�c value�

In MrEd� separate address spaces are unnecessary for
protection between programs� due to the safety properties
of the programming language� Nevertheless� separate pro�
grams require separate control �ow� I
O environments� and
resource controls� Instead of providing an all�encompassing
process abstraction� MrEd provides speci�c mechanisms for
creating threads of control� dealing with graphical I
O� and
managing resources�

�

����� Threads and Parameters

MrEd�s thread primitive consumes a procedure of no argu�
ments and invokes it in a new thread� The following example
spawns a thread that prints �tick� every second�

	define 	tick�loop�
	sleep �� 	display �tick�� 	tick�loop��

	thread tick�loop�

Each thread maintains its own collection of system set�
tings� such as the current directory and the current out�
put port� These settings are called parameters�� A pa�
rameter is queried and modi�ed via a parameter procedure�
such as current�directory or current�output�port� For example�
	current�directory� returns the path of the current directory�
while 	current�directory dir� sets the current directory to dir�

Modifying a parameter changes its value in the current
thread only� Therefore� by setting the current�output�port
in the tick�loop thread� we can redirect the �tick� printouts
without modifying tick�loop and without a�ecting the out�
put of any other thread�

	thread 	lambda 	�
	current�output�port 	open�output�file �ticks���
	tick�loop���

A newly�created thread inherits the parameter values of the
creating thread� Thus� if tick�loop creates its own threads�
they also produce output to the �ticks� �le�

Parameter inheritance provides an alternative mecha�
nism for setting the output port in the �ticking� thread� In�
stead of explicitly setting the port within the ticking thread�
we could temporarily set the port in the main thread while
creating the ticking thread�

	parameterize 		current�output�port
	open�output�file �ticks����

	thread tick�loop��

A parameterize expression sets the value of a parameter
during the dynamic extent of its body� In the above exam�
ple� parameterize restores the output port for the main
thread after the ticking thread is created� but the ticking
thread inherits �ticks� as its current output port�

Since the output port is set before tick�loop is called� the
ticking thread has no way to access the original output port�
In this way� parameters permit securely con�guring the en�
vironment of a nested program 	or any untrusted thread��

Parameters� Experience and Rationale� An early version of
MrEd supported bundles of parameter values as rst�class ob�
jects� called parameterizations� Two threads could share a pa�
rameterization� in which case modifying a parameter in one
thread would change the value in both threads�

This generalization turns out to be nearly useless in practice�
since shared state is readily available through a parameter
whose value is a mutable object� Worse� parameterizations de�
feat the essential purpose of parameters for separating global
state from thread�specic state� With parameterizations� a li�
brary routine cannot� for example� freely adjust the current
output port� because even a temporary change might a�ect
evaluation in another thread�

�The term parameter� the parameter procedure convention� and
the parameterize form in MrEd imitate those of Chez Scheme ����
although Chez does not provide threads�

����� Eventspaces

An eventspace in MrEd is a context for processing GUI
events in a sequential manner� Each eventspace maintains
its own queue of events� its own collection of frames� and
its own handler thread� MrEd dispatches events within an
eventspace synchronously in the handler thread� while dis�
patching events from di�erent eventspaces asynchronously
in separate handler threads�

Creating an eventspace starts a handler thread for the
eventspace implicitly� Only the handler thread dispatches
events� but all threads that share an eventspace can queue
events� and all threads 	regardless of eventspace� can ma�
nipulate an accessible GUI object�� When a thread creates
a top�level window� it assigns the window to the current
eventspace as determined by the current�eventspace param�
eter�

Eventspaces� Experience and Rationale� Windows and BeOS
also integrate threads with GUI objects� but in fundamentally
di�erent ways�

� Windows associates an event queue with every thread�
and a thread can manipulate only those windows within
its own queue� A programmer can explicitly merge
the queues of two threads so that they share an
�eventspace�� but the queues are merged permanently�
so there is no way to change the �eventspace� of a
thread�

� BeOS creates a separate handler thread for every top�
level window� Programmers must explicitly implement
synchronization among top�level windows� but monitors
protect many operations on windows�

Eventspaces are more �exible than either of these designs�
Compared to Windows� eventspaces more easily accommodate
multiple threads that operate on a single set of graphical ob�
jects� Compared to BeOS� eventspaces more easily accommo�
date single�threaded programs with multiple windows� In prin�
ciple� MrEd�s lack of automatic synchronization on objects in�
creases the potential for race conditions� but such race condi�
tions have occurred rarely in practice� While threads some�
times manipulate GUI objects concurrently� they typically call
thread�safe primitive methods�

For example� to call a graphical�tick�loop procedure that
creates a ticking GUI� we parameterize the ticking thread
with a new eventspace��

	parameterize 		current�eventspace 	make�eventspace���
	thread graphical�tick�loop��

	define 	graphical�tick�loop�
	letrec 	�frame 	make�object frame� �Tick���

�msg 	make�object message� �tick� frame��
�loop 	lambda 	now next�

	sleep	yield ��
	send msg set�label now�
	loop next now����

	send frame show �t�
	loop �tock� �tick����

The �rst expression above creates two threads� the plain
thread explicitly created by thread� and the handler thread
implicitly created by make�eventspace� Instead of creating
the plain thread� we can use queue�callback to call graphical�
tick�loop within the handler thread�

	parameterize 		current�eventspace 	make�eventspace���
	queue�callback graphical�tick�loop��

�Unlike Java� MrEd provides no automatic synchronization for the
methods of a GUI object� The primitive methods of an object� how�
ever� are guaranteed to be thread�safe�

�The sleep�yield procedure is like sleep� except that it handles events
�such as window�update events� while �sleeping��

�

The queue�callback primitive queues a procedure to be in�
voked by the handler thread of the current eventspace� The
procedure will be invoked in the same way as an event call�
back for the eventspace�

Each queued procedure is either a high�priority or low�
priority callback� indicated by an optional second argument
to queue�callback� When a high�priority callback 	the de�
fault� and a GUI event are both ready for handling� MrEd
invokes the high�priority callback� In contrast� when a low�
priority callback and a GUI event are both ready for han�
dling� MrEd invokes the GUI event handler� A programmer
can use prioritized callbacks to assign priorities to graphical
operations� such as low�priority screen refreshing�

����� Custodians

In the same way that threads generalize per�process concur�
rency and eventspaces generalize per�process event sequenc�
ing� custodians generalize per�process resource control��

MrEd places every newly�created thread� eventspace� �le
port� or network connection into the management of the
current custodian 	as determined by the current�custodian
parameter�� A program with access to the custodian can
terminate all of the custodian�s threads and eventspaces
and close all of the custodian�s ports and network connec�
tions� The custodian�shutdown�all procedure issues such a
shut�down command to a custodian� immediately reclaim�
ing the resources consumed by the terminated and closed
objects�

Using a custodian� we can start graphical�tick�loop and
permit it to run for only a certain duration� say ��� seconds�
before terminating the thread and reclaiming its graphical
resources�

	define cust 	make�custodian��
	parameterize 		current�custodian cust��
	parameterize 		current�eventspace 	make�eventspace���
	queue�callback graphical�tick�loop���

	sleep ����
	custodian�shutdown�all cust�

Although graphical�tick�loop could create new custodians�
custodians exist within a strict hierarchy� Every new custo�
dian is created as a sub�custodian of the current custodian�
and when a custodian receives a shut�down command� it
propagates the shut�down command to its sub�custodians�
Thus� a program cannot evade a shut�down command by
migrating to a custodian that it creates�

Custodians� Experience and Rationale� Custodians manage
all objects that are protected from garbage collection by ref�
erences in the low�level system� For example� an active thread
is always accessible via the scheduler�s run queue�even if no
part of the program refers to the thread�and a visible frame
is always accessible via the window manager� Such objects re�
quire explicit termination to remove the system�s reference and
to free the object�s resources�

An object that has terminated may continue to occupy a small
amount of memory� Custodians rely on garbage collection to
reclaim the memory for a terminated object� and a thread in a
di�erent custodian might retain a reference to such an object�
Each operation on a terminable object must therefore check
whether its operand has terminated and signal an error if nec�
essary� For GUI objects in MrEd� primitive methods signal an
error when the object has terminated�

�Custodians are similar to resource containers ����

��� Modularity and Extensibility

Parameters� eventspaces� and custodians provide the nec�
essary infrastructure for de�ning processes without sepa�
rate address spaces� The resulting process model permits
�exible and e�cient communication between programs via
procedures� methods� and other language constructs� This
�exibility blurs the distinction between programs and li�
braries� For example� a picture�editing program could work
either as a stand�alone application or as a part of a word�
processing application� More generally� programmers can
replace monolithic programs with �exible software compo�
nents that are combined to de�ne applications�

MrEd supports the de�nition of units ����� which are
separately compilable and reusable software components� A
unit encapsulates a collection of de�nitions and expressions
that are parameterized over imports� and some of the de�ni�
tions are exported� A programmer links together a collection
of units to create a larger unit or a program� MrEd de�nes
program to mean a unit with no imports� similar to the way
that conventional OSes with dynamic linking 	via DLLs or
ELF objects� de�ne a program as a certain form of linkable
object�

To permit components that are as reusable as possible� a
unit linking graph can contain cycles for de�ning mutually�
recursive procedures across unit boundaries� Furthermore� a
unit can contain a class de�nition where the superclass is im�
ported into the unit� even though the source of the imported
class is not known at compile time� In the following exam�
ple� NoisyCanvasUnit de�nes a noisy�canvas� class that is
derived from an imported plain�canvas� class�

	define NoisyCanvasUnit

	unit 	import plain�canvas��
	export noisy�canvas��

	define noisy�canvas�
	class plain�canvas�
���
	override
	on�event 	lambda 	e�

	display �canvas event��
	super�on�event e����

�������

Since the actual plain�canvas� class is not determined until
link time� NoisyCanvasUnit e�ectively de�nes a mixin ���
��� ���� which is a class extension that is parameterized over
its superclass� Using mixins� a programmer can mix and
match extensions to produce a class with a set of desired
properties� This mode of programming is particularly useful
for implementing GUIs� where each mixin encapsulates a
small behavioral extension of a GUI element�

Units and Mixins� Experience and Rationale� Our work cited
above for units and mixins provides a theoretical model of
the constructs� In practice� MrEd�s implementation of units
closely follows the theoretical model� except that units nor�
mally import and export bundles of names rather than indi�
vidual names� In contrast� MrEd�s implementation of mixins
is less expressive than the model� because the implementation
does not handle method name collisions� This di�erence repre�
sents a signicant compromise in our implementation of mix�
ins� but MrEd�s weaker form is su�ciently powerful for most
purposes�

� Implementing SchemeEsq in MrEd

Equipped with the MrEd constructs de�ned in the previ�
ous section� we can implement the SchemeEsq program de�
scribed in Section �� First� we create the SchemeEsq GUI
using the MrEd toolbox� Then� we use threads� eventspaces�
and custodians to implement secure evaluation for repl ex�
pressions� Finally� we discuss how units and mixins let us
extend SchemeEsq to implement the full DrScheme environ�
ment�

��� SchemeEsq GUI

To implement the SchemeEsq GUI� we �rst create a frame�

	define frame
	make�object frame� �SchemeEsq� �f ��� �����

and make it visible�

	send frame show �t�

Next� we create the reset button to appear at the top of the
frame�

	define reset�button
	make�object button� �Reset� frame

	lambda 	b e� 	reset�program����

The callback procedure for the reset button ignores its ar�
guments and calls reset�program� which we de�ne later� Fi�
nally� we create a display area for the repl� implemented as
an editor canvas�

	define repl�display�canvas
	make�object editor�canvas� frame��

At this point� our SchemeEsq GUI already resembles Fig�
ure �� but the repl is not yet active� The actual repl is im�
plemented as a text editor that is displayed by the canvas��

The basic functionality needed in SchemeEsq�s repl�
including keyboard event handling� scrolling� and cut and
paste operations�resides in MrEd�s text� editor class� The
esq�text� class� de�ned in the appendix� adapts the text�
class to the needs of the repl by overriding methods to
specialize the editor�s behavior� For example� when the edi�
tor receives an Enter
Return key press� it calls the evaluate
procedure 	which we de�ne later��

In addition to handling input� the esq�text� class de�
�nes an output method for printing output from the user�s
program into the repl editor� Since the user�s program
can create many threads� the outputmethod needs a special
wrapper to convert multi�threaded output calls into single�
threaded output� The queue�output wrapper performs this
conversion by changing a method call into a queued� low�
priority GUI event�

	define esq�eventspace 	current�eventspace��
	define 	queue�output proc�
	parameterize 		current�eventspace esq�eventspace��
	queue�callback proc �f���

Using the new esq�text� class� we create an editor in�
stance and install it into the display canvas�

	define repl�editor 	make�object esq�text���
	send repl�display�canvas set�editor repl�editor�

The SchemeEsq GUI is now complete� but we have not yet
implemented evaluate 	used in esq�text�� and reset�program

	used by reset�button�s callback��

�MrEd distinguishes between a display and its editor in the same
way that Emacs distinguishes between a window and its bu�er�

��� SchemeEsq Evaluation

When a user hits the Enter key� SchemeEsq evaluates the
expression following the current prompt� SchemeEsq ulti�
mately evaluates this expression by calling the built�in eval
procedure� But before letting SchemeEsq call eval� we must
ensure that code evaluated in the repl cannot interfere with
SchemeEsq itself� since both SchemeEsq and the user�s code
execute together in MrEd�

Of course� user code must not gain direct access to the
frame or editor of SchemeEsq� since it might call methods
of the objects inappropriately� We can hide SchemeEsq�s
implementation from the user�s program by putting it into
a module and making all de�nitions private� For now� we
continue to de�ne SchemeEsq through top�level de�nitions�
but the appendix shows the �nal SchemeEsq program en�
capsulated in a module�

The remaining problems concern the interaction of con�
trol �ow in the user�s program and in SchemeEsq� Threads
with parameters� eventspaces� and custodians provide pre�
cisely the mechanisms needed to solve these problems�

����� Threads in SchemeEsq

An unbounded computation in the user�s program must not
stall SchemeEsq�s GUI� Otherwise� the program would pre�
vent the user from clicking SchemeEsq�s reset button� To
avoid blocking SchemeEsq on a repl computation� we eval�
uate user expressions in a separate thread� The following is
a �rst attempt at de�ning the evaluate procedure for evalu�
ating user expressions��

	define 	evaluate expr�str�
	thread
	lambda 	�
	with�handlers 		exn

	lambda 	exn�
	display 	exn�message exn�����

	write 	eval 	read 	open�input�string expr�str�����
	newline�
	send repl�editor new�prompt����

Having created a thread to represent the user process�
we must con�gure the process�s environment� For simplicity�
we de�ne con�guration as redirecting output from the user�s
program 	via display or write� to the repl editor� To redirect
output for the user�s program� we set the output port in the
evaluation thread�

	define 	evaluate expr�str�
	thread
	lambda 	�

	current�output�port user�output�port� � � added
	with�handlers 		exn

	lambda 	exn�
	display 	exn�message exn�����

	write 	eval 	read 	open�input�string expr�str�����
	newline�
	send repl�editor new�prompt����

The above assumes that user�output�port port acts as a pipe
to the repl editor� We can de�ne user�output�port using

�The with�handlers form species predicate�handler pairs that
are active during the evaluation of the with�handlers body expres�
sion� In evaluate� the exn� predicate selects the �lambda �exn� �dis�
play �exn�message exn��� handler for all types of exceptions� Thus�
evaluate catches any exception� prints the error message contained in
the exception� and resumes the repl�

�

make�output�port� a MrEd procedure that creates a port
from arbitrary string�printing and port�closing procedures�

	define user�output�port

	make�output�port
	lambda 	s� 	send repl�editor output s��
	lambda 	� �nothing�to�close���

In this use ofmake�output�port� the string�printing procedure
sends the string to the repl editor� and the port�closing
procedure does nothing�

����� Eventspaces in SchemeEsq

Since the user�s program and SchemeEsq execute in separate
threads� the user�s program and SchemeEsq must handle
GUI events in parallel� To this end� SchemeEsq creates a
new eventspace for the user�s program�

	define user�eventspace

	make�eventspace��

To execute user code with user�eventspace� we might re�
vise evaluate to install the eventspace in the same way that
we installed user�output�port�

	define 	evaluate expr�str�
���
	thread
	lambda 	�

	current�eventspace user�eventspace�
������

Alternatively� we could eliminate the call to thread and eval�
uate expressions in the handler thread of user�eventspace�
The handler thread is a more appropriate choice� because
code that creates and manipulates GUI objects should run
in the event�handling thread to avoid race conditions� To
evaluate expressions in the handler thread� we treat the
evaluation of repl expressions as a kind of event� queuing
evaluation with queue�callback�

	define 	evaluate expr�str�
	parameterize 		current�eventspace user�eventspace��

	queue�callback � � changed � added

	lambda 	�
	current�output�port user�output�port�
	with�handlers 		exn

	lambda 	exn�
	display 	exn�message exn�����

	write 	eval 	read 	open�input�string expr�str�����
	newline�
	send repl�editor new�prompt�����

����� Custodians in SchemeEsq

We complete SchemeEsq by implementing the reset button�s
action with a custodian� We de�ne user�custodian and cre�
ate the user�s eventspace under the management of user�
custodian�

	define user�custodian 	make�custodian��

	define user�eventspace

	parameterize 		current�custodian user�custodian��
	make�eventspace���

To implement the reset�program procedure for the reset but�
ton� we issue a shut�down command on user�custodian and
then reset the repl editor�

	define 	reset�program�
	custodian�shutdown�all user�custodian�
	parameterize 		current�custodian user�custodian��
	set� user�eventspace 	make�eventspace���

	send repl�editor reset��

Each reset destroys user�eventspace 	by issuing a shut�down
command to user�custodian�� making the eventspace unus�
able� Therefore� reset�program creates a new eventspace
after each reset�

��� Modularity and Extensibility in SchemeEsq

The appendix assembles the pieces that we have developed
into a complete implementation of SchemeEsq� The most
striking aspect of SchemeEsq�s implementation�besides the
fact that it �ts on one page�is that half of the code exists
to drive the repl editor� In the real DrScheme environment�
the repl is considerably more complex� and its implementa�
tion occupies a correspondingly large portion of DrScheme�s
overall code�

In implementing DrScheme� we tamed the complexity of
the GUI by making extensive use of units and mixins� For
example� the parenthesis�highlighting extension for an editor
is implemented as a mixin in its own unit� and the interactive
search interface is another mixin in a separate unit� Using
units and mixins in this way� the implementation strategy
that we have demonstrated for SchemeEsq scales to the more
elaborate implementation of DrScheme�

DrScheme also exploits units for embedding program�like
components� For example� DrScheme�s help system runs ei�
ther as a stand�alone application or embedded within the
DrScheme programming environment� The help�system unit
imports a class that de�nes a basic frame for the help win�
dow� In stand�alone mode� the class implements a frame
with a generic menu bar� but when the help system is em�
bedded in DrScheme� the imported class implements a menu
bar with DrScheme�speci�c menus�

� High�Level Operating Systems

The development of SchemeEsq in MrEd demonstrates how
a few carefully de�ned extensions can transform a high�level
programming language into a high�level operating system�
A high�level OS permits �exible and e�cient communica�
tion between programs through common language mecha�
nisms� such as procedures and methods� It also guarantees
type and memory safety across programs through language
mechanisms� eliminating the need for separate process ad�
dress spaces and data marshaling� This �exibility increases
the potential for extensible and interoperating programs�

Mere safety� however� provides neither the level of pro�
tection between applications nor the kind of process control
that conventional OSes provide� As an example� SchemeEsq
illustrates how a graphical programming environment must
protect its GUI from interference from a program executing
within the environment� Although language�based safety
can prevent a program from trampling on the environment�s
data structures� it cannot prevent a program from starving
the environment process or from leaking resources�

MrEd combines the programming �exibility of a high�
level OS with the conventional process controls of a conven�
tional OS� As we have shown� three key extensions make this

�

combination possible� threads with parameters� eventspaces�
and custodians� Our approach to building a high�level OS on
top of Scheme should apply equally well to other languages�
such as ML or Java�

� Problems for Future Work

Although MrEd provides custodians for resource reclama�
tion� our current implementation does not support a priori

resource limits on custodians 	analogous to memory use lim�
its on a process� or constraints that prevent a program from
triggering frequent system�wide garbage collections� Cus�
todians and parameters appear to be good abstractions for
expressing these limits� but our memory management tech�
nology must be improved to implement them�

Our SchemeEsq example fails to illustrate certain kinds
of protection problems� because the communication between
SchemeEsq and a user�s program is rather limited� For ex�
ample� the user�s program sends output to SchemeEsq by
queueing a GUI event� Since the built�in queueing oper�
ation is atomic and non�blocking� there is no danger that
the user�s program will break a communication invariant by
killing its own thread� More sophisticated communication
protocols require stronger protection during the execution
of the protocol� Indeed� merely adding a limit to the size of
the output queue in SchemeEsq 	so that the user�s thread
blocks when the queue is full� requires such protection�

One general solution to the protection problem is to cre�
ate a new thread�owned by SchemeEsq�s custodian�for
each communication� This techniques solves the problem
because thread creation is an atomic operation� and the
newly�created thread can execute arbitrarily many instruc�
tions without the risk of being killed by the user�s program�
Unfortunately� thread creation is an expensive operation in
MrEd compared to procedure calls� as in many systems� To
reduce this cost for common protection idioms� MrEd pro�
vides a call�in�nested�thread procedure that creates a child
thread� and then blocks the parent thread until the child
terminates� By exploiting the mutual exclusion between
the parent and child threads� MrEd can eliminate much of
the thread�creation and thread�swapping overhead for pro�
tection idioms� Using a similar technique� Ford and Lep�
reau ���� improved the performance of Mach RPC� Never�
theless� a signi�cant overhead remains�

	 Related Work

As a GUI�oriented� high�level language� MrEd shares much
in common with Smalltalk ����� Pilot ����� Cedar ����� the
Lisp Machine ���� Oberon ����� and JavaOS ����� All of these
systems simplify the implementation of cooperating graphi�
cal programs through a high�level language� Although most
of these systems support multiple processes� only MrEd pro�
vides the kind of process controls that are necessary for im�
plementing a SchemeEsq�like programming environment��

Other related work aims to replicate the safety� secu�
rity� and resource control of conventional operating systems
within a single address space� Architectures such as Alta ����
SPIN ��� J�Kernel ����� and Nemesis ����� emphasize pro�
tection within a single address space� but at the expense
of program integration through indirect and ine�cient calls�
For example� the J�Kernel relies on explicit capabilities� and

�On the Lisp Machine� allowing programmers to tinker with the
OS on�the��y was considered an advantage ��� page ����

therefore sacri�ces the convenience of direct procedure calls
and direct data sharing�

Back and Hsieh ��� provide a detailed explanation of the
di�erence between process control and mere safety in a Java�
based operating system� They emphasize the importance of
the �red line� that separates user code and kernel code in
a conventional OS� This red line exists in MrEd� separating
low�level built�in primitives from the rest of the system� For
example� queue�callback is e�ectively an atomic operation to
the calling thread� MrEd goes one step further� providing
programs with the ability to de�ne new layers of red lines�
In particular� SchemeEsq de�nes a red line between itself
and the programs that it executes�

Inferno ��� achieves many of the same goals as MrEd�
but in a smaller language that is targeted for communica�
tions software rather than general�purpose GUI implemen�
tation� Balfanz and Gong ��� explore extensions to Java to
support multiple processes� particularly multiple processes
owned by di�erent users within a single JVM� They derive
some of the same constructs that are de�ned by MrEd� no�
tably eventspaces�

Haggis ����� eXene ����� and Fudgets ���� provide stream�
oriented graphical extensions of functional languages� None
provides a mechanism for process and resource control� but
the functional streams used by these systems makes them
less susceptible to cross�process interference than an imper�
ative GUI layer� A combination of stream�oriented GUIs
with custodians may be possible�

 Conclusion

We have shown how key constructs in MrEd�threads with
parameters� custodians� and eventspaces�enabled the de�
velopment of a graphical programming environment� More
importantly� the constructs that enabled DrScheme also ad�
dress problems in the design of a general�purpose� high�level
operating system�

Although MrEd was speci�cally created for DrScheme�
MrEd serves as platform for many other applications as well�
These applications include a theorem prover ����� a theater
lighting system ����� and a mail client� which demonstrate
that MrEd�s programming model extends to general GUI
programming tasks�

Acknowledgements MrEd�s GUI toolbox is based on the
wxWindows class library ����� Thanks to Jay Lepreau� God�
mar Back� and Pat Tullmann for perspective on existing
work in high�level OSes� and thanks to the anonymous re�
viewers for helpful comments on the original draft of this
paper�

References

��� Back� G� and W� Hsieh� Drawing the red line in Java�
In Proc� IEEE Workshop on Hot Topics in Operating
Systems� March �����

��� Back� G�� P� Tullmann� L� Stoller� W� C� Hsieh and
J� Lepreau� Java operating systems� Design and imple�
mentation� Technical Report UUCS������� University
of Utah� �����

��� Balfanz� D� and L� Gong� Experience with secure
multi�processing in Java� Technical Report TR�������
Princeton University� Computer Science Department�
September �����

�

��� Banga� G�� P� Druschel and J� C� Mogul� Resource
containers� A new facility for resource management in
server systems� In Proc� ACM Symposium on Operating
System Design and Implementation� Feburary �����

�� Bershad� B� N�� S� Savage� P� Pardyak� E� G� Sirer�
M� Fiuczynski� D� Becker� S� Eggers and C� Chambers�
Extensibility� safety and performance in the SPIN oper�
ating system� In Proc� ACM Symposium on Operating
Systems Principles� pages �������� December ����

��� Bracha� G� and W� Cook� Mixin�based inheritance� In
Proc� Joint ACM Conf� on Object�Oriented Program�
ming� Systems� Languages and Applications and the

European Conference on Object�Oriented Programming�
October �����

��� Bromley� H� Lisp Lore� A Guide to Programming the

Lisp Machine� Kluwer Academic Publishers� �����

��� Dorward� S�� R� Pike� D� L� Presotto� D� Ritchie�
H� Trickey and P� Winterbottom� Inferno� In Proc�

IEEE Compcon Conference� pages �������� �����

��� Dybvig� R� K� Chez Scheme User�s Guide� Cadence
Research Systems� �����

���� Findler� R� B�� C� Flanagan� M� Flatt� S� Krishnamurthi
and M� Felleisen� DrScheme� A pedagogic programming
environment for Scheme� In Proc� International Sym�

posium on Programming Languages� Implementations�
Logics� and Programs� pages �������� September �����

���� Finne� S� and S� P� Jones� Composing Haggis� In Proc�

EurographicsWorkshop on Programming Paradigms for
Computer Graphics� September ����

���� Fisler� K�� S� Krishnamurthi and K� Gray� Implement�
ing extensible theorem provers� Technical Report ���
���� Rice University� �����

���� Flatt� M� PLTMzScheme� Language manual� Technical
Report TR������� Rice University� �����

���� Flatt� M� and M� Felleisen� Units� Cool modules for
HOT languages� In Proc� ACM Conference on Pro�
gramming Language Design and Implementation� pages
�������� June �����

��� Flatt� M� and R� B� Findler� PLT MrEd� Graphical
toolbox manual� Technical Report TR������� Rice Uni�
versity� �����

���� Flatt� M�� S� Krishnamurthi and M� Felleisen� Classes
and mixins� In Proc� ACM Symposium on Principles

of Programming Languages� pages �������� Janurary
�����

���� Ford� B� and J� Lepreau� Evolving Mach ��� to a mi�
grating thread model� In Proc� USENIX Technical Con�
ference and Exhibition� pages ������� Janurary �����

���� Ganser� E� R� and J� H� Reppy� eXene� In Proc� of

the ���� CMU Workshop on Standard ML� Carnegie
Mellon University� September �����

���� Goldberg� A� and D� Robson� Smalltalk ��� The Lan�

guage� Addison�Wesley� Reading� �����

���� Hagiya� M� Meta�circular interpreter for a strongly
typed language� Journal of Symbolic Computation�
�	����������� �����

���� Hallgren� T� and M� Carlsson� Programming with fud�
gets� In Jeuring� J� and E� Meijer� editors� Advanced
Functional Programming� volume �� of Lecture Notes
in Computer Science� pages �������� Springer� May
����

���� Hawblitzel� C�� C��C� Chang� G� Czajkowski� D� Hu and
T� von Eicken� Implementing multiple protection do�
mains in Java� In Proc� of USENIX Annual Technical

Conference� pages ������� June �����

���� Kelsey� R�� W� Clinger and J� Rees 	Eds��� The rev�
ised� report on the algorithmic language Scheme� ACM
SIGPLAN Notices� ��	��� September �����

���� Leslie� I� M�� D� McAuley� R� J� Black� T� Roscoe� P� R�
Barham� D� M� Evers� R� Fairburns and E� A� Hy�
den� The design and implementation of an operating
system to support distributed multimedia applications�
IEEE Journal on Selected Areas in Communications�
��	������������� September �����

��� McCarthy� J� Recursive functions of symbolic expres�
sions and their computation by machine 	Part I�� Com�
munications of the ACM� �	���������� �����

���� Moon� D� A� Object�oriented programming with Fla�
vors� In Proc� ACM Conference on Object�Oriented

Programming� Systems� Languages� and Applications�
pages ���� November �����

���� Redell� D�� Y� Dalal� T� Horsley� H� Lauer� W� Lynch�
P� McJones� H� Murray and S� Purcell� Pilot� An oper�
ating system for a personal computer� Communications
of the ACM� ��	��������� Feburary �����

���� Reynolds� J� De�nitional interpreters for higher order
programming languages� In ACM Conference Proceed�

ings� pages �������� �����

���� Smart� J� et al� wxWindows�
http���web�ukonline�co�uk�julian�smart�wxwin��

���� Sperber� M� The Lula system for theater lighting con�
trol� http���www�pu�informatik�uni�tuebingen�de�
users�sperber�lula��

���� Sun Microsystems� Inc� JavaOS� A standalone Java
environment� �����
http���www�javasoft�com�products�javaos�
javaos�white�html�

���� Swinehart� D� C�� P� T� Zellweger� R� J� Beach and R� B�
Hagmann� A structural view of the Cedar programming
environment� ACM Transactions on Programming Lan�

guages and Systems� �	����������� October �����

���� Wirth� N� and J� Gutknecht� Project Oberon� ACM
Press� �����

�

Appendix

Syntax Note� The unit�sig module form is like unit� except
that import and export names are bundled together into signa�
tures� The built�in mred� signature contains all of the classes
and procedures provided by MrEd�

	define SchemeEsq

	unit�sig 	� �� no exports
	import mred��

�� The repl editor class
	define esq�text�
	class text� 	�
�� lexical access to inherited methods�
	inherit insert last�position get�text erase�
�� lexical access to an overridden method�
	rename 	super�on�char on�char��
�� private �elds�
	private 	prompt�pos �� 	locked� �t��
	override
�� override can�insert� to block pre�prompt inserts�
	can�insert� 	lambda 	start len�

	and 	�� start prompt�pos�
	not locked�����

�� override can�delete� to block pre�prompt deletes�
	can�delete� 	lambda 	start end�

	and 	�� start prompt�pos�
	not locked�����

�� override on�char to detect Enter
Return�
	on�char 	lambda 	c�

	super�on�char c�
	when 	and 	eq
 	send c get�key�code�

��return�
	not locked���

	set� locked� �t�
	evaluate
	get�text prompt�pos

	last�position�������
	public
�� method to insert a new prompt
	new�prompt 	lambda 	�

	queue�output
	lambda 	�
	set� locked� �f�
	insert �� ��
	set� prompt�pos 	last�position������

�� method to display output
	output 	lambda 	str�

	queue�output
	lambda 	�
	let 		was�locked� locked���
	set� locked� �f�
	insert str�
	set� locked� was�locked�������

�� method to reset the repl�
	reset 	lambda 	�

	set� locked� �f�
	set� prompt�pos ��
	erase�
	new�prompt����

	sequence
�� initialize superclass�de�ned state�
	super�init�
�� create the initial prompt�
	new�prompt����

�� Queueing repl output as an event

	define esq�eventspace 	current�eventspace��
	define 	queue�output proc�
	parameterize 		current�eventspace

esq�eventspace��
	queue�callback proc �f���

�� GUI creation

	define frame
	make�object frame� �SchemeEsq� �f ��� �����

	define reset�button
	make�object button� �Reset� frame

	lambda 	b e�
	reset�program����

	define repl�editor 	make�object esq�text���
	define repl�display�canvas

	make�object editor�canvas� frame��
	send repl�display�canvas set�editor repl�editor�
	send frame show �t�

�� User space initialization

	define user�custodian 	make�custodian��

	define user�output�port
	make�output�port
�� string printer�
	lambda 	s� 	send repl�editor output s��
�� closer�
	lambda 	� �nothing�to�close���

	define user�eventspace
	parameterize 		current�custodian user�custodian��
	make�eventspace���

�� Evaluation and resetting

	define 	evaluate expr�str�
	parameterize 		current�eventspace user�eventspace��
	queue�callback
	lambda 	�
	current�output�port user�output�port�
	with�handlers 		exn

	lambda 	exn�
	display
	exn�message exn�����

	write 	eval 	read 	open�input�string
expr�str�����

	newline�
	send repl�editor new�prompt�����

	define 	reset�program�
	custodian�shutdown�all user�custodian�
	parameterize 		current�custodian user�custodian��
	set� user�eventspace 	make�eventspace���

	send repl�editor reset����

�� Run the program module
	invoke�unit�sig SchemeEsq mred��

Syntax Note� The invoke�unit�sig form executes the body
of a unit given signatures for the unit�s imports� and invoke�
unit�sig satises the imports from its lexical and top�level
environment�

��

