
Advanced Control Flows for
Flexible Graphical User Interfaces �

or, Growing GUIs on Trees
or, Bookmarking GUIs

Paul T. Graunke
Northeastern University

Boston, MA, USA

ptg@ccs.neu.edu

Shriram Krishnamurthi
Brown University

Providence, RI, USA

sk@cs.brown.edu

ABSTRACT
Web and GUI programs represent two extremely common and pop-
ular modes of human-computer interaction. Many GUI programs
share the Web’s notion of browsing through data- and decision-
trees. This paper compares the user’s browsing power in the two
cases and illustrates that many GUI programs fall short of the Web’s
power to clone windows and bookmark applications. It identifies a
key implementation problem that GUI programs must overcome to
provide this power. It then describes a theoretically well-founded
programming pattern, which we have automated, that endows GUI

programs with these capabilities. The paper provides concrete ex-
amples of the transformation in action.

1. INTRODUCTION
Consider software that installs modern desktop applications such

as Microsoft Office or Adobe Acrobat. The installer permits users
to customize their installed components, choosing features and ad-
justing for the available disk space and other resource constraints.
Specifically, these installers allow users to “browse” back and forth
between options before they commit to a final configuration, in a
manner reminiscent of Web browsers.

This simple interface forces us to ask several questions: What is
the relationship between this browsing and that in a Web browser?
Does the browsing power of these installers compare to that of Web
browsers? If not, are there beneficial features we can arbitrage be-
tween them? Specifically, can we “bookmark” a GUI? And how do
we methodically construct these programs? This paper answers all
these questions.

In the past few decades, interactive programs have greatly in-
creased in complexity. Every decade appears to bring a whole new
level of interface sophistication including full-screen ASCII-based
graphics, pixel-based graphics, and the Web. While each improve-
ment generally makes the quality of interaction better for the user,
it also makes the programming task considerably more difficult.
Much of the rigorous exposition on software design is still written

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

for old-fashioned, inflexible textual interfaces [22].
Web software illustrates the problems that programmers must

confront. Even though most Web programs avoid the complexity of
having to employ large and intricate graphical libraries, they must
still contend with a myriad of user actions. In addition to linear
traversals of Web sites, users commonly use Back buttons, clone
windows, create and visit bookmarks, and so forth. Every one of
these actions imposes new burdens on the developer.

Utilities such as wizards only minimally assist interactive soft-
ware developers. Most of these programs largely deal with the te-
dious task of laying out and instantiating visual elements. They
still leave the programmer to deal with the difficult problems of
designing and composing the actual behaviors that lie beneath the
“callbacks”. Unfortunately, most of the difficult tasks lie in the
interaction between the visual elements and the underlying behav-
ior. As a result, the wizards do not address many of the truly hard
problems that arise in writing GUI programs.

The growing volume of interactive software makes these prob-
lems more urgent for software engineers and programmers. In par-
ticular, programmers need better tool support to assist in interactive
software construction. As Myers says [22],

Tools influence the kinds of user interfaces that can be
created. Successful tools use this to their advantage,
leading implementers towards doing the right things,
and away from doing the wrong things.

In this paper, we offer three contributions to the conceptual and de-
velopment toolkits of GUI programmers. First, we provide a sim-
ple yet fruitful analysis of the fundamental flows of control (and
data) in modern interactive programs. We apply this to Web and
to GUI programs to demonstrate that the former can often be much
more complex than the latter. Specifically, we show that by cloning
windows and bookmarking them, users can employ very powerful
interaction patterns lacking in GUIs. Second, we present a program-
ming pattern that helps developers provide these same features in
GUIs, thereby enhancing the interaction facilities available to users.
Third, we demonstrate that we can automatically transform pro-
grams written without these capabilities into ones that do provide
them. Our prototype implementation allowed us to experiment with
the new interaction styles.

The rest of this paper is organized as follows. Section 2 iden-
tifies similarities and differences in the browsing patterns engen-
dered by Web and GUI applications. It also summarizes the features
of the former that would be beneficial to the latter and outlines the
difficulty in implementing the desirable GUI features. Section 3

presents the heart of our result: a programming pattern that over-
comes this weakness. It then discusses the pattern’s automation and
correctness. Finally, it highlights additional sources of complexity
that our pattern handles. Section 4 describes two paths of infor-
mation flow through programs and how the pattern accommodates
both. The remaining sections discuss related work and conclude
with directions for future work.

2. USAGE PATTERNS IN
INTERACTIVE PROGRAMS

In this paper, we are primarily interested in large-grained inter-
active software, meaning programs that

� present results to the user and seek additional inputs at sev-
eral points during their execution;

� encourage a user- and event-driven model of computation
rather than one where the agenda is dictated by the appli-
cation;

� maintain a relatively large granularity of interaction.

A software installer, for instance, maintains an extremely large
interaction granularity (if we ignore individual character inputs,
which libraries handle anyway); the granularity of a word-processor
is extremely small (since its raison d’être is to handle character
input). While, in theory, our results apply equally well to small-
grained interactions, we have not applied them to such software, so
we do not know how they scale to that level.

GUIs and Web-based programs are two of the most common and
popular forms of interactive interfaces. To better understand in-
teractive programs, we first describe typical user interactions with
GUIs, then contrast these against Web interactions. We study user
interactions patterns by examining the “shapes” of control flow that
they engender.

At its simplest, a series of modal GUI panes sequentially con-
sume user information:

In this figure, each represents a single GUI window. The
arrow represents the passage of time. The dashed boxes represent
windows that no longer exist on screen, because the user has al-
ready entered data and selected options. This perversely inflexible
GUI program is little different from a rigid, old-fashioned textual
program, where the software pre-determines a sequence of forms
and the user has to provide the appropriate responses.

Most modern GUI programs, however, give their users the choice
of closing a window to return to the previous one and make a dif-
ferent selection:

Here, time proceeds from the presentation of the largest window

to the presentation of the smallest one; the ’es allow users to
kill a modal window and alter their choices on a prior window.

We capture this interaction through a more abstract diagrammatic
representation we shall call an interaction diagram, which depicts
the entire history of the interaction:

Each box stands for a window presented to the user. The dashed re-
gion indicates that the user chose, then killed, one sequence of op-
tions, and has currently chosen a (possibly) different sequence, so
the corresponding earlier windows are no longer visible on screen.

In some modern applications (including many installers), the
GUI window includes explicit Forward and Back buttons. This
gives the user the equivalent power of altering their decisions. While
this has the benefit of offering a single window rather than crowd-
ing the screen with multiple ones, users need to use Back to see
the options available and choices they made on previous versions
of the window:

The resulting interaction diagram is the same as before (though
earlier windows are effectively hidden beneath the Back button);
the interface only provides a more convenient way of generating it,
eliminating the need to pop up and kill numerous windows to ex-
plore different possibilities. In the end, while the user can explore
a tree of choices, he can do this only one branch at a time.

In contrast to GUI programming, Web programming, at its sim-
plest, is a fairly straight-forward task. A specification like the Com-
mon Gateway Interface (CGI) [23] simply requires Web programs
to consume a set of name-value bindings and respond with a docu-
ment of the appropriate type (which, currently, is often in HTML).
This description, however, proves to be excessively simplistic for
almost all interesting Web applications, which have grown up from
being “scripts” to programs.

Many of the user interactions with Web programs are similar to
those with GUIs. Studying the shape of these interactions helps us
abstract away details of libraries and protocols. At its simplest, the
user simply clicks through a series of Web pages, resulting in this
interaction diagram:

The difficulty arises when a user, unhappy with a set of choices,
clicks the browser’s Back button to return to an earlier page and
make a different choice. This effectively wipes out one thread of
interactions and creates a new one. In this respect the browsing his-
tory is a stack, which is represented explicitly by the Back and For-
ward buttons of many Web browsers, again capturing the fact that a
user might have explored, but since abandoned, some sequence of
options:

So far, Web programs seem to merely mimic the capabilities of
GUIs. The Web, however, allows users to depart from, and enhance,
these interaction styles in two important ways:

� First, users can clone the current window. The clones share
a common past but, because they can now browse indepen-
dently of one another, have different futures. Thus, cloning
makes the tree structure of browsing explicit:

Importantly, each branch of the clone has solid lines and
boxes, to indicate that both can run concurrently. Hence-
forth, we refer to this as parallel exploration.

� Second, users can restore a prior exploration. That is, a user
might initiate and bookmark a exploration as in this sequence
of browser windows:

Then the user may explore an entirely different one,

but when invoking the bookmark restores the interface to its
state at bookmark creation:

This results in the following interaction diagram:

Despite these interaction patterns, some people view Web ap-
plications as much simpler than GUI applications. We believe this
view prevails for a few reasons:

� GUI programmers have to contend with staggeringly large
interface toolkits [22]. Most Web applications generate little
more than HTML using string processing.

� The relative youth of the Web means most applications have
yet to reach the level of maturity of GUI programs. They
perform fewer tasks, and thus don’t deal with the same com-
plexity of design demands.

� The complexity of GUI programs often ensues from the pres-
ence of explicit callbacks, concurrency and synchronization.
These do not appear explicitly in Web programs, though fail-
ing to account for their implicit presence leads to erroneous
interactions [25].

� Psychologically, users may be better conditioned to accept-
ing erroneous behavior from Web applications, many of which
run on remote sites and charge no direct fees, than from a GUI

application that runs locally and charges the user a tangible
up-front cost.

Web programs are, nevertheless, no simpler in interaction flow than
GUI applications. For instance, every Web form submission is ef-
fectively a callback, with the CGI program [23] or servlet [6] ref-
erenced by the form’s “action” field taking the place of a method
invocation; cloning introduces concurrency. Furthermore, as our
exposition illustrates, the Web already engenders more complex in-
teraction flows than most GUI applications do, due to the features
that browsers offer.

2.1 Desiderata
The complex interaction flows of the Web extract a price on the

implementor, but translate into much greater convenience for the
user. We believe users of GUI programs can benefit from these same
features. Consider the software installer we mentioned in the intro-
duction. Installers provide Forward and Back buttons for browsing
the history of configuration choices. Large packages often include
a “custom” installation mode, in which a user selects and de-selects
individual components. When the user finishes choosing a configu-
ration, the installer provides a summary of the space consumed for
the components requested and confirms the configuration before it
begins installation.

Suppose a user selects several components, but then finds the
resulting installation would leave too little free disk space. As a
result, he uses Back to return to an earlier menu, then navigates
to a different configuration. With new choices made, perhaps the
user wants to compare the disk usage to that consumed in the first
configuration. Each time the user goes back and changes a config-
uration, however, he loses the previous one, as demonstrated by the
GUI interaction diagrams. He therefore needs to have recorded the
space usage for each prior configuration with some external utility.

Worse, suppose the user prefers an earlier configuration. He now
must undo the currently active choices and somehow reproduce the
preferred one. Therefore, he needs to have externally also recorded
what components comprised each configuration. If the system in-
cludes several components, reproducing a configuration can be an
extremely frustrating task.

This problem is not limited to installers. For example:

� Various “wizards” similarly guide users through application-
specific choices. Many users find them frustrating because
they limit user choices, but a flexible wizard need not do this:
it can allow users to, at will, explore a large segment of the
solution space, and to compare between solutions. Indeed,
installers are merely simple forms of wizards.

� Many documentation browsers also don’t permit users to clone
a browser or to bookmark it.

� Readers may have noticed similar limitations in point-of-sale
software, both in stores and in dial-in services (such as air-
line reservations), which keeps sales agents from effectively
answering questions about multiple competing scenarios.

� This problem is even manifest in file browsing. Early ver-
sions of Windows opened a new filesystem browser each
time a user entered a sub-directory. Because this can lead
to a large number of open windows, later versions did not
open a new window by default. A user can still open a new
window on demand by Control+double-clicking on a folder,
thus demonstrating the value of this interaction mode when
made available in a controlled manner.

In short, this problem arises in numerous software contexts. The
manual solution is time-consuming, error-prone, and ultimately dis-
tasteful because it forces the user to do what the computer ought to
do instead. The problem is a mismatch between user need and soft-
ware implementation. Our goal is to close this gap by bringing the
implementation closer to the needs of the user.

In sum, we would like to give GUI users the same benefits that
Web users currently enjoy. GUI users should be able to explore
competing scenarios in parallel before committing to one (or more)
of them. They should even be able to suspend the execution of a
GUI by creating a “bookmark” and resume the computation when-
ever it is more appropriate or convenient.

2.2 Implementation Challenges
To understand the challenges a GUI implementor will face to pro-

vide these additional features, it is useful to study the problems
Web programmers must confront [18]. Web traversal patterns make
strenuous demands on software developers, such as:

� The use of the Back button, which corresponds to backtrack-
ing, is a client-side event that does not notify the server (be-
cause the previous page is usually in the cache). This means
the application’s view of the user’s location in the brows-
ing tree—represented by the last page the user requested—
may differ from the user’s actual location. Thus when the
user submits a new request, the application may generate the
wrong data, or may not even understand the request. For-
tunately, a GUI programmer can usually detect backtracking
events, such as closing a window or clicking on Back in an
installer.

� Users may initiate many more Web computations than they
complete. A few users might “log out” or otherwise explic-
itly terminate the transaction, but many users simply aban-
don it. This forces developers to contend with large-scale,
distributed resource management problems. In contrast, GUI

users normally explicitly terminate unnecessary applications,
at which point the operating system reclaims resources.

� Cloning the browser window creates the potential for concur-
rency, because the user can submit requests from both clones
at virtually the same time. The browser does not inform the
application about cloning, so a developer must always an-
ticipate the possibility of race conditions. When GUIs al-
low users to perform parallel explorations, programmers will
have to attend to the same synchronization needs.

� When users resume a computation by visiting a bookmark,
they expect the application to remember the information they
had provided at the time they created the bookmark. The
developer must therefore determine how and where to store
these data.

More of the problems of the Web will infiltrate GUIs as researchers
begin to build distributed GUIs [13]. Meanwhile, problems such
as the possibility of race conditions and having to remember data
in a bookmark remain difficulties that a programmer building GUIs
with flexible interfaces must surmount.

2.3 Stack Patterns in Flexible GUIs
We illustrate challenges implementing the complex control flows

necessary for GUIs with flexible interfaces by examining how rep-
resentations of control information must evolve to accommodate
additional functionality. We drive the exposition using an exam-
ple that should be familiar to an academic audience: the paper
submission portion of a conference manager. We have developed
and deployed a Web version of this program to manage a confer-
ence co-chaired by the second author. Here, we present a greatly
abridged form of its GUI counterpart. In each version of this exam-
ple, the first window prompts for the author’s personal information
(name and email address). The second asks for a confirmation code
(which is emailed to the address provided in the first window). The
third window accepts information specific to the paper (title, ab-
stract and filename). The last window prints an acknowledgment.
We use the Swing API [8] of Java [16] in all of our examples, but
our results are independent of the GUI library and the language.

We begin by studying programs that implement the interaction
diagrams of section 2. Figure 1 implements the first interaction
diagram:

This program presents each of the submission windows in order.
The program goes to lengths to avoid providing a convenient inter-
face: each window simply returns the user’s choice (by mutating
a variable in its callback) instead of invoking a method that would
generate the next input window. A given interaction with a user
might result in the following stack snapshots (stacks grow upward),
where each call to promptRead simply replaces the previous one:

promptRead
main

promptRead
main

(1) (2)

Recognizing the weaknesses of this program, the developer chooses
to implement the interaction diagram

As detailed in section 2.1, this style of interaction is extremely com-
mon in a large number of applications ranging from software in-
stallers to filesystem browsers. The sample program, shown in fig-
ure 2, permits the user to close windows to return to prior windows
and re-enter information. Examining the stack, we see

Confirm
Contact

main

Error
Confirm
Contact

main

Confirm
Contact

main

Paper
Confirm
Contact

main

(1) (2) (3) (4)

In the first snapshot, the user has entered the personal information,
and is being prompted for the confirmation code. The second snap-
shot shows the error message frame that results from entering the
wrong code. The user closes this window and returns to the pre-
vious one (3) to enter the correct code, which results in a paper
submission dialog (4). This sequence demonstrates that the tree-
shaped exploration maps to a stack by making sure only a linear
thread of the exploration is active at any given time.

public class SubmitPaper
�

public static void main(String[] args)
�

System.out.println("Starting the Paper Submission Program.") ;
enterPaperInDatabase() ;
System.out.println("Finished the Paper Submission Program.") ; �

private static void enterPaperInDatabase()
�

String[] contactInfo � DirectGUI.promptRead("Paper Submission: ", new String[]
�
"Name: ", "Email: " �) ;

String name � contactInfo[0], email � contactInfo[1] ;
String confCode � generateCode() ;
Smtp.send(MAIL SERVER, SMTP PORT, FROM, email, buildMessage(name, confCode)) ;
String[] codeAttempt � DirectGUI.promptRead("Confirm Email", new String[]

�
"Enter the confirmation code mailed to " � email �) ;

if (codeAttempt[0].equals(confCode))
�

String[] paperInfo � DirectGUI.promptRead("Paper Info", new String[]
�
"Title: ", "Abstract: ", "Paper Filename: " �) ;

/ � update database � /
DirectGUI.show("Thank you for your submission.") ; �

else
�

DirectGUI.error("Incorrect confirmation code") ; ���
private static String buildMessage(String name, String code)

�
/ � . . . � / �

private static String generateCode()
�

/ � . . . � / ���

Figure 1: Inflexible Interface Version

The next level of complexity in interaction diagrams is inspired
by Web programs:

Suppose a programmer were able to implement this interaction
mode. A user could begin to submit a paper

Paper
Confirm
Contact

main

but then return to the window that spawns the paper information
dialog and spawn a second such window, presumably to submit a
second paper (the prime indicates that the frame refers to the same
code, but may have different data):

Paper Paper’

Confirm
Contact

main

This stack snapshot demonstrates the difficulty in implementing
such a feature: the simple mapping from the interaction diagram
to the stack breaks down, since it violates the linear nature of the
stack.

The interaction diagram demands that the programmer generate
multiple branches of concurrently active stack fragments. This nat-
urally suggests threads, which offer multiple concurrent stacks. It
is, however, difficult to solve this problem by using threads alone.
Spawning a thread in the class Confirm to run Paper might generate
the following stack configuration:

Confirm
Contact

main Paper

thread 0 thread 1

That is, threads generate entirely new stacks with no direct control
flow to the spawning stack. In contrast, the interaction diagram
demands stack fragments with a common base. The programmer
thus becomes responsible for coordinating between the completion
of the frame Paper and the resumption of Confirm. If the user wants
to submit multiple papers, the stack might resemble this:

Confirm
Contact

main Paper Paper’ Paper”

thread 0 thread 1 thread 2 thread 3

To address this problem, a sentinel in frame Confirm checks a shared
variable. When one of the spawned threads populates the shared
variable, the sentinel resumes control in the primary stack, return-
ing the value to the frame Contact. The following procedural pseu-
docode illustrates this idea:

processConfirm() �
. . . build window . . .
Lock l � new Lock () ;
JButton button � new JButton("Okay") ;
button.addActionListener(new WakeOnClick(l)) ;
. . . show window . . .
l.wait() ;
extract fieldValues . . .
return fieldValues ; �

class WakeOnClick �
Lock l ;
WakeOnClick(Lock lock) � l � lock ; �
void actionPerformed(ActionEvent e) �

spawn-thread �
processPaper()
l.notify() ; �	�
�

Besides its complexity, this solution has a semantic weakness.
The sentinel returns when a thread (say the second one spawned)
first writes to the shared variable, reducing the stack to this config-
uration:

Confirm
Contact

main Paper Paper”

thread 0 thread 1 thread 2 thread 3

public class SubmitPaper2
�

public static void main(String[] args)
�

System.out.println("Starting the Paper Submission Program.") ;
Lock lock � new Lock() ;
enterPaperInDatabase(lock) ;
synchronized (lock)

�
lock.wait() ; �

System.out.println("Finished the Paper Submission Program.") ; �
public static void enterPaperInDatabase(final Lock lock)

�
GUI.promptRead("Paper Submission: ", new String[]

�
"Name: ", "Email: " � , new ProcessContact(lock)) ; ���

class ProcessContact extends Continuation
�

Lock lock ;
ProcessContact(Lock l)

�
lock � l ; �

void invoke(String[] contactInfo)
�

final String name � contactInfo[0], email � contactInfo[1] ;
final String confCode � generateCode() ;
Smtp.send(MAIL SERVER, SMTP PORT, FROM, email, buildMessage(name, confCode)) ;
GUI.promptRead("Confirm Email", new String[]

�
"Enter the confirmation code mailed to " � email � ,

new ProcessConf (name, email, confCode, lock)) ; �
private String buildMessage(String name, String code)

�
/ � . . . � / �

private String generateCode()
�

/ � . . . � / ���
class ProcessConf extends Continuation

�
String name, email, confCode ;
Lock lock ;
ProcessConf (String n, String e, String c, Lock l)

�
name � n ; email � e ; confCode � c ; lock � l ; �

void invoke(String[] codeAttempt)
�

if (codeAttempt[0].equals(confCode))
�

GUI.promptRead("Paper Info", new String[]
�
"Title: ", "Abstract: ", "Paper Filename: " � ,

new ProcessPaper(name, email, lock)) ; �
else

�
GUI.error("Incorrect confirmation code") ;
synchronized (lock)

�
lock.notify() ; �������

class ProcessPaper extends Continuation
�

String name, email ;
Lock lock ;
ProcessPaper(String n, String e, Lock l)

�
name � n ; email � e ; lock � l ; �

void invoke(String[] paperInfo)
�

/ � update database � /
GUI.show("Thank you for your submission.") ;
synchronized (lock)

�
lock.notify() ; �����

Figure 2: Version with Backtracking Support

This means, however, that the sentinel is no longer present for the
remaining threads. If the user decides to complete several of the
spawned computations, only one of them can run to completion; the
others languish for want of a sentinel. (While users will typically
want to install only one configuration, in section 3.1.3 we explain
why completing multiple scenarios is meaningful for many other
applications.)

Inspired by the Web, the user might seek an even greater de-
gree of convenience and power. Normally, aborting a program like
a wizard or the paper submission suite forces users to restart the
process from the beginning. Suppose, instead, a user enters the
confirmation code, which leads to the paper information dialog, but
realizes the paper is on a different filesystem. Rather than waste her
labor, she may wish to bookmark the application itself, and quit its
execution for now. To resume, she would use a special bookmark
launcher. This generates the following stacks:

Confirm
Contact

main (orig)
application-frame
main (launcher)

(1) (2) (3)

Snapshot (1) depicts the stack during bookmark creation. Snapshot
(2) shows the empty stack, caused by exiting the application. Fi-
nally, snapshot (3) shows two frames. The bottom-most frame in a
resumed program is always the bookmark launcher. The next frame

is the first real frame of the resumed program.
This figure summarizes the responsibility that bookmarking com-

putations thrusts on the programmer. They must ensure that the sin-
gle resuming frame has enough information to perform the same
computation that several frames did before termination. A more
refined picture of the stack in the general situation is

Env � PC �

...
...

Env � PC �

Env � PC �

main (orig)
Env ��� � � � PC ��� � � �

main (launcher)

(1) (2) (3)

The Env � refer to the lexical environments [1] of each frame, while
the PC � are the return addresses, representing the remainder of the
computation. The single frame in snapshot (3) must conceptually
have a lexical environment representing all the environments; like-
wise, its return address must conceptually refer to a computation
that reflects all the actions that would have been performed by re-
turning through the stack in snapshot (1). Furthermore, the user
may resume the bookmark multiple times. It is simply not clear
how to implement this feature using a combination of function calls
and threads. Felleisen proves this task is not possible with local
transformations [10]. In the next section, we present a unified ap-

proach that tackles all these problems.1

3. IMPLEMENTING FLEXIBLE GUIS:
CONTROL

To manage the complex control flows necessary for GUIs with
flexible interfaces, we present a programming pattern that endows
programs with these capabilities, and discuss its soundness and au-
tomation. We then briefly study the relationship between control
flows internal to the program and those imposed by the user.

3.1 Transforming GUI Programs for
Flexibility

The previous section demonstrates that increased complexity of
flexible interaction flows results in a corresponding complexity of
control flows. Programmers need a methodical discipline to sys-
tematically convert a program of the form in figure 1 to one that
supports parallel exploration and bookmarking. This section presents
a transformation that meets this need.

3.1.1 The Transformation
As we have demonstrated above, in the extreme case, the stack

at the resumption point needs to effectively package all the stack
frames that were active at the point of bookmark creation so that the
launcher can correctly resume the computation. The programmer
thus requires:

� a new source program such that the stack’s return address on
resumption refers to code that indeed completes the compu-
tation remaining when the user created the bookmark;

� data structures that preserve information, such as the values
of lexical variables, current at the time of bookmark creation.

Object-oriented languages make it especially convenient to bundle
data with program fragments that operate on the data. We exploit
this to create a class of Continuation [11, 30] objects that encap-
sulate the necessary data structures with the modified source to re-
store and continue the computation. A Continuation object pro-
vides a single method, invoke, which resumes the computation. Us-
ing Continuation objects, the programmer can methodically gen-
erate the bookmarkable GUI program from a non-bookmarkable
version:

1. He creates a concrete sub-class of the Continuation class
for every call site in the program (except invocations of most
system library methods, which remain unchanged). The Con-
tinuation class for a call site has a field for each lexical value
live in the method body after the call returns.

2. The code in the class’s invoke method contains all the code in
the method body beginning from when the call returns until
the next transformed method invocation.

3. Method invocations gain an addition argument containing the
code to continue executing. Method returns become calls to
Continuations’ invoke methods.

The only exception to this rule is at a potential bookmarking point.
Here, the program does not call invoke in the Continuation object,
� Note that many applications permit the bookmarking of data. This
is relatively easy: in the simplest case, it may involve remember-
ing no more than a filename or some comparable string datum. In
contrast, we are interested in bookmarking the running application
itself. We return to this issue in section 3.1.4.

since this would continue the computation immediately. Instead,
the programmer supplies the Continuation object to the callbacks
for the various buttons. Most of them run invoke when the user
selects the corresponding button. A bookmark button’s callback,
alone, marshals the Continuation object instead.

Figure 3 presents the transformed version of figure 1. The trans-
formation applies the steps above, and also changes the interface
of promptRead to accept a Continuation object. This latter change
permits promptRead to spawn subsequent windows. When a user
cancels one of these windows, promptRead distinguishes this from
the submission of information, and permits the user to make an-
other selection. This permits the user to backtrack through the win-
dows.

On close inspection, we can see that the natural backtracking-
friendly GUI code of figure 2 applies essentially the same transfor-
mation, partially and manually. The primary syntactic difference
is that figure 3 uses inner classes to inline the class declarations.
As we demonstrate and argue in the subsequent sections, the fully
transformed program supports both parallel exploration and book-
marking.

3.1.2 Correctness and Automation
At this point, our presentation of the transformation has two sig-

nificant weaknesses.

1. We have not offered any informal or formal reasoning of the
two levels of correctness a programmer and user would care
about:

Rudimentary Correctness That the transformed programs
preserve the semantics of the original if the user never
spawns parallel requests or creates a bookmark.

Extended Correctness That resuming a bookmarked pro-
gram does correctly restore the state of the computa-
tion.

2. We have not discussed automation. The transformation in-
volves a certain degree of manual labor. While it is me-
thodical, it is tedious to perform manually, and the similarity
between the original and the transformed version is clearly
difficult to follow. This complicates both maintenance and
debugging.

We address these in reverse order.
The transformation is clearly mechanical, and can therefore be

implemented by a program rather than by a human. Indeed, we
have implemented a prototype of this transformer for Java. Our
prototype handles language features such as methods, conditionals
and loops. As a result, programmers can develop and maintain the
version in figure 1; the transformer generates code equivalent to
figure 3 (we present it in a more readable form).

Automating the transformation addresses many important prob-
lems that arise when applying programming patterns. Avoiding di-
rect manipulation of the transformed program simplifies software
maintenance. It does not, however, immediately eliminate concerns
about debugging. After all, many of the bugs in GUIs arise precisely
from complex control flows and interactions.

We argue, however, that our transformations do not introduce
new errors into the program. As we explain below, our transfor-
mation has a strong theoretical foundation that we can use to prove
that it preserves the program’s semantics. As we extend our trans-
former, we would need to correspondingly expand this reasoning.
As a result, if the programmer is able to validate the behavior of
the program with at most linear explorations, the transformer can
extend this guarantee to parallel explorations and bookmarking.

public class SubmitPaper3
�

public static void main(String[] args)
�

System.out.println("Starting the Paper Submission Program.") ;
enterPaperInDatabase(new Continuation void()

�
void invoke()

�
System.out.println("Finished the Paper Submission Program.") ; ���) ; �

public static void enterPaperInDatabase(final Continuation void k)
�

GUI.promptRead("Paper Submission: ", new String[]
�
"Name: ", "Email: " � ,

new Continuation()
�

void invoke(String[] contactInfo)
�

final String name � contactInfo[0], email � contactInfo[1] ;
final String confCode � generateCode() ;
Smtp.send(MAIL SERVER, SMTP PORT, FROM, email, buildMessage(name, confCode)) ;
GUI.promptRead("Confirm Email", new String[]

�
"Enter the confirmation code mailed to " � email � ,

new Continuation()
�

void invoke(String[] codeAttempt)
�

if (codeAttempt[0].equals(confCode))
�

GUI.promptRead("Paper Info", new String[]
�
"Title: ", "Abstract: ", "Paper Filename: " � ,

new Continuation()
�

void invoke(String[] paperInfo)
�

/ � update database � /
GUI.show("Thank you for your submission.") ;
k.invoke() ; ���) ; �

else
�

GUI.error("Incorrect confirmation code") ;
k.invoke() ; �����) ; �

private String buildMessage(String name, String code)
�

/ � . . . � / �
private String generateCode()

�
/ � . . . � / ���) ; ���

Figure 3: Transformed Version

This still leaves open the concerns about the fundamental cor-
rectness of the transformation itself. For this we defer to the liter-
ature since a careful reader will note that our transformation pro-
duces code essentially in continuation-passing style (CPS) [11, 24,
30], which preserves a program’s meaning. This technique is com-
monly used in compilers for advanced functional languages [2].
While CPS is normally used by compilers to name intermediate
terms (as observed by Sabry [26, 27]), it has the effect of mak-
ing the continuations in the program explicit. These become our
Continuation objects. Bookmarking becomes the act of saving
and restoring continuations, which do indeed capture the state of
the computation. Prior work on CPS can also guide the implemen-
tation of the transformer on control features such as exceptions [3].
We can, similarly, extend our transformer to handle multiple sub-
mission options in the form of double- and, in general, multi-barrel
continuations [32].

3.1.3 Growing GUIs on Trees
With this machinery in hand, we can now return to the problem

of permitting parallel GUI explorations. The transformational ap-
proach based on CPS handles this problem naturally. By providing
a data structure representation of the stack, the transformation per-
mits the use of a tree-shaped “stack” without interference from the
underlying architecture. The event queue of the GUI automatically
queues multiple submissions.

Besides the benefits of simplicity and formality, a programmer
has another important reason to prefer our approach to the thread-
based protocol of section 2.3. As we described earlier, the thread-
based implementation most easily permits the user to continue only
one interaction branch past a function return—an implementation
detail invisible and possibly counterintuitive to an unsuspecting
user. Subsequent selections will go unheeded because the sentinel
has no spawning stack left to resume.

For some applications, such as installers, permitting only one
final selection is usually the correct semantics. In this case, our
transformer can easily generate the appropriate code to implement

one-shot semantics [19]. For many other applications, however,
users should be free to take multiple choices through to comple-
tion. For instance, perhaps the user wants to book several related
flights (the cities may be the same, but the dates may differ), or to
generate multiple, related network configurations using the wizard
(the email address and personal information are the same, but the
choice of SMTP server changes depending on the location).

Figure 4 demonstrates the use of multiple submissions in our
running example. The order of forms in the conference submis-
sion program is deliberately chosen so an author needs to provide
her contact information only once, and can then submit multiple
papers. In the picture, she initiates the submission process by pro-
viding her contact information. She receives a confirmation code
by email, which she enters into the validation window. She can
now click on the Validate button as many times as necessary. Each
click offers the opportunity to submit a (different) paper. In this
instance, she chooses to take both submission windows to com-
pletion, resulting in two conference submissions. The transformed
program shares common prefixes of the stack, but invocation es-
sentially duplicates these shared frames on demand.

3.1.4 Bookmarking GUIs
The transformation of section 3.1.2 handles bookmarking also,

and indeed is inspired by the need to do this. In particular, our
transformer can automatically generate the callback for a Book-
mark button. Clicking Bookmark prompts the user for a filename,
to which the application writes the serialized [31] continuation ob-
ject. For example, consider this modified fragment of promptRead
used in figure 3. The transformer replaces the bookmark button’s
callback with a Serializable instance of Swing’s ActionListener [8],
where frame is the frame that contains the continuation object:

Figure 4: Multiple Submissions in Action

new SerialListener() �
public void actionPerformed(ActionEvent e) �

String fileName � / � pick bookmark file name � / ;
FileOutputStream baos � new FileOutputStream(fileName) ;
ObjectOutputStream oos � new ObjectOutputStream(baos) ;
oos.writeObject(frame) ; �	�
�

The corresponding bookmark launcher is

public class LoadBookmark �
public static void main(String[] args) �

FileInputStream fin � new FileInputStream(args[0]) ;
ObjectInputStream ois � new ObjectInputStream(fin) ;
JFrame frame � (JFrame)ois.readObject() ;
frame.show() ; �	�

Figure 5 shows screen-shots of this behavior. In the left panel,
the user begins a paper submission and bookmarks the application
(in this case, the bookmark file is roughly 15Kb in size). In the right
panel, the user resumes the bookmark on the appropriate machine
to finish submitting the paper.

3.2 Two Dimensions of Complexity
Our exposition above deals with the conversion of conventional

GUI programs into more flexible variants. The program we present
in figure 1 is, however, rather simplistic. The actual conference
software has a loop, to check for the syntactic correctness of the
email address, and catches exceptions raised by trying to email er-
roneous addresses. Our redaction for this paper has elided these
details, but these and other features would be found in any realistic
GUI program.

The simplicity of the source program, but the corresponding com-
plexity of the control flows discussed in section 2.2, demonstrate
that there are two sources of complexity in the interaction flow of
flexible GUI programs. The internal dimension is controlled by the
programmer, and usually handles the processing of data (for in-
stance, a loop that iterates over elements in a collection). The ex-
ternal dimension is generated by the user’s requests, and hence lies
outside the control of the programmer:

User

bookmark
parallel

back
linear

straight line cond’l loop ex’n
Programmer

As the complexity grows in the internal dimension also, it be-
comes extremely difficult to satisfy the demands of both dimen-

sions. This makes a methodical means of program construction
that accounts for the various kinds of external control flows espe-
cially valuable to programmers. Our technique offers programmers
this support.

4. IMPLEMENTING FLEXIBLE GUIS:
DATA

We have thusfar discussed the subtleties of control flow in pro-
grams. Programs also have different patterns of information flow.
Broadly, there are two kinds of information, which are familiar to
authors of interpreters and compilers: lexically updated and glob-
ally mutated information, which reside, respectively, in the lexical
environment and in the mutable store [1, 12]. When we automat-
ically generate code for parallel exploration, we must distinguish
between these so there are multiple copies of the former, but only
one of the latter.

In a functional programming language such as ML [21], it is usu-
ally easy to distinguish between these two: by default information
resides in the environment, unless it has type ref. Only variables of
type ref are subject to mutation. In a language like Java, however,
all variables receive values through mutation, even during initial-
ization. This uniformity of syntax hides the fact that some vari-
ables are mutated only once, because of their lexical nature. We
can identify this by examining which variables have static single
assignment [7]; these are the lexical ones. This analysis is much
simpler for Java than for languages supporting call-by-reference
due to the lack of variable aliasing.

Our transformer is sensitive to this distinction between the envi-
ronment and the store. Lexically updated variables reside in Con-
tinuation objects, which close over their values. There are hence as
many copies of these variables (represented as Continuation object
fields) as there are parallel explorations. In contrast, the transfor-
mation lifts mutated variables so that all continuations at a call site
share the same ones. When we generate bookmarks, we must cor-
respondingly maintain this distinction.

In a certain sense, all non-trivial GUI programs offer a weak ver-
sion of bookmarking, in the form of configuration files. This com-
mon feature has two major shortcomings:

1. The configuration file is global, and thus shared by all exe-
cutions of the program. (For instance, changing the default
identity of the author in a word-processor affects all subse-
quent documents.) To work around this, a few programs per-
mit multiple configurations (“profiles”).

2. Programs sometimes incorrectly restore configuration data.

Machine 1 Machine 2

Figure 5: Bookmarking in Action

They usually avoid this problem by not capturing complex
configuration actions or ones that are not easy to marshal into
files. This often forces users to manually recreate these con-
figurations every time they use the program.

The second problem is automatically addressed by our transfor-
mations, because our bookmarks reflect the complete state of the
program. Our analysis demonstrates that the first problem results
from an incomplete understanding of the distinction between lexi-
cal and global information flows; our transformations automatically
account for this distinction, saving the programmer from having to
explicitly create support for profiles. Each bookmark thus behaves
like a profile by keeping its lexical information separate from other
bookmarks. For example, an academic reviewer could create a cus-
tomized copy of a word-processor that hides her identity, which she
can then use to annotate submissions with anonymous feedback.

5. RELATED WORK
Some related work develops novel methods of constructing GUIs

without proposing new forms of user interaction. Other works pro-
vide alternate implementations of continuations on Java virtual ma-
chines without discussing GUIs at all. Earlier systems provided a
mechanism for saving and resuming program state without separat-
ing the two kinds of information flow.

Elliot and Hudak’s functional reactive animation [9] supports an
unusual style of creating event-driven animations without explicitly
dealing with timing details. In their system programmers define
models of animation in terms of events that include the elapsing of
specific amounts of time. The work focuses on a smaller-grained
problem of handling graphics within windows rather than transi-
tioning between windows.

GUIs written using Fudgets [4] also exhibit an unusual program
structure. Programmers compose functions representing graphical
components to create larger functions that thread streams of events
from one component to the next. Although this may facilitate com-
bining components, programmers must still weave events from one
component to the next manually. The work does not attempt to
provide more flexible interfaces to users.

Fuchs’s Dreme [13] provides a mobile code system for Scheme [5].
It also addresses mobile user interfaces, and claims that callbacks in

event-driven programs are a “twisted” form of continuations. The
work does not address bookmarking GUIs, nor does it investigate
new kinds of user interactions.

Most exception-based implementations of continuations on Java
Virtual Machines fail to provide the flexibility of multiple resump-
tions our work requires. However, Fünfrocken [14] and Sakamoto,
et al. [28] both provide an adequate mechanism for capturing and
resuming control state on Java Virtual Machines using a global pro-
gram transformation in conjunction with exceptions. Programmers
could use their techniques to implement GUIs supporting parallel
exploration, but they do not suggest doing so, nor does it extend to
bookmarking.

Our work on GUIs developed out of studying Web programming.
In particular, Hughes [20] and Queinnec [25] inspired our earlier
work [17, 18] on interactive Web applications. These investiga-
tions exposed the additional flexibility provided by Web browsers
and automated the construction of robust Web applications with
matching flexibility.

The bookmarking portion of our work relies on Java serialization
for object persistence. An object-oriented database system such as
JavaSPIN [33] could replace serialization to better manage saved
bookmarks. Packaging all of the remaining computation into a but-
ton callback greatly facilitates saving and restoring the user’s inter-
actions. A persistent store alone, however, does not enable parallel
exploration or the ability to complete an operation multiple times.

Various programming environments for Common Lisp [29] and
for Smalltalk [15] allow the user to save the entire application state
and resume the program at a later time. This facility does not sup-
port parallel exploration easily since saving, quitting, and restarting
the entire application for each switch between exploration branches
is too cumbersome. This approach also copies any state shared be-
tween interactions.

6. CONCLUSION
This paper is motivated by the simple desire to compare the

browsing power of different kinds of interactive software. In partic-
ular, we compare the patterns available to Web site users with those
provided by many interactive graphical programs, using software
installers as a representative example of these applications. By ab-
stracting away the details of Web and GUI toolkits, we are able to

reduce the use of these applications down to simple diagrammatic
representations.

Our analysis demonstrates that, despite their numerous interface
benefits, GUIs fall short of Web interfaces by failing to support
key interaction patterns. In particular, Web users can both clone
windows and create bookmarks while browsing, both of which are
rarely if ever supported by graphical applications. We describe the
implementation burdens a developer must overcome to provide this
support. We then demonstrate that this support ensues automati-
cally by transforming programs into an extension of continuation-
passing style, a pattern more commonly found in the back-ends of
compilers for advanced functional languages. We present this pat-
tern in action by demonstrating its effect on a sample application.

Our work opens numerous avenues for future research. The most
obvious question is how well it scales to interactive programs such
as word-processors, where the granularity of interaction is at the
level of a single keystroke. Depending on the structure of the code,
bookmarks could either be too sparse (recording no past history)
or too dense (recording all past keystrokes) with information. This
may necessitate more forgiving forms of the transformation.

Second, we would want to use static a analysis to keep the size
of bookmarks modest. We believe that in principle, it should be
possible to reduce the size of bookmarks of the style described in
section 4 to be very close to that of manually-constructed configura-
tion files. As an initial effort, we can accomplish a similar end with
much less sophistication by factoring out data common to multi-
ple bookmarks, thus separating bookmarks into control and lexical
data.

Ultimately, we believe our transformational ideas are best incor-
porated into interface-generation tools such as wizards. We believe
the user traversal patterns an interface generates should be kept sep-
arate from its layout, and the synchronization and other needs im-
posed by the traversal should be generated automatically by a tool.
We believe that our work presents a foundation for offering very
general support of this form.

7. REFERENCES
[1] Aho, A. V., R. Sethi and J. D. Ullman. Compilers: Principles,

Techniques and Tools. Addison-Wesley, Inc., Reading, Mass., 1986.
[2] Appel, A. W. Compiling with Continuations. Cambridge University

Press, 1992.
[3] Biagioni, E., K. Cline, P. Lee, C. Okasaki and C. Stone.

Safe-for-space threads in Standard ML. Higher-Order and Symbolic
Computation, 11(2):209–225, 1998.

[4] Carlsson, M. and T. Hallgren. Fudgets—a graphical user interface in
a lazy functional language. In Functional Programming and
Computer Architecture, 1993.

[5] Clinger, W. and J. Rees. Revised
�

report on the algorithmic language
Scheme. In ACM Lisp Pointers, pages 1–55, 1991.

[6] Coward, D. Java servlet specification version 2.3, October 2000.
http://java.sun.com/products/servlet/.

[7] Cytron, R., J. Ferrante, B. K. Rosen, M. N. Wegman and F. K.
Zadeck. Efficiently computing static single assignment form and the
control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

[8] Eckstein, R., M. Loy and D. Wood. Java Swing. O’Reilly, 1998.
[9] Elliot, C. and P. Hudak. Functional reactive animation. In ACM

SIGPLAN International Conference on Functional Programming,
pages 196–203, 1997.

[10] Felleisen, M. On the expressive power of programming languages. In
Jones, N., editor, ESOP ’90 3rd European Symposium on
Programming, Copenhagen, Denmark, volume 432, pages 134–151.
Springer-Verlag, New York, N.Y., 1990.

[11] Fischer, M. J. Lambda-calculus schemata. In Proceedings ACM
Conference on Proving Assertions about Programs, pages 104–109,
Los Cruces, 1972.

[12] Friedman, D. P., M. Wand and C. T. Haynes. Essentials of
Programming Languages. The MIT Press, Cambridge, MA, 1992.

[13] Fuchs, M. Dreme: for Life in the Net. PhD thesis, New York
University, 1996.

[14] Fünfrocken, S. Transparent migration of Java-based mobile agents:
Capturing and reestablishing the state of Java programs. In
Proceedings of the Second International Workshop on Mobile
Agents, pages 26–37. Springer-Verlag, September 1998. LNCS 1477.

[15] Goldberg, A. and D. Robson. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, 1983.

[16] Gosling, J., B. Joy and G. L. Steele Jr. The Java Language
Specification. Addison-Wesley, 1996.

[17] Graunke, P., R. B. Findler, S. Krishnamurthi and M. Felleisen.
Automatically restructuring programs for the web. In IEEE
International Conference on Automated Software Engineering,
November 2001.

[18] Graunke, P., S. Krishnamurthi, S. van der Hoeven and M. Felleisen.
Programming the Web with high-level programming languages. In
European Symposium on Programming, 2001.

[19] Haynes, C. T. and D. P. Friedman. Constraining control. In 12th ACM
Symposium on Principles of Programming Langauges, 1985.

[20] Hughes, J. Generalising monads to arrows. Science of Computer
Programming, 37(1–3):67–111, May 2000.

[21] Milner, R., M. Tofte, R. Harper and D. MacQueen. The definition of
Standard ML (revised), 1997.

[22] Myers, B., S. E. Hudson and R. Pausch. Past, present and future of
user interface software tools. In Carroll, J. M., editor, HCI In the New
Millennium, pages 213–233. ACM Press, Addison-Wesley, 2001.

[23] NCSA. The common gateway interface.
http://hoohoo.ncsa.uiuc.edu/cgi/.

[24] Plotkin, G. Call-by-name, call-by-value, and the
�

-calculus. In
Theoretical Computer Science, volume 1, pages 125–159, 1975.

[25] Queinnec, C. The influence of browsers on evaluators or,
continuations to program web servers. In ACM SIGPLAN
International Conference on Functional Programming, 2000.

[26] Sabry, A. The Formal Relationship between Direct and
Continuation-passing Style Optimizing Compilers: A Synthesis of
Two Paradigms. PhD thesis, Rice University, 1994.

[27] Sabry, A. and M. Felleisen. Reasoning about programs in
continuation-passing style. Lisp and Symbolic Computation, 1993.

[28] Sakamoto, T., T. Sekiguchi and A. Yonezawa. Bytecode
transformation for portable thread migration in Java. In Proceedings
of the Joint Symposium on Agent Systems and Applicatio ns / Mobile
Agents (ASA/MA), pages 16–28, September 2000.

[29] Steele Jr., G. L. Common Lisp: The Language, 2nd Edition. Digital
Press, 1990.

[30] Strachey, C. and C. P. Wadsworth. Continuations: A mathematical
semantics for handling full jumps. Technical Report Technical
Monograph PRG-11, Oxford University Computing Laboratory,
Programming Research Group, 1974.

[31] Sun Microsystems. Object serialization specification.
ftp://ftp.java.sun.com/docs/
j2se1.3/serial-spec.pdf.

[32] Thielecke, H. Comparing control constructs by typing
double-barrelled CPS transforms. In Third ACM SIGPLAN Workshop
on Continuations, 2001.

[33] Wileden, J. C., A. Kaplan, G. A. Myrestrand and J. V. Ridgway. Our
SPIN on persistent Java: The JavaSPIN approach. In First
International Workshop on Persistence and Java, September 1996.

