
Verifying Component-Based Collaboration Designs
Kathi Fisler1, Shriram Krishnamurthi2, and Don Batory3

1: Department of Computer Science, Worcester Polytechnic Institute; kfisler@cs.wpi.edu
2: Department of Computer Science, Brown University; sk@cs.brown.edu

3: Department of Computer Science, University of Texas at Austin; dsb@cs.utexas.edu

1 Introduction
Collaboration-based or layered design provides an architec-
ture for defining software systems. In this architecture, sys-
tems are defined as a composition of layers, where each layer
(collaboration) defines a feature and the roles that each actor
in the system plays in the feature. Collaboration-based de-
signs have the advantage that features are easily added to or
deleted from the system; simply changing the composition
of collaborations that defines the system changes the fea-
tures that the system implements. Collaboration-based ar-
chitectures are receiving increasing recognition as providing
a flexible and scalable approach to large-scale system design,
particularly for product-line architectures.

Scalable, collaboration-based designs are fundamentally
component-based [6, 9]. Collaborations share the features
of components [5, 7, 11], at least in principle: they are black
boxes that can be combined through external linkage; their
composition can be treated hierarchically; and they may be
instantiated multiple times when building a system (the lat-
ter situation could arise if the same feature is added to dif-
ferent parts of the system at different times). This synergy
between components and collaborations provides a practi-
cal and important class of problems to drive and evaluate re-
search into components. We are interested in formal verifica-
tion techniques that support compositional reasoning about
component-based, collaboration-based designs. In this pa-
per, we outline a vision of analysis techniques for this design
domain and argue that most conventional compositional ver-
ification techniques, such as are found in the model checking
literature, are poorly suited for this domain.

2 Collaboration-Based Design
Programs consist of actors and the roles that they play.
Collaboration-based designs structure software around col-
laborations (layers) that define how each actor in the sys-
tem contributions to a given feature or task. Consider a
system for managing library circulation information. The
system contains two classes of actors: books and patrons,
both organized into databases. Circulation operations, such
as checking in books or placing them on hold, involve in-
teraction between a patron and a book. A conventional,
non-collaborative design would implement one module for
books and another for patrons. Each module would con-

tain the code for performing circulation operations relative to
each actor. A collaboration-based system, in contrast, would
group the information related to each operation into a single
component. Composing the components for each desired op-
eration builds the complete software system. Figure 1 shows
an example of a library system composed with a collabora-
tion for handling lost library books. Figure 2 shows a gen-
eral collaboration-based design in contrast to a conventional
design (where each state machine corresponds to a single ac-
tor). Collaboration-based designs have been used to imple-
ment many substantial systems, including an artillery man-
agement system [1], a programming environment [6], and
extensible reasoning tools [4, 10].

3 A Model of Collaboration-Based Design
To foster a discussion of verification for collaboration-based
designs, we provide a model for collaborative designs and
discuss the verification challenges within that model. Con-
cretely, we view a design as a set of classes, roughly one per
actor in the system. A collaboration consists of a set of class
extensions (mixins) for the actor classes. The mixins in a
collaboration relate to a common task (feature) in the over-
all system. This definition allows actor classes and mixins
of arbitrary complexity. To make the problem of verification
more tractable, we assume each actor class can be described
as a state machine, and each mixin extends an existing state
machine by adding new nodes and edges. Composition of a
layer with an existing system simultaneously refines the state
machines of several actors. More specifically, each state ma-
chine refinement is defined by a set of entrance states (with a
similar match-up of states at exit from the layer). Eventually
we would need a way to verify that the state machine is a
sound model of the code. Researchers are working on con-
structing such abstractions automatically, and such models
are already available for many systems [2, 3].

Figure 1 presents a simple example of our collaboration-
design model on a library circulation system. Books are in
one of the states forder; in;out;res(erve);holdg; patrons are
in one of the states fclear;owes;block(ed)g (corresponding
to levels of fines on a patron’s account). Labels on the transi-
tions are omitted here, but support operations such as check-
ing books out and putting books on hold. A later extension
to the system adds facilities for handing lost books. This ex-

1



in outorder

res hold

clear

owes

block

lost action: fines:= fines+price(book)

lost-book

Collaboration

Original System

lost-bookorder-ready Lost-Book

Figure 1: Example of a collaborative design for a library circulation system. The state machines capture books (left) and patrons
(right). The dashed box encloses a collaboration which extends the system with functionality for handling lost books.

XX

X X

X X

Figure 2: Two views of a collaborative design: sequential composition of layers (left) versus parallel composition of extended
actors (right).

tension involves a new state and path in the book machine (to
register a book as lost and possibly order it again) and a new
path in the patron machine (to add fines). The two machine
extensions form a collaboration. Composing the Lost-Book
collaboration with the original system through the dashed
edges yields the new library system.

Given a set of library collaborations, we might wish to prove
properties about the behavior of a composed library system.
For example, we might wish to prove that once a book is re-
ported as lost, the account of the patron who lost the book
is assessed fees to replace the book. We would like to rea-
son about such properties at the level of the collaborations,
rather than at the level of the entire system. This is largely a
tractability concern: full, realistic designs are generally too
large to verify naı̈vely. Verification research looks for ways
to reduce the portion of the design that must the analyzed to
prove a given property. Collaborations restrict these portions
naturally: the lost-book collaboration contains the computa-
tion related to lost-book properties. Better still, the lost-book
collaboration has fewer states than the full system, so veri-
fication should be more tractable on the collaboration level.
By abstracting the contents of each collaboration as a collec-
tion of state machines, we can investigate the applicability
of conventional verification techniques. Model checking, in
particular, offers a variety of techniques for specifying sys-
tems and properties, and for verifying that systems satisfy
properties; this technique has been especially popular in ver-
ifying hardware systems. We therefore consider the defining
questions in the context of this abstraction.

What Properties Do We Want to Prove?
We are primarily interested in verifying behavioral proper-

ties, rather than performance properties. Focusing on behav-
ioral properties allows us to leverage existing specification
logics. These logics can capture a variety of statements about
systems including safety (invariants) and liveness (progress)
properties.

For collaborative designs, a programmer might ask two nat-
ural questions of new collaborations:

1. Does the new collaboration break (global) properties of
the existing system?

2. Does the existing system invalidate (local) properties of
the collaboration?

In our library example, the Lost-Book collaboration should
preserve the property that blocked patrons may not charge
books. The original system should preserve the property that
losing a book increases the fines that a patron owes. The
Lost-Book collaboration would, however, break an existing
property that patrons are assessed fines only if they have
overdue books. Characterizations of which properties are
preserved under extension should derive from similar work
in the verification community. The substantial challenge lies
in knowing what information to include in the interface of a
collaboration to support such reasoning. The remaining sec-
tions discuss aspects of this challenge.

What Compositional Reasoning Techniques are Avail-
able?
Compositional verification of modular designs is an area of
active research in the model-checking community. Conven-
tional approaches to this problem assume that a system M is
composed of modules M1 and M2, executing in parallel. To



prove a property P of M, one decomposes P into properties
P1 and P2 such that P1 (P2) can be proven of M1 (M2), possi-
bly under some assumptions regarding M1’s (M2’s) environ-
ment. Combining P1, P2, and the environmental constraints
in a particular way yields a proof that M satisfies P.

This approach does not naturally apply to the components
arising from collaboration-based design. Collaborations ex-
tend existing machines rather than operate in parallel with
them. The very nature of the extension, which adds paths to
an existing design, implies that the collaboration will execute
sequentially, not in parallel, with the original design. Most
compositional verification theories embody an assumption of
parallel composition because they require that composition
will never add behaviors to a design. As adding behaviors is
the entire goal behind collaboration-based design, most ex-
isting compositional verification techniques will not apply in
this setting.

We have developed an initial theory of collaboration-based
verification. For trivial collaborations involving a single ac-
tor, our approach is similar to Laster and Grumberg’s [8]
work on sequential composition, which was developed inde-
pendently and has been used for reasoning about hierarchi-
cal designs such as those arising from StateCharts. Our full
context differs from these works in three key ways. First,
Laster and Grumberg attempt to decompose a design into se-
quential fragments; our fragments arise naturally from the
collaborative design architecture. Second, existing work as-
sumes complete, closed systems, rather than systems that
will be built (possibly dynamically) from black-box compo-
nents. Both issues are fundamental in collaboration-based
design. These issues also raise substantial questions about
component interfaces for compositional verification; closed-
world approaches can ignore this question.

The third distinction points to the heart of the technical chal-
lenge in this problem: collaborations involve multiple se-
quential compositions (the mixins) operating in parallel (the
whole collaboration). Our goal is to reason about collabora-
tion composition sequentially, even though the overall (ex-
tended) actors run in parallel. Figure 2 illustrates the prob-
lem at hand: while we may think of collaborations as pro-
ducing the parallel composition of extended systems shown
on the right, we wish to verify the collaborations via sequen-
tial composition as shown on the left. Verifying within the
sequential view is preferable because collaborations natu-
rally isolate the parts of systems that are relevant to partic-
ular properties; this task is extremely difficult under parallel
composition. Thus, while we are interested in the same goals
of assume-guarantee reasoning as found in the modular ver-
ification community, this project will need new theories of
reasoning about extensions and compositions within collab-
orative design.

What Internal Details About Components are Needed?
Ideally, collaboration- and system-interfaces should provide

sufficient information to verify large classes of properties
without access to a component’s internal details. Section 3
discusses the interfaces that we envision to support such rea-
soning. There are at least two circumstances, however, in
which access to the entire state machines from each layer
may be needed:

� When verifying a new property of the system for which
the interface properties are insufficient.

� When module interfaces contain no property-oriented
specifications.

The first problem does not apply to lightweight abstractions
such as traditional types. However, as we ask more sophis-
ticated questions of a collaboration, we must inevitably ex-
pose more of the functionality of the implementation. Since
model checking properties ask extremely detailed ques-
tions about an implementation, exposing the implementation
sometimes becomes unavoidable. The second problem can
be addressed by decorating interfaces with property provi-
sions and requirements (see Section 3).

In our library system, for example, we might decorate the
Lost-Book collaboration with a property that processing a
book as lost does not affect the status of other books checked
out to the same patron. This information would support a
proof that the extended system properly maintains invari-
ants between the book and patron databases with regards
to checked-out materials. Similarly, we might annotate the
original system with a property that only overdue books in-
crease fines; this information would support a new property
about the causes of fines in the new system being limited to
overdue and lost books.

We believe that experience verifying collaboration-based de-
signs will yield results about classes of interface properties
that are most useful in practice (such as those about which
operations leave which attributes intact). We see identifying
these classes of properties as one of the short-term challenges
for research into compositional verification of collaboration-
based designs.

What Can We Prove Without the Component’s Context?
The properties that a collaboration’s implementation must
satisfy are largely independent of its deployment context.
These usually state either consistency or inevitability re-
quirements, and reflect invariants that the underlying pro-
gram depends on. Therefore, we can state interesting and
rich properties of each component independent of its use.

This situation is somewhat different than that in most com-
positional verification work, which requires substantial envi-
ronmental assumptions. The nature of collaborations should
reduce the complexity of these assumptions, since collab-
orations encapsulate individual and largely orthogonal fea-
tures. Operationally, collaborations attach to specific states
of the existing state machines, and do not interact much with



other states in the existing machines; therefore, the interac-
tion between the new component and the rest of the system
is limited. This requires much less contextual information,
which traditionally reflects communication between compo-
nents operating in parallel. This difference is what makes
us believe that compositional verification on collaborations
may be far more effective than previous similar efforts on
parallel systems.

How to Measure these Properties and with What Preci-
sion?
We are interested in behavioral properties, such as are com-
monly measured through some combination of model check-
ing, theorem proving, or static analysis. Our analyses will
be sound with respect to the state machine representations
of the design; the state machines may be slightly inaccurate
with respect to the low-level code, as discussed in Section 3.

How Do Components Make Necessary Information
Available?
The library example in Figure 1 motivates our intended com-
ponent interface. The extension layer contains two state ma-
chine fragments. Each fragment connects to a correspond-
ing state machine in the original system by adding edges
between its start and finish states and states in the original
system. The book machine extension, for example, connects
to the pair of states fout;orderg. The interface of the origi-
nal system must specify which pairs of states are valid source
and target states for extensions to each state machine. This
model captures extensions in the actual collaborative designs
that we have studied.

For each state appearing in an interface pair, the interface
must also publish a set of formulas that is true at that state;
in most cases, these formulas will be automatically derived
from the user-specified properties that have already been
proven (and should be preserved) of the original system (we
have an algorithm for this task). Publishing these formu-
las is essential to our approach to compositional verification.
The interface of a layer states the properties that are true of
that layer and that should continue to hold after the layer is
added to a system. The Lost-Book layer, for example, might
include the property that a book, once lost, is not checked
out to any patron. One research problem is to determine how
large these interfaces must be.

4 Conclusion
Collaboration-based designs represent a class of component-
based systems that inspire a particular vision of modular
verification. Each component in such a design represents a
single design feature or operation. The boundaries of these
components align naturally with the sorts of properties which
are verified using model checking. As developing properties
that align with component boundaries is usually one of the
main challenges in using composition model checking, we
believe collaboration-based design provides a natural frame-
work for exploring component-based verification strategies.

This paper has outlined our vision of component-based veri-
fication for collaboration-based designs and some of the av-
enues we intend to explore to achieve this vision.

REFERENCES

[1] Batory, D., C. Johnson, B. MacDonald and D. von
Heeder. FSATS: An extensible C4I simulator for
army fire support. In Workshop on Product Lines
for Command-and-Control Ground Systems at the
First International Software Product Line Conference
(SPLC1), August 2000.

[2] Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Pasareanu, Robby and H. Zheng. Bandera :
Extracting finite-state models from java source code.
In International Conference on Software Engineering,
2000.

[3] Dwyer, M. B. and L. A. Clarke. Flow analysis for ver-
ifying specifications of concurrent and distributed soft-
ware. Technical Report UM-CS-1999-052, University
of Massachusetts, Computer Science Department, Au-
gust 1999.

[4] Fisler, K., S. Krishnamurthi and K. E. Gray. Im-
plementing extensible theorem provers. In Interna-
tional Conference on Theorem Proving in Higher-
Order Logic: Emerging Trends, Research Report, IN-
RIA Sophia Antipolis, September 1999.

[5] Flatt, M. Programming Languages for Reusable Soft-
ware Components. PhD thesis, Rice University, 1999.

[6] Flatt, M., R. B. Findler, S. Krishnamurthi and
M. Felleisen. Programming languages as operating sys-
tems (or, Revenge of the Son of the Lisp Machine).
In ACM SIGPLAN International Conference on Func-
tional Programming, pages 138–147, September 1999.

[7] Heineman, G. T. and W. T. Councill. Component-Based
Software Engineering: Putting the Pieces Together.
Addison-Wesley, 2001.

[8] Laster, K. and O. Grumberg. Modular model checking
of software. In Conference on Tools and Algorithms for
the Construction and Analysis of Systems, 1998.

[9] Smaragdakis, Y. and D. Batory. Implementing layered
designs with mixin layers. In European Conference on
Object-Oriented Programming, pages 550–570, 1998.

[10] Stirewalt, K. and L. Dillon. A component-based ap-
proach to building formal-analysis tools. In Interna-
tional Conference on Software Engineering, 2001.

[11] Szyperski, C. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 1998.


