Programming Languages as Operating Systems
(or Revenge of the Son of the Lisp Machine)

Matthew Flatt Robert Bruce Findler

Shriram Krishnamurthi

Matthias Felleisen

Department of Computer Science*
Rice University
Houston, Texas 77005-1892

Abstract

The MrEd virtual machine serves both as the implementa-
tion platform for the DrScheme programming environment,
and as the underlying Scheme engine for executing expres-
sions and programs entered into DrScheme’s read-eval-print
loop. We describe the key elements of the MrEd virtual
machine for building a programming environment, and we
step through the implementation of a miniature version of
DrScheme in MrEd. More generally, we show how MrEd de-

fines a high-level operating system for graphical programs.

1 MrEd: A Scheme Machine

The DrScheme programming environment [10] provides stu-
dents and programmers with a user-friendly environment
for developing Scheme programs. To make programming
accessible and attractive to novices, DrScheme provides a
thoroughly graphical environment and runs under several
major windowing systems (Windows, MacOS, and Unix/X).
More than 60 universities and high schools currently employ
DrScheme in their computing curriculum, and new schools
adopt DrScheme every semester.

We implemented DrScheme by first building MrEd [15],
a portable Scheme [23] implementation with a graphical user
interface (GUI) toolbox. MrEd serves both as the implemen-
tation platform for DrScheme, and as the underlying Scheme
engine for executing expressions and programs entered into
DrScheme’s read-eval-print loop (REPL). This strategy fol-
lows a long tradition of meta-circular implementation that is
virtually synonymous with Lisp, and generally understood
for high-level languages as a whole [20, 25, 28].

Since DrScheme exposes MrEd’s language constructs di-
rectly to the REPL, DrScheme can easily execute programs
that use the full MrEd language, including its GUI tool-
box. At the same time, DrScheme must protect its GUI
against interference from the programs it executes, and it
must be able to halt a program that has gone awry and

*This research was partially supported by a Lodieska Stockbridge
Vaughan Fellowship, NSF grants CCR-9619756, CDA-9713032, and
CCR-9708957, and a Texas ATP grant.

To appear: Intl. Conf. on Functional Programming
(ICFP) — Sept. 27-29 1999, Paris, France

reclaim the program’s resources—even though the program
and DrScheme share a single virtual machine.

To address this problem, MrEd provides a small set of
new language constructs. These constructs allow a program-
running program, such as DrScheme, to run nested programs
directly on the MrEd virtual machine without sacrificing
control over the nested programs. As a result, DrScheme
can execute a copy of DrScheme that is executing its own
copy of DrScheme (see Figure 1). The inner and middle
DrSchemes cannot interfere with the operation of the outer
DrScheme, and the middle DrScheme cannot interfere with
the outer DrScheme’s control over the inner DrScheme.

In this paper, we describe the key elements of the MrEd
virtual machine, and we step through the implementation
of a miniature version of DrScheme in MrEd. More gen-
erally, we show how MrEd defines a high-level operating
system (OS) for graphical programs. As in other high-level
OSes, safety and security in MrEd derive from properties of
the underlying programming language. Mere safety, how-
ever, provides neither the level of protection between ap-
plications nor the kind of process control that conventional
OSes provide. Such protection and control is crucial for im-
plementing many kinds of programs, including programming
environments and scripting engines. By describing how we
implemented DrScheme in MrEd, we demonstrate how to
obtain key OS facilities through small extensions to a high-
level programming language.

The remainder of the paper is organized as follows. Sec-
tion 2 sketches a miniature DrScheme, called SchemeEsq,
and explains in more detail the implementation challenges
for creating a graphical programming environment. Sec-
tion 3 provides a brief overview of MrEd. Section 4 steps
through the implementation of Schemeklsq as a MrEd pro-
gram. Section 5 explains how MrEd functions as a high-level
O8. Section 6 discusses some problems for future work, and
Section 7 compares MrEd to related systems.

2 SchemeEsq: The Challenge

SchemeEsq, depicted in Figure 2, is a simple programming
shell that captures the essential properties of DrScheme as
a program-running program. Roughly, Schemeklsq imple-
ments a read-eval-print loop (REPL) that consumes expres-
sions and evaluates them:

(define (repl)
(print (eval (read)))
(repl))

DrScheme

DrScheme

O

DrScheme

O
> (run-drscheme) <—

Kl

O
> (run—drscheme)<— >

>

]
]

4] > 4]

> 4] >

outer middle

inner

Figure 1: DrScheme in DrScheme in DrScheme

Figure 2: Schemelsq

This rough repl sketch relies on extensive underlying ma-
chinery to implement each of the read, eval, and print steps.
SchemeEsq models DrScheme in more detail, showing how
read gets characters from the user, where print sends its out-
put, etc. Furthermore, unlike the repl function, SchemeEsq
demonstrates how to catch errors in the user’s program and
how to stop a program’s execution.

e SchemeEsq’s REPL accepts expressions, evaluates them,
and displays the results, all within a GUI text edi-
tor. For simplicity, we assume that the user submits a
complete Scheme expression for evaluation by hitting
the Enter key. If a REPL expression signals an error,
SchemeEsq prints the error message and creates a new
input prompt. At all times, the text preceding the
current prompt is locked so the user cannot modify it.

e In addition to standard Scheme, SchemeEsq’s REPL
provides access to the entire MrEd toolbox, permit-
ting the user’s program to create threads and GUI ob-
jects. User-created GUI elements must not interfere
with SchemeEsq’s own GUI. For example, the user’s
program might create a modal dialog that disables all
of the user’s other windows, but it must not disable
the SchemeEsq window.

e SchemeEsq’s Reset button stops the current evalua-
tion, reclaiming all resources currently in use by the
user’s program. All active threads and GUI elements
created by the program must be destroyed.

o Although SchemeEsq redirects printed output from the
user’s program to its REPL window, the program must
otherwise execute within SchemeEsq in exactly the

same way as it would execute within its own MrEd
virtual machine.

The crucial requirement for SchemeEsq is that it must run
any program securely, in the sense that the program can-
not interfere with SchemeEsq’s operation.! Indeed, since
SchemeEsq is itself a MrEd program, SchemekEsq must be
able to run copies of itself any number of times and to
any nesting depth. No matter how many SchemeEsqs are
running and how deeply they are nested, each instance of
SchemeEsq must be free from interference from its children.
At the same time, a single click to Reset in the outermost
SchemeEsq must terminate all of the other instances.

3 MrEd Overview

MrEd acts as a high-level OS to service the GUI, security,
and scalability needs of SchemeEsq. In the same way that a
current production OS (e.g., Unix/X, Microsoft Windows)
defines a GUI API, a process model, and a library-linking
mechanism, MrEd defines constructs within Scheme for cre-
ating GUIs, securely executing untrusted code, and linking
together code modules:

e GUI construction — MrEd provides GUI elements via
built-in classes that a programmer can instantiate or
extend. Event dispatching is automatic and normally
synchronous, but MrEd also permits controlled, asyn-
chronous (i.e., parallel) event handling. In addition,
MrEd provides special support for multimedia editor
applications (hence the Fd in MrEd), such as word
processors and drawing programs.

o Embedding and security — MrEd provides multiple
threads of execution, thread-specific configuration, and
resource control. These constructs support the secure
embedding of programs within other programs that
control the embedded execution environment and re-
source consumption.

e Modularity and extensibility — MrEd’s module and
class constructs enable the construction of reusable
components. These component constructs naturally
complement MrEd’s object-oriented GUI toolbox, al-
lowing a programmer to implement reusable and com-
posable extensions of GUI elements.

The following sections provide an overview of MrEd’s con-
structs. Section 3.1 describes a few details of MrEd’s GUI
toolbox, which we provide for the sake of defining a concrete
implementation of SchemeEsq. Section 3.2 describes MrEd’s

! Except by running out of memory; see Section 6.

constructs for program embedding and security. The ideas
underlying these constructs form the main contribution of
the paper. Finally, Section 3.3 describes MrEd’s support for
modular and object-oriented programming, which is integral
to our model of programs and processes.

Recommendation: Skip the Experience and Rationale boxes for a
first reading.

3.1 GUI Construction

MrEd provides the basic building blocks of GUI programs—
such as frames (top-level windows), modal dialogs, menus,
buttons, check boxes, and text fields—via built-in classes
that the programmer can instantiate or extend. For ex-
ample, a programmer creates a frame by instantiating the
built-in frame% class:?

(define frame
(make-object frame% “Example” #f 400 200))

MrEd’s make-object procedure takes a class and returns an
instance of the class. Extra arguments to make-object serve
as initialization arguments for the object, similar to argu-
ments provided with new in Java. For the frame% class, the
initialization arguments specify the frame’s title, its parent
window (#f if none), and its initial size. The above frame
is titled Example, has no parent, and is 400 pixels wide and
200 pixels tall.

The built-in classes provide various mechanisms for han-
dling GUI events, which MrEd dispatches automatically.
For example, when instantiating the button% class, the pro-
grammer supplies an event callback procedure to be invoked
when the user clicks the button. The following example cre-
ates a Close button that hides the frame when the user clicks
the button:

(make-object button% “Close” frame
(lambda (button event)
(send frame show #f)))

The button’s callback procedure uses MrEd’s send form,
which calls a method given an object, the method’s name,
and method arguments. A frame’s show method takes one
argument, a Boolean value that indicates whether to show
or hide the frame.

If a window receives multiple kinds of events, MrEd dis-
patches events to methods of the window instead of to a
callback procedure. For example, a drawing canvas receives
update events, mouse events, keyboard events, and sizing
events; to handle them, a programmer must derive a new
class from the built-in canvas% class and override the event-
handling methods:

(define my-canvas%
(class canvas% ; my-canvas% extends canvas%
(override
(on-char (lambda (event) (display “keyboard”)))
(on-scroll (lambda (event) (display “scroll”))))

)

Callbacks, Experience and Rationale: For simple controls, such
as buttons, the control’s action is normally instance-specific,
so the action is best specified as a callback in the make-object
expression. For more complex GUI elements, such as can-
vases, event-handling is often common to a class of instances,
so method overriding provides a more extensible mechanism
for handling events.

?By convention, class names end with a percent sign (%) in MrEd.
The source code in this paper runs in MrEd version 100.

MrEd’s GUI classes also handle the graphical layout of
windows. Our example frame demonstrates a simple layout;
the frame’s elements are lined up top-to-bottom. In general,
a programmer specifies the layout of a window by assigning
each GUI element to a parent container. A vertical con-
tainer, such as a frame, arranges its children in a column,
and a horizontal container arranges its children in a row. A
container can be a child of another container; for example,
to place two buttons side-by-side in a frame, a programmer
creates a horizontal panel for the buttons:

(define panel (make-object horizontal-panel% frame))
(make-object button% “Left” panel ...)
make-object button% “Right” panel ...

g

A programmer can adjust the minimum width, minimum
height, horizontal stretchability, and vertical stretchability
of each GUI element. Using these settings, MrEd picks an
initial size for each frame, and it repositions controls when
the user resizes a frame.

Containers, Experience and Rationale: Existing GUI tool-
boxes provide a variety of mechanisms for geometry manage-
ment, but our simple container model is intuitive and surpris-
ingly powerful. Although MrEd permits the definition of new
containers with arbitrary layout strategies, we implemented
DrScheme using only vertical and horizontal containers.

In addition to the basic GUI building blocks, MrEd pro-
vides a collection of classes that support a broad spectrum of
editor programs, from word processors to drawing programs.
The editor framework addresses a wide range of real-world
issues for an editor—including cut-and-paste, extensible file
formats, and layered text styles—while supporting a high
level of extensibility through the class system.

Editors, Experience and Rationale: MrEd’s editor toolbox pro-
vides a foundation for two common kinds of applications:

1. programs that include a sophisticated text editor:
MrEd’s simple text field control is inadequate for text-
intensive applications. Many programs need editors that
can handle multiple fonts and non-text items.

2. programs that include a canvas with dragable objects:
MrEd’s drawing toolbox provides a generic drawing sur-
face for plotting lines and boxes, but many applications
need an interactive canvas, where the user can drag and
resize individual objects.

The power and flexibility of the editor toolbox make it fairly
complex, and using the toolbox requires a solid understanding
of its structure and terminology. Nevertheless, enough appli-
cations fit one (or both) of the descriptions above to justify the
depth and complexity of the toolbox and the learning invest-
ment required to use it.

3.2 Embedding and Security

Conventional operating systems support multiple programs
through a process abstraction that gives each program its
own control flow, I/O environment, and resource controls.
A process is distinguished primarily by its address space,
where separate address spaces serve both as a protection
barrier between programs and as a mechanism for defining
a program’s environment; e.g., the stdout global variable in
a Unix C program contains a process-specific value.

In MrEd, separate address spaces are unnecessary for
protection between programs, due to the safety properties
of the programming language. Nevertheless, separate pro-
grams require separate control flow, I/O environments, and
resource controls. Instead of providing an all-encompassing
process abstraction, MrEd provides specific mechanisms for
creating threads of control, dealing with graphical 1/O, and
managing resources.

3.2.1 Threads and Parameters

MrEd’s thread primitive consumes a procedure of no argu-
ments and invokes it in a new thread. The following example
spawns a thread that prints “tick” every second:

(define (tick-loop)
(sleep 1) (display “tick™) (tick-loop))
(thread tick-loop)

Each thread maintains its own collection of system set-
tings, such as the current directory and the current out-
put port. These settings are called parameters.® A pa-
rameter is queried and modified via a parameter procedure,
such as current-directory or current-output-port. For example,
(current-directory) returns the path of the current directory,
while (current-directory dir) sets the current directory to dir.

Modifying a parameter changes its value in the current
thread only. Therefore, by setting the current-output-port
in the tick-loop thread, we can redirect the “tick” printouts
without modifying tick-loop and without affecting the out-
put of any other thread:

(thread (lambda ()
(current-output-port (open-output-file “ticks”))
(tick-loop)))

A newly-created thread inherits the parameter values of the
creating thread. Thus, if tick-loop creates its own threads,
they also produce output to the “ticks” file.

Parameter inheritance provides an alternative mecha-
nism for setting the output port in the “ticking” thread. In-
stead of explicitly setting the port within the ticking thread,
we could temporarily set the port in the main thread while
creating the ticking thread:

(parameterize ((current-output-port
(open-output-file “ticks”)))
(thread tick-loop))

A parameterize expression sets the value of a parameter
during the dynamic extent of its body. In the above exam-
ple, parameterize restores the output port for the main
thread after the ticking thread is created, but the ticking
thread inherits “ticks” as its current output port.

Since the output port is set before tick-loopis called, the
ticking thread has no way to access the original output port.
In this way, parameters permit securely configuring the en-
vironment of a nested program (or any untrusted thread).

Parameters, Experience and Rationale: An early version of
MrEd supported bundles of parameter values as first-class ob-
jects, called parameterizations. Two threads could share a pa-
rameterization, in which case modifying a parameter in one
thread would change the value in both threads.

This generalization turns out to be nearly useless in practice,
since shared state is readily available through a parameter
whose value is a mutable object. Worse, parameterizations de-
feat the essential purpose of parameters for separating global
state from thread-specific state. With parameterizations, a li-
brary routine cannot, for example, freely adjust the current
output port, because even a temporary change might affect
evaluation in another thread.

3The term parameter, the parameter procedure convention, and
the parameterize form in MrEd imitate those of Chez Scheme [9],
although Chez does not provide threads.

3.2.2 Eventspaces

An eventspace in MrEd is a context for processing GUI
events in a sequential manner. Each eventspace maintains
its own queue of events, its own collection of frames, and
its own handler thread. MrEd dispatches events within an
eventspace synchronously in the handler thread, while dis-
patching events from different eventspaces asynchronously
in separate handler threads.

Creating an eventspace starts a handler thread for the
eventspace implicitly. Only the handler thread dispatches
events, but all threads that share an eventspace can queue
events, and all threads (regardless of eventspace) can ma-
nipulate an accessible GUI object.* When a thread creates
a top-level window, 1t assigns the window to the current
eventspace as determined by the current-eventspace param-
eter.

Eventspaces, Experience and Rationale: Windows and BeOS
also integrate threads with GUI objects, but in fundamentally
different ways:

¢ Windows associates an event queue with every thread,
and a thread can manipulate only those windows within
its own queue. A programmer can explicitly merge
the queues of two threads so that they share an
“eventspace,” but the queues are merged permanently,
so there i1s no way to change the “eventspace” of a
thread.

¢ BeOS creates a separate handler thread for every top-
level window. Programmers must explicitly implement
synchronization among top-level windows, but monitors
protect many operations on windows.

Eventspaces are more flexible than either of these designs.
Compared to Windows, eventspaces more easily accommodate
multiple threads that operate on a single set of graphical ob-
jects. Compared to BeOS, eventspaces more easily accommo-
date single-threaded programs with multiple windows. In prin-
ciple, MrEd’s lack of automatic synchronization on objects in-
creases the potential for race conditions, but such race condi-
tions have occurred rarely in practice. While threads some-
times manipulate GUI objects concurrently, they typically call
thread-safe primitive methods.

For example, to call a graphical-tick-loop procedure that
creates a ticking GUI, we parameterize the ticking thread
with a new eventspace:

(parameterize ((current-eventspace (make-eventspace)))
(thread graphical-tick-loop))

(define (graphical-tick-loop)
(letrec ([frame (make-object frame% “Tick”)]
[msg (make-object message% “tick” frame)]
[loop (lambda (now next)
(sleep/yield 1)
(send msg set-label now)
(loop next now))])
(send frame show #t)
(loop "tock” “tick”)))

The first expression above creates two threads: the plain
thread explicitly created by thread, and the handler thread
implicitly created by make-eventspace. Instead of creating
the plain thread, we can use queue-callback to call graphical-
tick-loop within the handler thread:

(parameterize ((current-eventspace (make-eventspace)))
(queue-callback graphical-tick-loop))

4Unlike Java, MrEd provides no automatic synchronization for the
methods of a GUI object. The primitive methods of an object, how-
ever, are guaranteed to be thread-safe.

5The sleep/yield procedure is like sleep, except that it handles events
(such as window-update events) while “sleeping.”

The queue-callback primitive queues a procedure to be in-
voked by the handler thread of the current eventspace. The
procedure will be invoked in the same way as an event call-
back for the eventspace.

Fach queued procedure is either a high-priority or low-
priority callback, indicated by an optional second argument
to queue-callback. When a high-priority callback (the de-
fault) and a GUI event are both ready for handling, MrEd
invokes the high-priority callback. In contrast, when a low-
priority callback and a GUI event are both ready for han-
dling, MrEd invokes the GUI event handler. A programmer
can use prioritized callbacks to assign priorities to graphical
operations, such as low-priority screen refreshing.

3.2.3 Custodians

In the same way that threads generalize per-process concur-
rency and eventspaces generalize per-process event sequenc-
ing, custodians generalize per-process resource control.®
MrEd places every newly-created thread, eventspace, file
port, or network connection into the management of the
current custodian (as determined by the current-custodian
parameter). A program with access to the custodian can
terminate all of the custodian’s threads and eventspaces
and close all of the custodian’s ports and network connec-
tions. The custodian-shutdown-all procedure issues such a
shut-down command to a custodian, immediately reclaim-
ing the resources consumed by the terminated and closed
objects.

Using a custodian, we can start graphical-tick-loop and
permit it to run for only a certain duration, say 200 seconds,
before terminating the thread and reclaiming its graphical
resources:

(define cust (make-custodian))
(parameterize ((current-custodian cust))
(parameterize ((current-eventspace (make-eventspace)))
(queue-callback graphical-tick-loop)))
(sleep 200)
(custodian-shutdown-all cust)

Although graphical-tick-loop could create new custodians,
custodians exist within a strict hierarchy. Every new custo-
dian is created as a sub-custodian of the current custodian,
and when a custodian receives a shut-down command, it
propagates the shut-down command to its sub-custodians.
Thus, a program cannot evade a shut-down command by
migrating to a custodian that it creates.

Custodians, Experience and Rationale: Custodians manage
all objects that are protected from garbage collection by ref-
erences in the low-level system. For example, an active thread
is always accessible via the scheduler’s run queue—even if no
part of the program refers to the thread—and a visible frame
is always accessible via the window manager. Such objects re-
quire explicit termination to remove the system’s reference and
to free the object’s resources.

An object that has terminated may continue to occupy a small
amount of memory. Custodians rely on garbage collection to
reclaim the memory for a terminated object, and a thread in a
different custodian might retain a reference to such an object.
Each operation on a terminable object must therefore check
whether its operand has terminated and signal an error if nec-
essary. For GUI objects in MrEd, primitive methods signal an
error when the object has terminated.

8Custodians are similar to resource containers [4].

3.3 Modularity and Extensibility

Parameters, eventspaces, and custodians provide the nec-
essary infrastructure for defining processes without sepa-
rate address spaces. The resulting process model permits
flexible and efficient communication between programs via
procedures, methods, and other language constructs. This
flexibility blurs the distinction between programs and li-
braries. For example, a picture-editing program could work
either as a stand-alone application or as a part of a word-
processing application. More generally, programmers can
replace monolithic programs with flexible software compo-
nents that are combined to define applications.

MrEd supports the definition of units [14], which are
separately compilable and reusable software components. A
unit encapsulates a collection of definitions and expressions
that are parameterized over imports, and some of the defini-
tions are exported. A programmer links together a collection
of units to create a larger unit or a program. MrEd defines
program to mean a unit with no imports, similar to the way
that conventional OSes with dynamic linking (via DLLs or
ELF objects) define a program as a certain form of linkable
object.

To permit components that are as reusable as possible, a
unit linking graph can contain cycles for defining mutually-
recursive procedures across unit boundaries. Furthermore, a
unit can contain a class definition where the superclass is im-
ported into the unit, even though the source of the imported
class is not known at compile time. In the following exam-
ple, NoisyCanvasUnit defines a noisy-canvas% class that is
derived from an imported plain-canvas% class:

(define NoisyCanvasUnit
(unit (import plain-canvas%)
(export noisy-canvas%)
(define noisy-canvas%
(class plain-canvas%
(override
(on-event (lambda (e)
(display “canvas event”)
(super-on-event ¢€))))

)

Since the actual plain-canvas% class is not determined until
link time, NotsyCanvasUnit effectively defines a mixin [6,
16, 26], which is a class extension that is parameterized over
its superclass. Using mixins, a programmer can mix and
match extensions to produce a class with a set of desired
properties. This mode of programming is particularly useful
for implementing GUlIs, where each mixin encapsulates a
small behavioral extension of a GUI element.

Units and Mixins, Experience and Rationale: Our work cited
above for units and mixins provides a theoretical model of
the constructs. In practice, MrEd’s implementation of units
closely follows the theoretical model, except that units nor-
mally import and export bundles of names rather than indi-
vidual names. In contrast, MrEd’s implementation of mixins
is less expressive than the model, because the implementation
does not handle method name collisions. This difference repre-
sents a significant compromise in our implementation of mix-
ins, but MrEd’s weaker form is sufficiently powerful for most
purposes.

4 Implementing SchemeEsq in MrEd

Equipped with the MrEd constructs defined in the previ-
ous section, we can implement the SchemelEsq program de-
scribed in Section 2. First, we create the SchemeEsq GUI
using the MrEd toolbox. Then, we use threads, eventspaces,
and custodians to implement secure evaluation for REPL ex-
pressions. Finally, we discuss how units and mixins let us
extend SchemeEsq to implement the full DrScheme environ-
ment.

4.1 SchemeEsq GUI
To implement the SchemeEsq GUI, we first create a frame:

(define frame
(make-object frame% “SchemeEsq” #f 400 200))

and make it visible:
(send frame show #t)

Next, we create the reset button to appear at the top of the
frame:

(define reset-button
(make-object button% “Reset” frame
(lambda (b €) (reset-program))))

The callback procedure for the reset button ignores its ar-
guments and calls reset-program, which we define later. Fi-
nally, we create a display area for the REPL, implemented as
an editor canvas:

(define repl-display-canvas
(make-object editor-canvas% frame))

At this point, our SchemeEsq GUI already resembles Fig-
ure 2, but the REPL is not yet active. The actual REPL is im-
plemented as a text editor that is displayed by the canvas.”

The basic functionality needed in SchemeEsq’s REPL—
including keyboard event handling, scrolling, and cut and
paste operations—resides in MrEd’s text% editor class. The
esq-text% class, defined in the appendix, adapts the text%
class to the needs of the REPL by overriding methods to
specialize the editor’s behavior. For example, when the edi-
tor receives an Enter/Return key press, it calls the evaluate
procedure (which we define later).

In addition to handling input, the esg-text% class de-
fines an output method for printing output from the user’s
program into the REPL editor. Since the user’s program
can create many threads, the output method needs a special
wrapper to convert multi-threaded output calls into single-
threaded output. The queue-output wrapper performs this
conversion by changing a method call into a queued, low-
priority GUI event:

(define esg-eventspace (current-eventspace))
(define (queue-output proc)
(parameterize ((current-eventspace esg-eventspace))
(queue-callback proc #f)))

Using the new esg-text% class, we create an editor in-
stance and install it into the display canvas:

(define repl-editor (make-object esg-text%))
(send repl-display-canvas set-editor repl-editor)

The SchemeEsq GUI is now complete, but we have not yet
implemented evaluate (used in esg-text%) and reset-program
(used by reset-button’s callback).

"MrEd distinguishes between a display and its editor in the same
way that Emacs distinguishes between a window and its buffer.

4.2 SchemeEsq Evaluation

When a user hits the Enter key, SchemeEsq evaluates the
expression following the current prompt. Schemeklsq ulti-
mately evaluates this expression by calling the built-in eval
procedure. But before letting SchemeEsq call eval, we must
ensure that code evaluated in the REPL cannot interfere with
SchemeEsq itself, since both SchemeFEsq and the user’s code
execute together in MrEd.

Of course, user code must not gain direct access to the
frame or editor of Schemeksq, since it might call methods
of the objects inappropriately. We can hide SchemeEsq’s
implementation from the user’s program by putting it into
a module and making all definitions private. For now, we
continue to define Schemelsq through top-level definitions,
but the appendix shows the final Schemelsq program en-
capsulated in a module.

The remaining problems concern the interaction of con-
trol flow in the user’s program and in SchemeEsq. Threads
with parameters, eventspaces, and custodians provide pre-
cisely the mechanisms needed to solve these problems.

4.2.1 Threads in SchemeEsq

An unbounded computation in the user’s program must not
stall SchemeEsq’s GUI. Otherwise, the program would pre-
vent the user from clicking SchemeEsq’s reset button. To
avoid blocking SchemeEsq on a REPL computation, we eval-
uate user expressions in a separate thread. The following is
a first attempt at defining the evaluate procedure for evalu-
ating user expressions:®

(define (evaluate expr-str)
(thread
(lambda ()
(with-handlers ((exn?
(lambda (ezn)
(display (exn-message ezn)))))
(write (eval (read (open-input-string expr-str)))))
(newline)
(send repl-editor new-prompt))))

Having created a thread to represent the user process,
we must configure the process’s environment. For simplicity,
we define configuration as redirecting output from the user’s
program (via display or write) to the REPL editor. To redirect
output for the user’s program, we set the output port in the
evaluation thread:

(define (evaluate expr-str)
(thread
(lambda ()

(current-output-port user-output-port) ;

(with-handlers ((exn?
(lambda (ezn)
(display (exn-message ezn)))))
((V\irite) (eval (read (open-input-string ezpr-str)))))
newline
(send repl-editor new-prompt))))

The above assumes that user-output-port port acts as a pipe
to the REPL editor. We can define user-output-port using

8The with-handlers form specifies predicate-handler pairs that
are active during the evaluation of the with-handlers body expres-
sion. In evaluate, the exn? predicate selects the (lambda (exn) (dis-
play (exn-message exn))) handler for all types of exceptions. Thus,
evaluate catches any exception, prints the error message contained in
the exception, and resumes the REPL.

make-output-port, a MrEd procedure that creates a port
from arbitrary string-printing and port-closing procedures:

(define user-output-port
(make-output-port
(lambda (s) (send repl-editor output s))
(lambda () 'nothing-to-close)))

In this use of make-output-port, the string-printing procedure
sends the string to the REPL editor, and the port-closing
procedure does nothing.

4.2.2 Eventspaces in SchemeEsq

Since the user’s program and Schemelsq execute in separate
threads, the user’s program and SchemeEsq must handle
GUI events in parallel. To this end, SchemeEsq creates a
new eventspace for the user’s program:

define user-eventspace
(P
(make-eventspace))

To execute user code with user-eventspace, we might re-
vise evaluate to install the eventspace in the same way that
we installed user-output-port:

(define (evaluate expr-str)
(thread
(lambda ()

(current-eventspace user-eventspace)

Alternatively, we could eliminate the call to thread and eval-
uate expressions in the handler thread of user-eventspace.
The handler thread is a more appropriate choice, because
code that creates and manipulates GUI objects should run
in the event-handling thread to avoid race conditions. To
evaluate expressions in the handler thread, we treat the
evaluation of REPL expressions as a kind of event, queuing
evaluation with queue-callback:

(define (evaluate expr-str)
(parameterize ((current-eventspace user-eventspace))

(queue-callback ; ‘ + changed N added‘

(lambda ()

(current-output-port user-output-port)
(with-handlers ((exn?

(lambda (ezn)

(display (exn-message ezn)))))

((Write) (eval (read (open-input-string ezpr-str)))))
newline
(send repl-editor new-prompt)))))

4.2.3 Custodians in SchemeEsq

We complete SchemeFEsq by implementing the reset button’s
action with a custodian. We define user-custodian and cre-
ate the user’s eventspace under the management of user-
custodian:

(define user-custodian (make-custodian))
(define user-eventspace

(parameterize ((current-custodian user-custodian))
(make-eventspace)))

To implement the reset-program procedure for the reset but-
ton, we issue a shut-down command on user-custodian and
then reset the REPL editor:

(define (reset-program)
(custodian-shutdown-all user-custodian)
(parameterize ((current-custodian user-custodian))
(set! user-eventspace (make-eventspace)))
(send repl-editor reset))

Each reset destroys user-eventspace (by issuing a shut-down
command to user-custodian), making the eventspace unus-
able. Therefore, reset-program creates a new eventspace
after each reset.

4.3 Modularity and Extensibility in SchemeEsq

The appendix assembles the pieces that we have developed
into a complete implementation of SchemeEsq. The most
striking aspect of SchemeEsq’s implementation—besides the
fact that it fits on one page—is that half of the code exists
to drive the REPL editor. In the real DrScheme environment,
the REPL is considerably more complex, and its implementa-
tion occupies a correspondingly large portion of DrScheme’s
overall code.

In implementing DrScheme, we tamed the complexity of
the GUI by making extensive use of units and mixins. For
example, the parenthesis-highlighting extension for an editor
is implemented as a mixin in its own unit, and the interactive
search interface is another mixin in a separate unit. Using
units and mixins in this way, the implementation strategy
that we have demonstrated for SchemeEsq scales to the more
elaborate implementation of DrScheme.

DrScheme also exploits units for embedding program-like
components. For example, DrScheme’s help system runs ei-
ther as a stand-alone application or embedded within the
DrScheme programming environment. The help-system unit
imports a class that defines a basic frame for the help win-
dow. In stand-alone mode, the class implements a frame
with a generic menu bar, but when the help system is em-
bedded in DrScheme, the imported class implements a menu
bar with DrScheme-specific menus.

5 High-Level Operating Systems

The development of SchemeEsq in MrEd demonstrates how
a few carefully defined extensions can transform a high-level
programming language into a high-level operating system.
A high-level OS permits flexible and efficient communica-
tion between programs through common language mecha-
nisms, such as procedures and methods. It also guarantees
type and memory safety across programs through language
mechanisms, eliminating the need for separate process ad-
dress spaces and data marshaling. This flexibility increases
the potential for extensible and interoperating programs.

Mere safety, however, provides neither the level of pro-
tection between applications nor the kind of process control
that conventional OSes provide. As an example, SchemeEsq
illustrates how a graphical programming environment must
protect 1its GUI from interference from a program executing
within the environment. Although language-based safety
can prevent a program from trampling on the environment’s
data structures, it cannot prevent a program from starving
the environment process or from leaking resources.

MrEd combines the programming flexibility of a high-
level OS with the conventional process controls of a conven-
tional OS. As we have shown, three key extensions make this

combination possible: threads with parameters, eventspaces,
and custodians. Our approach to building a high-level OS on
top of Scheme should apply equally well to other languages,
such as ML or Java.

6 Problems for Future Work

Although MrEd provides custodians for resource reclama-
tion, our current implementation does not support a priori
resource limits on custodians (analogous to memory use lim-
its on a process) or constraints that prevent a program from
triggering frequent system-wide garbage collections. Cus-
todians and parameters appear to be good abstractions for
expressing these limits, but our memory management tech-
nology must be improved to implement them.

Our SchemeEsq example fails to illustrate certain kinds
of protection problems, because the communication between
SchemeEsq and a user’s program is rather limited. For ex-
ample, the user’s program sends output to Schemelsq by
queueing a GUI event. Since the built-in queueing oper-
ation is atomic and non-blocking, there is no danger that
the user’s program will break a communication invariant by
killing its own thread. More sophisticated communication
protocols require stronger protection during the execution
of the protocol. Indeed, merely adding a limit to the size of
the output queue in SchemeFEsq (so that the user’s thread
blocks when the queue is full) requires such protection.

One general solution to the protection problem is to cre-
ate a new thread—owned by SchemeFEsq’s custodian—for
each communication. This techniques solves the problem
because thread creation is an atomic operation, and the
newly-created thread can execute arbitrarily many instruc-
tions without the risk of being killed by the user’s program.
Unfortunately, thread creation is an expensive operation in
MrEd compared to procedure calls, as in many systems. To
reduce this cost for common protection idioms, MrEd pro-
vides a call-in-nested-thread procedure that creates a child
thread, and then blocks the parent thread until the child
terminates. By exploiting the mutual exclusion between
the parent and child threads, MrEd can eliminate much of
the thread-creation and thread-swapping overhead for pro-
tection idioms. Using a similar technique, Ford and Lep-
reau [17] improved the performance of Mach RPC. Never-
theless, a significant overhead remains.

7 Related Work

As a GUl-oriented, high-level language, MrEd shares much
in common with Smalltalk [19], Pilot [27], Cedar [32], the
Lisp Machine [7], Oberon [33], and JavaOS [31]. All of these
systems simplify the implementation of cooperating graphi-
cal programs through a high-level language. Although most
of these systems support multiple processes, only MrEd pro-
vides the kind of process controls that are necessary for im-
plementing a SchemeEsq-like programming environment.®
Other related work aims to replicate the safety, secu-
rity, and resource control of conventional operating systems
within a single address space. Architectures such as Alta [2],
SPIN [5], J-Kernel [22], and Nemesis [24], emphasize pro-
tection within a single address space, but at the expense
of program integration through indirect and inefficient calls.
For example, the J-Kernel relies on explicit capabilities, and

?0On the Lisp Machine, allowing programmers to tinker with the
OS on-the-fly was considered an advantage [7, page 44].

therefore sacrifices the convenience of direct procedure calls
and direct data sharing.

Back and Hsieh [1] provide a detailed explanation of the
difference between process control and mere safety in a Java-
based operating system. They emphasize the importance of
the “red line” that separates user code and kernel code in
a conventional OS. This red line exists in MrEd, separating
low-level built-in primitives from the rest of the system. For
example, queue-callback is effectively an atomic operation to
the calling thread. MrEd goes one step further, providing
programs with the ability to define new layers of red lines.
In particular, SchemeEsq defines a red line between itself
and the programs that it executes.

Inferno [8] achieves many of the same goals as MrEd,
but in a smaller language that is targeted for communica-
tions software rather than general-purpose GUI implemen-
tation. Balfanz and Gong [3] explore extensions to Java to
support multiple processes, particularly multiple processes
owned by different users within a single JVM. They derive
some of the same constructs that are defined by MrEd, no-
tably eventspaces.

Haggis [11], eXene [18], and Fudgets [21] provide stream-
oriented graphical extensions of functional languages. None
provides a mechanism for process and resource control, but
the functional streams used by these systems makes them
less susceptible to cross-process interference than an imper-
ative GUI layer. A combination of stream-oriented GUlIs
with custodians may be possible.

8 Conclusion

We have shown how key constructs in MrEd—threads with
parameters, custodians, and eventspaces—enabled the de-
velopment of a graphical programming environment. More
importantly, the constructs that enabled DrScheme also ad-
dress problems in the design of a general-purpose, high-level
operating system.

Although MrEd was specifically created for DrScheme,
MrEd serves as platform for many other applications as well.
These applications include a theorem prover [12], a theater
lighting system [30], and a mail client, which demonstrate
that MrEd’s programming model extends to general GUI
programming tasks.

Acknowledgements MrEd’s GUI toolbox is based on the
wxWindows class library [29]. Thanks to Jay Lepreau, God-
mar Back, and Pat Tullmann for perspective on existing
work in high-level OSes, and thanks to the anonymous re-
viewers for helpful comments on the original draft of this

paper.

References

[1] Back, G. and W. Hsieh. Drawing the red line in Java.
In Proc. IEEE Workshop on Hot Topics in Operating
Systems, March 1999.

[2] Back, G., P. Tullmann, L. Stoller, W. C. Hsieh and
J. Lepreau. Java operating systems: Design and imple-
mentation. Technical Report UUCS-98-015, University
of Utah, 1998.

[3] Balfanz, D. and L. Gong. Experience with secure
multi-processing in Java. Technical Report TR-560-97,
Princeton University, Computer Science Department,
September 1997.

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Banga, G., P. Druschel and J. C. Mogul. Resource
containers: A new facility for resource management in
server systems. In Proc. ACM Symposium on Operating
System Design and Implementation, Feburary 1999.

Bershad, B. N., S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuczynski, D. Becker, S. Eggers and C. Chambers.
Extensibility, safety and performance in the SPIN oper-
ating system. In Proc. ACM Symposium on Operating
Systems Principles, pages 267-284, December 1995.

Bracha, G. and W. Cook. Mixin-based inheritance. In
Proc. Joint ACM Conf. on Object-Oriented Program-
ming, Systems, Languages and Applications and the
FEuropean Conference on Object-Oriented Programming,
October 1990.

Bromley, H. Lisp Lore: A Guide to Programming the
Lisp Machine. Kluwer Academic Publishers, 1986.

Dorward, S., R. Pike, D. L. Presotto, D. Ritchie,
H. Trickey and P. Winterbottom. Inferno. In Proc.
IEFEE Compcon Conference, pages 241-244, 1997.

Dybvig, R. K. Chez Scheme User’s Guide. Cadence
Research Systems, 1998.

Findler, R. B., C. Flanagan, M. Flatt, S. Krishnamurthi
and M. Felleisen. DrScheme: A pedagogic programming
environment, for Scheme. In Proc. International Sym-
posium on Programming Languages: Implementations,
Logics, and Programs, pages 369-388, September 1997.

Finne, S. and S. P. Jones. Composing Haggis. In Proc.
FEurographics Workshop on Programming Paradigms for
Computer Graphics, September 1995.

Fisler, K., S. Krishnamurthi and K. Gray. Implement-
ing extensible theorem provers. Technical Report 99-
340, Rice University, 1999.

Flatt, M. PLT MzScheme: Language manual. Technical
Report TR97-280, Rice University, 1997.

Flatt, M. and M. Felleisen. Units: Cool modules for
HOT languages. In Proc. ACM Conference on Pro-
gramming Language Design and Implementation, pages
236-248, June 1998.

Flatt, M. and R. B. Findler. PLT MrEd: Graphical
toolbox manual. Technical Report TR97-279, Rice Uni-
versity, 1997.

Flatt, M., S. Krishnamurthi and M. Felleisen. Classes
and mixins. In Proc. ACM Symposium on Principles
of Programming Languages, pages 171-183, Janurary
1998.

Ford, B. and J. Lepreau. Evolving Mach 3.0 to a mi-
grating thread model. In Proc. USENIX Technical Con-
ference and Ezhibition, pages 97-114, Janurary 1994.

Ganser, E. R. and J. H. Reppy. eXene. In Proc. of
the 1991 CMU Workshop on Standard ML. Carnegie
Mellon University, September 1991.

Goldberg, A. and D. Robson. Smalltalk 80: The Lan-
guage. Addison-Wesley, Reading, 1989.

Hagiya, M. Meta-circular interpreter for a strongly
typed language. Journal of Symbolic Computation,
8(12):651-680, 1989.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

33]

Hallgren, T. and M. Carlsson. Programming with fud-
gets. In Jeuring, J. and E. Meijer, editors, Advanced
Functional Programming, volume 925 of Lecture Notes
in Computer Science, pages 137-182. Springer, May
1995.

Hawblitzel, C., C.-C. Chang, G. Czajkowski, D. Hu and
T. von Eicken. Implementing multiple protection do-
mains in Java. In Proc. of USENIX Annual Technical
Conference, pages 259-270, June 1998.

Kelsey, R., W. Clinger and J. Rees (Eds.). The rev-
ised® report on the algorithmic language Scheme. ACM
SIGPLAN Notices, 33(9), September 1998.

Leslie, I. M., D. McAuley, R. J. Black, T. Roscoe, P. R.
Barham, D. M. Evers, R. Fairburns and E. A. Hy-
den. The design and implementation of an operating
system to support distributed multimedia applications.

IFEFE Journal on Selected Areas in Communications,
14(7):1280-1297, September 1996.

McCarthy, J. Recursive functions of symbolic expres-
sions and their computation by machine (Part I). Com-
munications of the ACM, 3(4):184-195, 1960.

Moon, D. A. Object-oriented programming with Fla-
vors. In Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 1-8, November 1986.

Redell, D., Y. Dalal, T. Horsley, H. Lauer, W. Lynch,
P. McJones, H. Murray and S. Purcell. Pilot: An oper-

ating system for a personal computer. Communications
of the ACM, 23(2):81-92, Feburary 1980.

Reynolds, J. Definitional interpreters for higher order
programming languages. In ACM Conference Proceed-
tngs, pages 717-740, 1972.

Smart, J. et al. wxWindows.
http://web.ukonline.co.uk/julian.smart/wxwin/.

Sperber, M. The Lula system for theater lighting con-
trol. http://www-pu. informatik.uni-tuebingen.de/
users/sperber/lula/.

Sun Microsystems, Inc. JavaOS: A standalone Java
environment, 1997.
http://wuw.javasoft.com/products/javaos/

javaos.white.html.

Swinehart, D. C., P. T. Zellweger, R. J. Beach and R. B.
Hagmann. A structural view of the Cedar programming
environment. ACM Transactions on Programming Lan-
guages and Systems, 8(4):419-490, October 1986.

Wirth, N. and J. Gutknecht.
Press, 1992.

Project Oberon. ACM

Appendix

Syntax Note: The unit/sig module form is like unit, except
that import and export names are bundled together into signa-
tures. The built-in mred” signature contains all of the classes
and procedures provided by MrEd.

(define SchemeFEsq
(unit/sig () ;; no exports
(import mred™)

;; The REPL editor class
(define esg-text%
(class text% ()
;; lexical access to inherited methods:
(inherit insert last-position get-text erase)
;; lexical access to an overridden method:
(rename (super-on-char on-char))
;; private fields:
(priva?e (prompt-pos 0) (locked? #t))
(override
;; override can-insert? to block pre-prompt inserts:
(can-insert? (lambda (start len)
(and E>: start pv)"s))vgzpt-pos)
not locked?
;; override can-delete? to block pre-prompt deletes:
(can-delete? (lambda (start end)
(and (>= start prompt-pos)
. (not locked?))))
;; override on-char to detect Enter/Return:
= d har to detect Enter/Ret
(on-char (lambda (c¢)
super-on-char ¢
h
(when (and (eq? (send c¢ get-key-code)
#\return)
(not locked?))
(set! locked? #t)
(evaluate
(get-text prompt-pos
) (last-position)))))))
(public
;; method to insert a new prompt

(new-prompt (lambda ()
(queue-output

(lambda ()
(set! locked? #f)
(insert "> ")

(set! prompt-pos (last-position))))))

;; method to display output
(output (lambda (str)
(queue-output
(lambda ()
(let ((was-locked? locked?))
(set! locked? #f)
(insert str)
(set! locked? was-locked?))))))
;; method to reset the REPL:
(reset (lambda ()
(set! locked? #f)
(set! prompt-pos 0)
(erase)
(new-prompt))))
(sequence
;; Initialize superclass-defined state:
(super-init)
;; create the initial prompt:
(new-prompt))))

;; Queueing REPL output as an event

(define esg-eventspace (current-eventspace))
(define (queue-output proc)
(parameterize ((current-eventspace
esq-eventspace))

(queue-callback proc #f)))
;7 GUI creation

(define frame
(make-object frame% “SchemeEsq” #f 400 200))
(define reset-button
(make-object button% “Reset” frame
(lambda (b €)
(reset-program))))
(define repl-editor (make-object esg-text%))
(define repl-display-canvas
(make-object editor-canvas% frame))
(send repl-display-canvas set-editor repl-editor)
(send frame show #t)

;; User space initialization
(define user-custodian (make-custodian))

(define user-output-port
(make-output-port
;; string printer:
(lambda (s) (send repl-editor output s))
;5 closer:

(lambda () 'nothing-to-close)))

define user-eventspace
(P
(parameterize ((current-custodian user-custodian))
(make-eventspace)))

;; Evaluation and resetting

(define (evaluate expr-str)
(parameterize ((current-eventspace user-eventspace))
(queue-callback
(lambda ()
(current-output-port user-output-port)
(with-handlers ((exn?
(lambda (ezn)
(display
(exn-message ezn)))))
(write (eval (read (open-input-string
expr-str)))))
(newline)
(send repl-editor new-prompt)))))

(define (reset-program)
(custodian-shutdown-all user-custodian)
(parameterize ((current-custodian user-custodian))
(set! user-eventspace (make-eventspace)))
(send repl-editor reset))))

;; Run the program module
(invoke-unit/sig SchemeEsq mred™)

Syntax Note: The invoke-unit/sig form executes the body
of a unit given signatures for the unit’s imports, and invoke-
unit /sig satisfies the imports from its lexical and top-level
environment.

10

