A Model of Triangulating Environments
for Policy Authoring

Kathi Fisler
WPI Computer Science, USA
kfisler@cs.wpi.edu

ABSTRACT

Policy authors typically reconcile several different mental
models and goals, such as enabling collaboration, securing
information, and conveying trust in colleagues. The data un-
derlying these models, such as which roles are more trusted
than others, isn’t generally used to define policy rules. As
a result, policy-management environments don’t gather this
information; in turn, they fail to exploit it to help users
check policy decisions against their multiple perspectives.
We present a model of triangulating authoring environments
that capture the data underlying these different perspec-
tives, and iteratively sanity-check policy decisions against
this information while editing. We also present a tool that
consumes instances of the model and automatically gener-
ates prototype authoring tools for the described domain.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Design, Security

Keywords

Policy authoring, Authoring environments

1. INTRODUCTION

Authoring access-control policies is difficult. First, as with
any configuration problem, the author has to wrestle with
a large state space due to the number of combinations of
policy elements (such as roles or resources). Second, people
make policy decisions based on different, sometimes conflict-
ing, viewpoints (e.g., putting social interactions first versus
putting security first). Third, there are often subtle overlaps
between principals (e.g., a person may fulfill multiple roles),
resources (one may be part of another), actions, etc., which
make it hard to catch all situations and thus to get the pol-
icy right. Fourth, the authors are often non-technical (e.g.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT’10, June 9-11, 2010, Pittsburgh, Pennsylvania, USA.

Copyright 2010 ACM 978-1-4503-0049-0/10/06 ...$10.00.

Shriram Krishnamurthi
Brown University Computer Science, USA
sk@cs.brown.edu

in a company, they may be business or marketing staff),
who may lack familiarity with software security considera-
tions. Finally, the consequences of a mistake can be enor-
mous, especially if it results in leakage of sensitive data.
For all these reasons, policy authors require significant help
fleshing out their requirements, expressing them in policy
languages, checking for subtle corner-cases, and identifying
potential conflicts.

State-of-the-art policy-authoring tools have taken several
steps to address these issues. Analyses that detect inconsis-
tencies or incompleteness within policies abound [2, 14, 17].
Visualization techniques attempt to provide a more holis-
tic view of policy matrices [23]. Natural language interfaces
provide a semi-formal method for stating policy rules [3].

Despite their strengths, these advances stay focused within
the space of the policy being authored, and do not take into
account the broader social context in which the policies are
written. People base policy settings on information that is
not formally part of the request, such as trust or privacy
concerns. As these concepts often do not manifest formally
in the rules, many policy logics and authoring tools neither
capture nor exploit them. Instead, people must remember
to manually check that policies conform to their personal,
semi-formal metrics. In addition, people often have multi-
ple mental models against which to make policy decisions.
This complexity, combined with the subtle relationships be-
tween roles or resources, means checking these constraints
manually is untenable for all but the smallest of policies.

We need more nuanced models of policy authoring to ad-
dress these problems. In particular, models need to more
fully embrace the role of “sanity checks” that help authors
triangulate policy decisions against auxiliary information.
As triangulation is an ongoing, rather than posteriori, pro-
cess, models should also embrace the iterative nature of au-
thoring. This allows us to insert analyses and sanity checks
as the policy evolves; this can help a user who makes a deci-
sion based on one mental model without realizing its impact
on another. Embracing sanity checks brings a key compo-
nent of authoring practice into tools.

The main contribution of this paper is a model of policy
authoring with two novel features. First, our model incorpo-
rates queries that triangulate policies against different per-
spectives. Second, it captures the iterative development of
policies, integrating formal problem detection and resolution
with warnings. A secondary contribution is a prototype tool
that demonstrates the utility of the model: given an instance
of the model, it generates an interactive policy-authoring en-
vironment that prompts users as they incrementally author

a policy. We illustrate the model and the tool using two
examples: faculty-hiring software and a social network.

2. TRIANGULATION IN AUTHORING

The idea that people view security decisions through mul-
tiple lenses—some of them informal, many of them social,
and some of them conflicting—is well established in the lit-
erature. Palen and Dourish [22] characterize privacy man-
agement as a dynamic process of setting boundaries. In par-
ticular, they identify three broad boundaries that appear in
privacy practice: disclosure, identity, and temporality. They
describe privacy management as “something of a balancing
act, a resolution of tensions not just between people but
also between their internal conflicting requirements”. Nis-
senbaum’s work [19] on trust as a metric for security in soft-
ware and computing technologies identifies many nuances
through which people express trust. A semi-formal, user-
specific interpretation of trust seems best able to accommo-
date these subtleties. Lederer, et al.’s guidelines for interface
design for privacy-related access-controls [16] note that such
systems effectively integrate at least two mental models for
users: one of system operation and one of identity portrayal
and disclosure. Supporting multiple mental models during
authoring in a flexible manner is one of our goals for trian-
gulating authoring environments.

The importance of social considerations as a part of pol-
icy setting is also well established. In discussing models of
security that account for social dimensions, Dourish and An-
derson [6] note that “privacy is not simply about how infor-
mation is managed, but about how social relations are man-
aged”. While access-control is not the same as privacy man-
agement, the two inexorably overlap, particularly through
social networks and related applications. Social relations
matter even in more conventional access-control domains
such as file sharing. In a user-study, Whalen, Smetters, and
Churchill [31] observed many cases in which people set shar-
ing permissions based on trust that another party would use
granted permissions appropriately. They also noted that the
distinctions underlying social attributes are not always clear-
cut, such as who should be considered an “insider” versus an
“outsider” when collaboration occurs across institutions. In
summarizing the range of perspectives they observed, they
note that

our interviews revealed a wide range of “mental
models” or belief systems around digital content
protection and a concomitant range of practices.
We were mildly surprised about this range within
the bounds of one relatively small organization.

They further call for authoring methods that take these
methods, and their nuanced social dimensions, seriously:

there have been no systematic user studies of the
basic access control models deployed in the vast
majority of current systems—or, for that matter,
the social control models that people are tacitly
trying to apply in their particular activity con-
texts when they use these security mechanisms.
In systems, the implemented models generally
have tremendous expressive power, potentially
leaving users awash in a sea of very fine-grained
access control settings.

Our vision of triangulating authoring environments provides
a framework for formally handling social controls, though as
way to sanity check, rather than define, policies.

Beyond these papers, we witnessed triangulation in policy
authoring first-hand while developing a software application
to support faculty hiring for a US-based academic depart-
ment. As part of this process, we discussed access-control
requirements with several faculty in the client department.
These faculty frequently checked their evolving requirements
against subjective relationships among data. For example,
some faculty discussed how their access decisions seemed to
contradict the reporting hierarchy among the staff, ques-
tioning whether it was reasonable that someone with more
responsibility would have fewer permissions. These faculty
weren’t convinced that this was a problem; however, they
did want to review any decisions that violated the reporting
hierarchy as a sanity check on the policy. Similar examples
arose several times: different faculty referenced the relative
loyalty of different roles to the department, relative trust in
different roles, and analogies between the sensitivity of job
application components and that of other information han-
dled by departmental staff. Representative comments along
these lines include:

o “We have grad students, who shouldn’t get to see much,
but then there are the grad students on the commit-
tee, who we trust more than the graduate students as
a whole.”

e “This department has always trusted its staff. Our
decisions should reflect that. Faculty get to see every-
thing, so perhaps the staff should too.”

e “An application consists of statements, vitae, and let-
ters. The letters are the most sensitive and should be
viewable only by faculty.”

It is worth noting that the values of attributes such as
trust and sensitivity are somewhat subjective in this con-
text (whereas they might be objective in a MAC-style pol-
icy): different faculty placed different trust on various roles
within the department. This argues for treating information
used for triangulation separately from objective attributes
on which actual policy rules are defined. Our model will
adopt this distinction, as shown in section 3.1.

3. A MODEL OF TRIANGULATING
AUTHORING ENVIRONMENTS

The authoring model we present embraces both the it-
erative nature of policy development and authors’ reliance
on sanity checks between policy decisions and auxiliary in-
formation. Policy authoring is naturally iterative because
each action a user takes through an authoring tool results
in a revised (often another partial) policy. Furthermore,
in many settings, policy authoring is never really finished.
For instance, in a social network, users add decisions for
specific tuples (“allow friends to tag my photos”), introduce
new data that is used to calculate decisions (“make Mary a
friend”), create new roles (“create a tag for my professional
colleagues”), and so on, always adding, deleting, and revis-
ing; a decision made today may impact data uploaded many
years ago (and perhaps even long since forgotten).

We believe there are at least three kinds of analyses that
provide useful feedback during authoring: flagging potential

problems as they are introduced, helping authors understand
the impact of edits as they make them (such as a role over-
lap causing permissions to leak from one role to another),
and reminding authors of issues they will need to address to
complete a policy based on an action. Of course, the design
of a tool that actually provides this feedback raises various
user-interface issues, as we discuss in section 6.1.

The nature of triangulating sanity checks and their un-
derlying data depends on the scenario for which the policy
is being defined, and thus varies widely. Examples include:

e in software governing a job search, checking whether
more-trusted roles have access to more parts of a job
application than less-trusted roles;

e in a social network, confirming that sensitive personal
details are restricted from professional contacts; or,

e in a firewall policy, checking when 1P addresses in the
same subnet do not receive similar permissions.

Such checks are interesting because policies that violate them
are not necessarily incorrect: a social-network user might
want to share intimate details with a professional colleague
who is also a close friend. These checks thus serve as warn-
ings to authors, rather than errors; they only indicate that
the policy contradicts normal expectations. In contrast,
other checks do unambiguously identify erroneous policies:
for instance, in access-control languages it is typically un-
acceptable for a given request to map to both “permit” and
“deny”. Our model thus draws a distinction between prob-
lems and warnings.

3.1 Formalizing Authoring

First, our model must capture the shape of a policy: what
request tuples look like and which outputs are available. The
following definition captures these features. It is intention-
ally agnostic on the policy language used to capture rules.

DEFINITION 1. A policy space is defined by
e A finite set D1,...,Dq of domains.

o A tuple signature S = Dg1 X ... X Dgi, where each
D,; is a domain from {D1,...,Dq}. A request tuple
is any tuple (t1,...,tx) in which each t; is from the
corresponding domain Ds;.

o A set O1,...,0, of outputs.

For a standard XACML- or RBAC-style policy, the domains
are role, action, and resource. The tuple signature is role x
action x resource. The outputs are permit and deny.

Domains are defined separately from request-tuple signa-
tures for two reasons: some policies use the same domain in
multiple positions of a request (such as the source and des-
tination 1P addresses in a firewall policy), and some policies
draw on environmental information beyond what appears in
the request tuple (such as the time or availability of a re-
source). Definition 2 adds the infrastructure needed to use
the latter to specify policy decisions.

A policy space is merely a type signature for a policy.
At a minimum, an actual, concrete policy needs to popu-
late the domains and map request tuples to outputs. Our
model also assumes that policy decisions may be based on

attributes of and relations between domain elements. We
capture policy decisions through rules in relational logic,
written in a Datalog-like syntax; the model would support
other formalisms without impact on the results of the pa-
per. These rules induce a mapping from request tuples to
(possibly empty) sets of outputs.

We augment these conventional policy components with
three new concepts: a set of problem queries over the do-
mains, outputs, and relations indicating the criteria for a
finished policy; an additional set of relations on domain el-
ements used for triangulation data; and a set of warning
queries constituting sanity checks that reference the trian-
gulation relations. One problem query might detect conflict-
ing decisions through the relational algebra expression

permit(S,A,R) and deny(S,A,R)
while another mandates a decision for every tuple:
permit(S,A,R) or deny(S,A,R)
The latter may not apply to languages like XACML [11],
which permit “not applicable” as a decision.

To triangulate against relative trust between roles, we
might introduce a relation moreTrusted on role X role and
define the warning query:
moreTrusted(S1,52) — (permit(S2,A,R) — permit(S1,A,R))
This query records the expectation that if S1 is trusted more
than S2, then S1 should have more permissions than S2.

All of these components together comprise an instance
of a policy space that can be evaluated during authoring.
Formally:

DEFINITION 2. An instance of policy space P consists of
e q set of elements populating each domain in P,

e A set of relations R = Ry, ...,
ture over the domains of P.

R, each with a signa-

e tuples populating each relation in R,

e A set of rule forms “B — O(t)” in which O is an out-
put in P, t is a request tuple in P, and B is a relational
expression over the domains of P, outputs of P, and
relations in R.

e A set of problem queries, defined as relational algebra
expressions over relations for the domains and outputs,
as well as those in R.

e A set of triangulating relations T = Ti,...,T., each

with a signature over the domains of P.
o tuples populating each relation in T,

e A set of warning queries, defined as relational algebra
expressions over the domains of P, outputs of P, and
relations in R and T'.

The separation of R and T" distinguishes objective attributes
used to define rules (R) from subjective attributes used for
triangulation (7"). We implicitly define a relation over the
tuple signature for each policy output, such as permit(S,A,R).
The relational algebra expressions we admit supports the
usual logical connectives (and, or, not, implication) over
ground terms of the form rl(a1,...,a;), where rl is a rela-
tion and a1,...,a; match the signature of ri. Each a; that
is not a specific element of the corresponding domain (such
as S and R in permit(S,read,R), assuming read is an action)

is treated as an existentially-quantified variable around the
smallest expression containing all occurrences of it.

Instances arise from successive edits to the components of
a policy. Which operations make sense between instances,
however, varies with the domain. Owur definitions so far
blur the critical distinction of which elements of an instance
should be editable during authoring. For example:

e A medical records application may fix roles (primary
physician, specialists, spouse) and resources (e.g., pre-
scriptions, blood type) and allow users to customize
only the decisions for each combination.

e A social network might fix the resources (photos, per-
sonal info, news feeds) but allow users to define private
classes of friends (college, professional, neighbors, etc.)
and the decisions for each combination.

e A small group trying to figure out their access-control
requirements might want each user to specify their own
roles, auxiliary relations, and triangulation checks as
part of the authoring process.

To differentiate between these scenarios, a model of author-
ing requires a specification of which components of instances
may be edited during authoring and what kind of edits are
allowed, as well as any initial values of components. The
next definition formalizes this.

DEFINITION 3. The components of a policy space P con-
sist of each domain in P, the set R, the set T, each relation
in R and T, and the sets of rule forms, problem queries, and
warning queries in P. An authoring task for P consists of
a tuple (init,actions) for each component of P, where init
is a set of initial values for the corresponding component
and actions is a possibly empty subset of {create, delete,
delete-non-init}.*

In the action specifications, an empty set would fix the value
of a component across all instances. The delete action differs
from delete-non-init in allowing any element of a component
to be deleted, rather than only those added since the initial
instance. Different action settings for each policy component
distinguish the authoring scenarios described above.

Why are problem queries editable, given that they define
what makes for a completed policy? First, the policy author
may be the same person writing the system that will use the
policy. This person could plausibly need to adjust the prob-
lem queries during authoring. Second, a policy author may
want to place additional restrictions on their policies. Given
that problem queries are checked automatically during our
model of authoring, allowing new problem queries extends
the benefits of problem query support to these additional re-
strictions. The third, and most interesting, reason is because
some policy authoring tasks occur over multiple stages, each
handled by a different person. For example, in a system for
managing conference papers (a domain for which we have
authored production software):

1. The primary software developers would fix the request
shape, valid outputs, and problem checks for access-
control policies for conference management. They then
pass along the partially-instantiated policy to:

'We eliminate read and update from the possible actions as
read is necessary in order to define policies and the distinc-
tion between update and a sequence of deletion and creation
isn’t relevant in this context.

2. The program chair, who specifies which roles and re-
sources the particular conference will employ (subre-
viewer, short papers, demos, etc.). The chair might
also stipulate additional rules, such as a conflict-of-
interest policy, again using the environment to ensure
that this does not interact strangely with the rest of
the configuration.? This is finally handed to:

3. The system administrator, who might fine-tune some
of the parameters, checking that these settings do not
change the policy in an adverse way, before deploying
it on the server.

The author in each stage would benefit from authoring tool
support of the form described in this paper, perhaps with
different triangulation data or problem queries per stage.
Supporting multi-stage authoring tasks therefore suggests a
hierarchical model of a sequence of authoring tasks, each ex-
panding into a sequence of instances which in turn initialize
later authoring tasks. As there are no general constraints on
defining new authoring tasks from existing instances, we do
not provide a formal model of sequences of authoring tasks.

Definition 3 captures the sequence of instances that com-
prise authoring, but does not utilize the intermediate in-
stances in any meaningful way. The last component of our
model integrates analysis into the authoring process, be-
cause the problem and warning queries naturally suggest
running each query and giving the author information to
help align the policy with any failed queries. But such anal-
yses are only useful to the extent that good problem or warn-
ing queries have been defined! What if they don’t exist?

Fortunately, the mere act of editing generates multiple
instances of an evolving policy, which enables a query-free
form of analysis based on differencing policies. Policy dif-
ferencing [9] computes the set of requests whose outputs
differ between two policies. Setting a decision for a single
tuple may affect many other requests; once authors can ex-
press an analogy between two roles, for example, altering the
permissions for one might implicitly alter those of another.
Unless the end-user is able to keep all of the connections
between output decisions in their head, some edits will have
unexpected consequences. Differencing computes these con-
sequences automatically, so the author can confirm that they
were intentional, or at least desirable.

DEFINITION 4. A triangulating authoring environment for
an authoring task

1. Starts with an instance populated according to the init
components of the task,

2. allows authors to edit policy components as specified in
the action components of the task,

8. at each iteration, alerts the user to violations of prob-
lem and warning queries within the current instance,
and

4. at each iteration, summarizes request tuples whose de-

cisions changed from the previous iteration.

There are, of course, many possible implementations of these
ideas. Section 4 provides one concrete example.

2The second author once saw a program committee meeting
deadlock due to such a configuration problem, until a pPC-
member stepped in to masquerade as a chair.

Domains: role, resource, action
Tuple shape: <role, action, resource>
Outputs: permit, deny

Relations: analogous : signature <role, role>; properties {transitive symmetric}; UI ["rolel”, "role2”]
trust: signature <role, role>; properties {transitive acyclic}; UI ["More trusted role”, "Less trusted role”]
sensitivity: signature <resource, resource>; properties {transitive acyclic}; UI ["More sensitive”, "Less sensitive”]

Rule Forms: (permit S2 A R) and (analogous S S2) — (permit S A R)

(deny S2 A R) and (analogous S S2) — (deny S A R)

Problems: “decision conflict” = (permit S A R) and (deny S A R)

Warnings: “trust conflict” = (trust S1 S2) and (not ((permit S1 A R) and (not (permit S2 A R))))

Task Actions: create on {role, action, resource, analogous, trust, sensitivity, ruleforms}

Figure 1: The authoring-task specification for hiring policies.

3.2 Examples

To illustrate and validate our model, we use it to cap-
ture two different kinds of authoring tasks. The first de-
fines access-control policies for faculty-hiring software (as
discussed in section 2). The second is for a generic, tag-
based social network.

3.2.1 Faculty-Hiring Software Configuration

Consider a software application for managing applications
for faculty positions. In such systems, applicants submit
their materials (vita, statements, etc.) via a Web interface.
The software emails a letter-submission URL to each refer-
ence letter writer. Department faculty, and perhaps grad-
uate students, can view and comment on the applications
through the software. Administrative staff handle various
requests from members of the department. Technical sup-
port staff maintain the infrastructure. This domain offers an
interesting case study for access-control authoring because
several requests lack obvious decisions: Should applicants be
allowed to check which of their reference letters have arrived
(and when)? Should students in the department know who
has applied? Should administrative staff be able to read the
reference letters? Should untenured faculty be permitted to
read reference letters on senior applicants? As described in
section 2, we observed several faculty use triangulation to
help weigh these decisions.

Figure 1 shows an authoring-task specification for this do-
main. The first three lines define the policy space (defini-
tion 1). The “Relations” section defines three relations: one
capturing analogous roles, one capturing relative trust be-
tween roles, and one capturing relative sensitivity between
resources. The UI component of the relation definitions is
for the environment generator described in section 4; the
properties specifications are also for the tool, which auto-
matically inserts tuples to maintain the stated properties as
authors populate relations. This format does not distinguish
between R and T explicitly. Rather, we infer this distinction
from use: relations used in rule forms or problem queries lie
in R; the rest lie in 7. By this characterization, analogous
lies in R, while trust and sensitivity lie in 7.

Two rule forms derive permissions based on the analogous
relation. In our experience, authors frequently express de-
sired policies based on analogies between roles that they
override in a few exceptional cases. While this is not a fea-
ture of many policy logics, we include it as it illustrates

how exploring interactive authoring models drives research
questions into policy logics (section 6.2 discusses this fur-
ther). The single problem query captures the usual defi-
nition of multiple outputs for the same request tuple. The
single warning query shown triangulates the policy decisions
against the trust relation by flagging any pair of roles for
which the less-trusted role has at least the same permissions
as the more-trusted role. Many other warning queries could
be defined relative to information sensitivity; we elide these
as they do not illustrate additional concepts.

3.2.2 Social-Network Configuration

Social networks illustrate multi-stage authoring tasks. The
first stage is for a policy internal to the social network that
governs system-wide operations such as creating accounts
and uploading content. The specification on the left in fig-
ure 2 captures the authoring task for this policy: through
the resulting interface, the system’s creators might permit
only administrators to create accounts, and only members
to upload, post, or tag items. The error criterion says that
decisions must be unambiguous. This is similar in spirit to
many other commercial access-configuration tasks.

The second, more interesting, form of authoring is per-
formed by end-users, i.e., the members of the social network.
A specification for this—which we explain below—appears
on the right in figure 2. In principle, the interface generated
by this model would constitute the “privacy setting config-
uration” page of the social networking site.

The second task specification considers an interesting form
of sharing based on tags, as used on many Internet sites. It
pre-defines a few tags, but end-users can use the generated
interface to add tags of their own. Thus they assign people
to member tags (e.g., “friends”, “family”, “professional con-
tacts”), ascribe item tags to data (e.g., “work document”,
“party photo”), and specify sharing by permitting or deny-
ing all members of a member tag access to all data with an
item tag (e.g., “permit friends to view party photos”, “permit
family to view family photos”, “deny professional contacts to
view party photos”). We have configured requests to be in
terms of member- and item-tags, rather than concrete data,
though this is obviously easy to change and a function of
what the actual social network software does.

The first warning fires when a person is granted access
based on one tag but denied it based on another. We treat
this as a warning rather than an error because this situa-

tion is likely to occur with some frequency, and given this
contradictory decision, the social network presumably de-
nies access, so the user only needs to worry about overriding
it when they want to permit access (though just being told
about this overlap may give them unexpected insight into
their social circles, causing them to reconfigure access). The
second warning is even more interesting: it warns when a
person can view a photo through a tag when an earlier friend
request from them had been denied. These sorts of checks
are very useful in social networks, yet we are not aware of
any that offer them.

4. TOOL SUPPORT:
AN ENVIRONMENT GENERATOR

We now describe QnA, a tool for generating triangulat-
ing environments for policy authoring. QnA consumes an
authoring task (definition 3 augmented with a bit of user-
interface configuration information, as shown in figure 1).
From these, it automatically generates an interactive ap-
plication that enables users to incrementally define policies
while querying them about errors and warnings. A screen-
shot of the environment resulting from figure 1 appears in
figure 3. The rest of this section refers to these figures as we
discuss how QnA implements each aspect of our model of
triangulating authoring environments (definition 4). QnA is
built in PLT Scheme [7], using the PLT Web server [15].

Refining instances.

QnA currently supports a fixed configuration of actions on
components of an authoring task. Specifically, it supports
create on policy-space domains, create on tuples within re-
lations in R and 7', and a limited create action on rule forms
that maps a single request tuple to a decision (as opposed to
arbitrary rules). The sets of known relations (in either R or
T') and the sets of problem and warning queries are fixed to
their initial values. QnA supports this fixed configuration
by automatically generating the following web-based forms
(examples refer to figure 3):

e For each domain in P, a form for users to add elements
to the domain (e.g., the “Enter a new role” option).

e For each relation in R and 7', a form for users to add
tuples to the relation (e.g., the “Specify trust ordering”
option). QnA does not currently display the distinc-
tion between relations in R and those in 7. As users
change the contents of domains, the drop-down menus
for specifying relations change accordingly.

e A form for users to add specific request tuples to the
output relations (e.g., the “Specify Decisions” option).

Supporting other actions is simply a matter of figuring out
appropriate interfaces for them (such as an interface for writ-
ing rule forms and queries). There is no technical difficulty
with supporting a richer set of configurations.

Running queries.

Following definition 4, each problem and warning query
must be evaluated against each instance as the policy evolves.
The semantics of queries are those of relational algebra, as-
suming that the domains are closed for each instance. Any
implementation of relational algebra should suffice. Our im-
plementation uses Datalog: QnA maps domain and relation

contents to facts against which it evaluates queries and com-
putes outputs.

Our mapping of instance data to facts is standard and
straightforward: for each tuple (t1,t2,...) in relation RL,
QnA generates the Datalog fact

RL(t1,t2,...).
For example, if (student, studentRep) is in the analogous
relation, we generate analogous(student, studentRep).

Query evaluation is complicated by the presence of nega-
tion in our language of relational queries. Our query exam-
ples throughout the paper have included cases that (implic-
itly or explicitly) use negation. The “trust conflict” warning
query in figure 1 shows an example that uses negation on
both ground terms and conjunctive terms. While some Dat-
alog implementations support the former, the latter is not
directly supported in the Datalog packages we considered for
our implementation. We have therefore built our own query
evaluator on top of the Datalog package for PLT Scheme.
Our evaluator assumes all queries use only conjunction and
negation operators (a straightforward rewrite if necessary).
For any negated query term not T, our evaluator implements
negation via a closed world assumption [25]: it computes the
set of tuples that satisfy T, complements this set relative to
the set of all tuples over the domains as defined in the current
instance, generates a fresh relation name and a fact asserting
that name over each tuple in the complement, and replaces
the original term not T with the new relation name. Posi-
tive ground terms and conjunctions with no nested negation
terms are passed to Datalog directly in the usual fashion.

QnA generates warning and problem alerts for every tu-
ple that satisfies the corresponding query. Figure 3 shows
a warning arising from the “trust conflict” query: although
faculty have been deemed more trusted than students, the
current instance yields no permission that faculty have and
students lack (as expected by the query). Since this is pos-
sible, though unlikely, it is a warning and not an error.

Resolving problems.

QnA evaluates problem queries in the same way as it does
warning queries. Rather than just present the tuples that
reflect a problem, QnA also asks the user how they would
like to resolve the problem. Although QnA could do the
same for warnings, our current system limits this feature to
problems as they must be resolved whereas warnings need
not be. In addition, warnings arise frequently, especially
when a policy is only partially completed (the warnings in
figure 3 reflect that the author has not begun to specify
decisions for faculty); suppressing warning resolution may
reduce information overload, as we discuss in section 6.1.

For each parameter binding that satisfies a problem query,
we compute the facts that make the query true under that
binding. We then present the user with options to delete
some of the supporting facts. If the supporting facts in-
clude conflicting outputs on the same request tuple, QnA
also presents options to override one conflicting output with
the other. Figure 3 shows an example in the “Problems”
box: the input request for a student to view comments yields
conflicting outputs. This conflict arises from an analogy be-
tween student and studentRep that should generally hold,
but not in the specific case of comment viewing.

QnA currently implements overriding through low-level
manipulation of the relational algebra expressions that de-
fine rules and queries. If the author chooses to override one

Domains: role initvals {admin member},
action initvals {create post upload tag},
resource initvals {account item}

Tuple shape: <role, action, resource>

Outputs: permit, deny

Relations: owner : signature <item, member>;
UI ["Item”, "Member”]

Problems: ”decision missing” =
not ((permit S A R) or (deny S A R))

Task Actions: create on {ruleforms}

Domains: member, item,

action initvals {view comment search},

item-tag initvals {profile news photo},

member-tag initvals {friend friend-of-friend declined-friend-request}
Tuple shape: <member-tag, action, item-tag>
Outputs: permit, deny

Relations: mtags : signature <member, member-tag>; UI ["member”, "tag”]
itags : signature <item, item-tag>; UI ["item”, "tag”]

Warnings: “decision conflict” = (permit MT1 A IT) and (deny MT2 A IT) and
(mtags M MT1) and (mtags M MT2)
“declined-friend view "= (permit MT view photo) and (mtags M MT)
and (mtags M declined-friend-request)

Task Actions: create on {mtags, itags} ; delete on {mtags, itags}

Figure 2: Specifications for a social network.

Specify Policy Components

Enter a new role: Add role ‘
Enter a new resource: Add resource |
Enter a new action: Add action

Specify Decisions
role: applicant - action: upload - resource: vita
Specify Relationships

Specify analogous: rolel: applicant ~ role2: applicant

lvita [statements [letters [comments
lapplicant [upload [upload [view |view
[letterwriter | [[[
[faculty [[[[
‘student ‘ ‘ ‘w‘ew :}2‘:,
‘studentRep ‘ ‘ ‘w‘ew :Em
Istaff | | | |

-~ decision: permit - | Add Rule |

Add analogous tuple

Specify trust: More trusted role: applicant = Less trusted role: applicant ~ | Add trust tuple |

Specify sensitivity: More sensitive: vita ~ Less sensitive: vita - Add sensitivity tuple

Problems

1. The cell (student comments) has conflicting decisions o
arising from

o (permit studentRep view comments)
o (deny student view comments)

Choose an action to resolve the conflict

_ Override the permit, but don't remove any rules
" override the deny, but don't remove any rules
' Delete the permitting rule

"I Delete the denying rule

"' Delete the permit-supporting analogy between stude
and student

| Resolve

Warnings

n view 1. Decisions contradict trust levels: expect faculty (more trusted)
to have more permissions than student (less trusted)

Qutput changes resulting from last action

1. new permit: (studentRep view comments)
2. new permit: (student view comments)

ntRep

2. The cell {studentRep comments) has conflicting decisions on

view arising from

Figure 3: Screenshot of the generated authoring tool for hiring policies. The author has already added

the roles, actions, and resources shown in the
(the denies appear in italics, as well as in red

matrix. The matrix shows both permit and deny decisions
if viewed in color). The author has specified that “student”

and “studentRep” are analogous, and that “faculty” are more trusted than “student”. The content of the

“Problems” and “Warnings” areas derive from t

his information according to the queries in figure 1. The last

action performed was entering the decision that “studentRep”s should be allowed to view comments; this
induces the contents of the “Output changes ...” area.

output with another for a specific input, QnA stores the
input tuple, the identities of the rules leading to the con-
flicting outputs, and an indication of which rule should take
precedence. (An alternative is to use policy combinators,
but these generally operate on entire modules, and are a
poor fit with incremental policy authoring.) The generated
Datalog programs include an overrides relation of the form
overrides(ruleid-use, ruleid-suppress, tuple-component, ...)
that is taken into account by all queries over the output rela-
tions. QnA automatically augments designer-defined queries
to consult the overrides relation. We also add a unique identi-
fier to each fact that asserts an output decision for a concrete
tuple. For example, if a user explicitly states that authors
may submit papers, our query evaluator uses a fact like
permit(author,submit,paper,rule67)
to associate the name rule67 with this output decision. This
enables us to simulate the notion of proof justification [26],
which is built into some systems but not the one we use.

Reporting Changes.

QnA implements change impact between successive pairs
of instances. It does so by renaming the old versions of
all the relations: e.g., relation RL becomes RLold. Datalog
is then given both old and new definitions and asked to
find all the tuples that fall in the difference (i.e., in one
relation but not the other). These changes are presented to
the user, as shown in the bottom right area of figure 3. The
changes presented in the screenshot arose from the author
specifying a permission on studentRep which propagated to
student based on an analogy.

Tool Evaluation

We experimented with QnA on examples similar to and in-
cluding those in section 3.2. Running queries and computing
differences on each iteration exposed no performance issues:
the analyses consumed only milliseconds and created no per-
ceivable lag time over the usual web-server response time.

Our experiments suggest future refinements for the model
and tool. Consider multiple authoring tools operating over
shared data (such as social-network users editing tuples that
reside in a central database). The members’ specification in
the social network defines domains member and item in or-
der to define the mtags and itags relations. Not only should
members be prevented from editing member and item, these
domains should be inherited from the global system. Fur-
thermore, the contents of the item relation visible to a mem-
ber should be restricted to items owned by that member.

The observation about shared data raises a system-wide
integrity constraint between the owner and itags relations.
The social network raised another: the friend-of-friend tag
should be computed from the friend tag, not defined by mem-
bers (as the generated tool currently allows). Our model
does not currently support defining one relation in terms of
another. Capturing dependencies and integrity constraints
between relations might in turn enable warnings about in-
teractions between policy edits and system-wide behavior.

In addition, the warning about conflicting outputs in the
social network example suggests that some warnings should
allow overriding options. As prompting for overrides on all
warnings still seems excessive (as discussed in section 4),
this suggests another point of configuration in specifications.
Designing a useful form of such a specification remains a
problem for future work.

S. RELATED WORK

Policy languages with varying logical foundations abound
in the literature. Our model adapts to any policy logic with a
useful set of decidable queries. The QnA prototype supports
any logic that can be encoded in non-recursive Datalog; this
is strictly a subset of the logics that fit our overall model.

Typical policy-authoring tools have tended to focus on
how best to elicit and visualize the data in access-control
matrices. Zurko, et al.’s ADAGE authoring framework [32]
was explicitly designed for usability and to study expressive-
ness questions such as the use of various grouping mecha-
nisms (such as roles and labels) for expressing policies, but
focuses more on interface issues than on the underlying lan-
guage (with the exception of strong support for separation-
of-duty). Brostoff, et al. [4] developed a tool to help scientist
end-users author access-policies; their work focuses more on
how to help end-users specify policy components. Both used
fairly standard rule-based structures for capturing policies,
and neither prompts the user as in our sense. Reeder, et
al. [23] propose rich visualizations of policy matrices. Karat,
et al.’s SPARCLE authoring tool [3] uses natural-language
processing to improve the interface between humans and
RBAC-style languages. However, focusing on interfaces to
RBAC misses the bigger problem—well understood in re-
quirements gathering—of stakeholders not articulating what
they actually mean. None of these papers report on cogni-
tive studies justifying the linguistic structures through which
people describe policies. None of them elicit or exploit the
triangulating information at the heart of QnA.

Reeder, et al. identify five usability challenges for policy
authoring tools [24], based on a study in which novice pol-
icy authors wrote formal versions of organizational privacy
policies. QnA directly addresses three of these: our problem
queries detect conflicting decisions; our focus on relation-
ships supports treating policy objects collectively; and our
logic allows users to state deny decisions explicitly (rather
than only permits). The other two issues were artifacts of
the study’s use of natural language in policy authoring.

The current QnA system produces authoring tools aimed
at access-control requirements gathering. Existing works on
requirements engineering for security [1, 12, 29] propose
processes to get stakeholders to articulate concerns such
as threats, vulnerabilities, trust assumptions, and security
goals, as a key step toward developing security requirements.
These processes often start from whatever documentation an
organization has available about the system to be secured
and the staff who will use it. Even if an organization has such
documentation (less common in smaller organizations), our
experience shows that these sometimes contradict needed
privileges. QnA’s triangulating checks provide a new, more
flexible model for tools to use non-security specific informa-
tion during authoring.

Building on the work by Palen and Dourish [22], Nis-
senbaum [19], and Dourish and Anderson [6] (as reviewed in
section 2), it may be possible to identify common patterns
of triangulating relations and warning queries. Even if these
works do suggest general models for triangulation, we expect
user-defined auxiliary relations will still be important. Sten-
ning and Van Lambalgen’s work [27] highlights that people
often reason under (reasonable) assumptions that contradict
those of the logical system in which they are working. This
body of work, which partly inspired our research, has serious
implications for policy authoring: software systems interpret

policy rules under a fixed logic that may differ from what
the policy author had in mind. Expanding authoring envi-
ronments with auxiliary information may help detect such
cases, thus leading to more accurate policies.

There are many tools for analyzing and verifying access-
control policies. The authors’ own Margrave tool [9] per-
forms not only verification but also a sophisticated notion of
semantic differencing between policies (the cited paper dis-
cusses related tools extensively). Neither Margrave nor the
other related tools perform their computation interactively,
nor do they have any notions of warnings or triangulation.

There has been considerable attention to handling incon-
sistency in requirements and software. For instance, Nu-
seibeh, Easterbrook, and Russo [20] present a manifesto
arguing for tolerating and supporting inconsistencies. We
believe QnA is consistent with their view, allowing some
inconsistencies to be specified as warnings rather than prob-
lems (or not be flagged at all), and helping policy authors
incrementally resolve these inconsistencies.

Environments that attempt to assist programmers through
interactive feedback share common goals with our work. The
most famous early example is Teitelman’s DWIM for In-
terlisp [28]. The Programmer’s Apprentice [30] used plan-
ning to follow and assist programmers. As the programming
context is quite different in details from policy authoring,
the similarities between these efforts are primarily superfi-
cial. There have also been some tools, such as FindBugs [13],
that attempt to find errors based on “smell tests”. QnA dif-
fers from such tools by using triangulation and focusing on
asking questions of the policy developer. Other tools use in-
teractive feedback to attempt to refine system specifications
automatically. Garcez et al. propose an iterative model for
developing requirements specifications [10]. Each iteration
of their model checks the partial specification against a set
of formal properties and provides diagnostic information ex-
plaining failures. The diagnostic information supports learn-
ing specifications from properties, a very different task than
ours. QnA also differs in its focus on triangulation as a
fundamental, human-centric, component of authoring.

6. PERSPECTIVE AND FUTURE WORK

This paper focuses on a model and prototype for triangu-
lating policy-authoring environments. The project also has
substantial logical and human factors components, which are
beyond the scope of this paper. In addition, we have yet to
exploit other interesting observations about authoring prac-
tice. This section briefly discusses these components.

6.1 HCI Considerations

The features of our environment that support triangula-
tion and iterative feedback yield a more powerful tool, but
the added complexity may make authoring more difficult
from a human-factors perspective. This overall project needs
to investigate questions such as: how many triangulating re-
lations can one person track through an authoring task?; for
what kinds of problems do authors find the triangulating
checks helpful?; when should the environment prompt for
corrections so as not to disrupt productive authoring ses-
sions? Each of these foundational questions requires care-
fully designed and controlled user studies. The first round
of studies are in progress.

6.2 Logical Considerations

Although policy logics have been explored extensively,
maintaining readable policies across incremental additions
of exceptions and overrides remains an interesting and open
problem. Proper treatment of rules based on relationships
such as analogy has not been studied extensively in the
policy-logic literature. Our model allows authors to iter-
atively specify new and complex rules (such as our analogy
example). We may need to put constraints on these rules
to prevent authors from creating inconsistent policy logics.
Understanding these issues better could lead to changes in
QnA’s rule specifications, but the spirit of these specifica-
tions should remain the same.

6.3 Further Forms of Authoring Support

Our experience collecting access-control requirements for
faculty hiring (described in section 2) suggests other policy
authoring needs that we describe elsewhere [8] but did not
build into the QnA prototype.

e Support Social Concerns as Assets: People of-
ten weigh access decisions against broader issues such
as educational value to students and impact on the
department’s reputation. While these also give alter-
native views on the policy space, they do not reduce
to relations as we used for triangulation. Figuring out
how to help authors weigh these issues is an interesting
question. For example, the environment might ask au-
thors to identify their social assets, ask for examples of
output decisions that would support or threaten those
assets, then include checks that the policy is consistent
with those decisions.

e Help Authors Consider Effects of Space and
Time: Access privileges can change over time even
as the policy remains fixed: an individual’s role might
change, or access might depend on the status of a re-
source (such as whether an application is complete).
Role overlaps and changes, in particular, can result
in information leaks. We find that authors frequently
overlook these issues, which suggests that prompting
users about potential changes of these sorts would be
a useful aid in authoring.

e Customize to Authoring Style: People approach
policy authoring from many high-level perspectives:
some worry most about potential problems in the event
of leakage, some worry more about social impacts of
decisions, some prioritize minimal interference with
workflow. Each of these styles would probably use an
inquisitive environment differently. A framework that
could detect and adapt to authoring styles could help
a broad range of users. Other works have noted differ-
ent personality styles in authoring [5, 18, 21], though
none offer suggestions on building flexible policy tools.

Acknowledgments.

We thank Keith Stenning for inspiring our interest in how
users reason about access-control, Rob Reeder for valuable
discussions on the state of authoring tools, and the partici-
pants in our hiring-software case study. This work was par-
tially supported by the NSF and a Google Research Award.

7.
1]

REFERENCES

A. 1. Antén and J. B. Earp. Strategies for developing
policies and requirements for secure e-commerce
systems. In A. K. Ghosh, editor, Recent Advances in
E-Commerce Security and Privacy, pages 29-46.
Kluwer Academic Publishers, 2001.

P. Bonatti, S. Vimercati, and P. Samarati. A modular
approach to composing access control policies. In
Proceedings of the ACM Conference on Computer and
Communication Security, 2000.

C. A. Brodie, C.-M. N. Karat, and J. Karat. An
empirical study of natrual language parsing of privacy
rules using the SPARCLE policy workbench. In
Symposium on Usable Privacy and Security, 2006.

S. Brostoff, M. Sasse, D. Chadwick, J. Cunningham,
U. Mbanaso, and S. Otenko. R-what? development of
a role-based access control (RBAC) policy-writing tool
for e-scientists. Software: Practice and Experience,
35(9):835-856, 2005.

L. Cranor, J. Reagle, and M. Ackerman. Beyond
concern: Understanding net users attitudes about
online privacy. Technical Report TR 99.4.3, AT&T
Research Labs, Apr. 1999.

P. Dourish and K. Anderson. Privacy, security... and
risk and danger and secrecy and trust and identity
and morality and power: Understanding collective
information practices. Technical Report UCI-ISR-05-1,
UCI Institute for Software Research, Irvine, Ca., 2005.
R. B. Findler, J. Clements, C. Flanagan, M. Flatt,

S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: A programming environment for Scheme.
Journal of Functional Programming, 12(2):159-182,
2002.

K. Fisler and S. Krishnamurthi. Escape from the
matrix: Lessons from a case-study in access-control
requirements. Technical Report CS-09-05, Brown
University, 2009.

K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In International
Conference on Software Engineering, pages 196205,
May 2005.

A. D. Garcez, A. Russo, B. Nuseibeh, and J. Kramer.
Combining abductive reasoning and inductive learning
to evolve requirements specifications. IEF
Proceedings-Software, 150(1):25-38, feb 2003.

S. Godik and T. M. (editors). eXtensible Access
Control Markup Language, version 1.1, Aug. 2003.

C. Haley, R. Laney, J. Moffett, and B. Nuseibeh.
Security requirements engineering: A framework for
representation and analysis. IEEFE Transactions on
Software Engineering, 34(1):133-153, 2008.

D. Hovemeyer and W. W. Pugh. Finding bugs is easy.
In OOPSLA Companion, pages 132—136, 2004.

S. Jajodia, P. Samarati, and V. S. Subrahmanian. A
logical language for expressing authorizations. In
IEEE Symposium on Security and Privacy, pages
31-42, 1997.

S. Krishnamurthi, P. W. Hopkins, J. McCarthy, P. T.
Graunke, G. Pettyjohn, and M. Felleisen.
Implementation and use of the PLT Scheme Web

10

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]
(28]

29]

(30]

(31]

32]

server. Higher-Order and Symbolic Computation,
20(4):431-460, 2007.

S. Lederer, J. I. Hong, A. K. Dey, and J. A. Landy.
Personal privacy through understanding and action:
five pitfalls for designers. Personal and Ubiquitous
Computing, 8(6):440-454, 2004.

E. C. Lupu and M. Sloman. Conflict in policy-based
distributed systems management. IEEE Transaction
on Software Engineering, 25(6):852-869, 1999.

A. D. Miller and W. K. Edwards. Give and take: a
study of consumer photo-sharing culture and practice.
In ACM SIGCHI Conference on Human Factors in
Computing Systems, pages 347-356, 2007.

H. Nissenbaum. Will security enhance trust online, or
supplant it? In R. M. Kramer and K. S. Cook, editors,
Trust and Distrust in Organizations: Dilemmas and
Approaches, chapter 7, pages 155-188. Russell Sage
Foundation, 2004.

B. A. Nuseibeh, S. M. Easterbrook, and A. Russo.
Making inconsistency respectable in software
development. Journal of Systems and Software,
58(2):171-180, 2001.

J. S. Olson, J. Grudin, and E. Horvitz. A study of
preferences for sharing and privacy. In ACM SIGCHI
Conference on Human Factors in Computing Systems,
pages 1985-1988, 2005.

L. Palen and P. Dourish. Unpacking “Privacy” for a
networked world. In ACM SIGCHI Conference on
Human Factors in Computing Systems, 2003.

R. Reeder, L. Bauer, L. Cranor, M. Reiter, K. Bacon,
K. How, and H. Strong. Expandable grids for
visualizing and authoring computer security policies.
In ACM SIGCHI Conference on Human Factors in
Computing Systems, 2008.

R. W. Reeder, C.-M. Karat, J. Karat, and C. Brodie.
Usability challenges in security and privacy
policy-authoring interfaces. In INTERACT (2), pages
141-155, 2007.

R. Reiter. On closed world data bases. In Logic and
Data Bases, pages 55-76, 1978.

A. Roychoudhury, C. R. Ramakrishnan, and I. V.
Ramakrishnan. Justifying proofs using memo tables.
In Principles and Practice of Declarative
Programming, 2000.

K. Stenning and M. van Lambalgen. Human
Reasoning and Cognitive Science. MIT Press, 2008.
W. Teitelman. Interlisp Reference Manual. Xerox,
1974.

A. van Lamsweerde. Elaborating security requirements
by construction of intentional anti-models. In
International Conference on Software Engineering,
pages 148-157, 2004.

R. C. Waters and C. Rich. The Programmer’s
Apprentice. Addison-Wesley, 1990.

T. Whalen, D. K. Smetters, and E. F. Churchill. User
experiences with sharing and access control. In CHI
Extended Abstracts, pages 1517-1522, 2006.

M. E. Zurko, R. Simon, and T. Sanfilippo. A
user-centered, modular authorization service built on
an RBAC foundation. In IEEE Symposium on
Security and Privacy, pages 57—71, 1999.

