
Composition with Consistent Updates
for Abstract State Machines

Colin Gordon, Leo Meyerovich, Joel Weinberger, and Shriram Krishnamurthi

Brown University, Providence RI 02912, USA
Contact: sk@cs.brown.edu

Abstract. Abstract State Machines (asms) offer a formalism for de-
scribing state transitions over relational structures. This makes them
promising for modeling system features such as access control, especially
in an environment where the policy’s outcome depends on the evolving
state of the system. The current notions of modularity for asms, how-
ever, provide insufficiently strong guarantees of consistency in the face
of parallel update requests. We present a real-world context that illus-
trates this problem, discuss desirable properties for composition in this
context, describe an operator that exhibits these properties, formalize its
meaning, and outline its implementation strategy.

1 Motivation

This work arises from modeling working software systems. The last author and
his collaborators have developed and deployed a series of Web-based applications
for managing conference papers, faculty candidate applications, homeworks, etc.,
all built using the PLT Scheme Web programming framework [1, 2]. These ap-
plications see significant daily use, and some have even been deployed commer-
cially. Though this framework considerably reduced both development time and
errors relative to traditional Web programming methods, we found one signif-
icant source of errors remained: the proper management of the access-control
policy. Our subsequent work [3, 4] has therefore focused on this problem. In this
paper, we motivate our approach with reference to the Continue conference
manager [2, 5].

Conference managers are rife with access-control restrictions; furthermore,
their demands are representative of many content-management systems. Several
key operations, such as sending mail to the authors of papers, are restricted
for use by the chairs. Some operations, such as creating reviewers, are in the
hands of an administrator. Reviewers should not be able to see the reviews of
papers with which they have a conflict. Sub-reviewers should have reviewer-like
privileges, but only for the paper they are asked to examine. Authors should
have very limited privileges: submitting papers, reading reviews, and no more.



It is subtle enough to state these properties and get them precisely right.
What greatly complicates this situation is that the policies are “dynamic”: they
appear to change over time.1 Here are two concrete examples:

1. The conference proceeds in phases: Setup, Submission, Review, Response,
etc. Privileges change across phases. For instance, authors can only submit
during Submission, read reviews during Response, and have no privileges at
other times.

2. Even within a phase, there are fine-grained changes of privilege. For instance,
many conferences adopt the rule that, to increase independence of views, a
reviewer can read the other reviews of a paper only after they have submitted
their own.

Because these changes refer to program data that change dynamically (such as
who has submitted reviews for what papers), the access-control policy cannot
be specified entirely independently of the program’s dynamic execution. For this
reason we investigated the use of abstract state machines (asms), as introduced
in [6, 7] and analyzed in [8–10], to model the system’s access-control behavior.

To make matters worse, conferences and workshops routinely require small
adjustments to suit their needs: for instance, it is common for some conferences
to have a live program committee meeting (which activates the live meeting
mode, and its corresponding access-control rules) while others don’t; some con-
ferences have a response phase during which authors can view their reviews and
offer comments, while others do not. As a result, there is no single “conference
manager policy”; rather, we have a product line [11] of policy features that in-
dividual conferences mix-and-match. The set of products is not fixed, either, as
conferences often ask for new features (over the life of Continue we have expe-
rienced about half-a-dozen such requests, some of which do have access-control
implications).

This last requirement demands that our specifications be modular and com-
posable. When modeling Continue with asms, we found that while asms were
concise, our specifications were often incorrect: our first hundred or so lines
contained over twenty errors! We were able to trace these problems to inconsis-
tent updates resulting from combining fragments of policy. These problems were
therefore the inspiration for this work.

This paper therefore presents a new composition mechanism for asms. We
identify three key properties of composition, which we call containment, con-
fined inconsistency, and atomicity. We propose a new composition operator that
exhibits these three properties, and sketch proofs of correctness. We present an
algorithm that realizes this operator, and show that we can implement it by
a source-to-source transformation of asms, thereby leaving their semantics in-
tact. We have validated this new operator by using it to author the policy for
Continue [12].

1 We use quotes around ‘dynamic’ because, to be precise, the policies themselves
are not dynamic; they are written down before system execution and stay fixed
throughout. Rather, it is the outcomes that are dynamic [3].



2 ASM Composition: An Illustrative Example

Consider the following three rules, and then their composition. These rules are
taken from our model for Continue, though of course they are simplified for
presentation. (The accompanying technical report [12] provides full details.)

First, rule R1, on becoming an administrator:

IF ChangeJobToAdmin(u) AND isReviewer(u) THEN
isAdmin(u)
NOT isReviewer(u)

This declares that a user with suitable privilege (usually a chair) who wants to
change their currently active role to Administrator can do so while shedding their
current role (to avoid inadvertent information leakage through role combination).
For instance, a request

ChangeJobToAdmin(fred) and isReviewer(fred)

would yield the effect2

{+isAdmin(fred), -isReviewer(fred)}

Now consider rule R2, which governs when a reviewer may be assigned to
review a particular paper:

IF AddPaperReviewer(u1, p) AND isReviewer(u1)
AND isAuthor(u2, p) AND NOT Conflict(u1, u2) THEN

isPaperReviewer(u1, p)

This ensures that u1 is indeed a reviewer, and that this reviewer has no conflicts-
of-interest with work by the paper’s authors. Thus, a request

AddPaperReviewer(bob, iliad) and ...

would, if the other conditions are satisfied, yield the outcome

{+isPaperReviewer(bob, iliad)}

Finally, rule R3 is a means for removing administrative privilege:

IF RemoveAdmin(u) THEN
NOT isAdmin(u)

A request of the form

RemoveAdmin(alice)

yields
2 We use the form {+rel1(args), -rel2(args)} to represent the addition and removal

(respectively) of a tuple in a relation at a given state in a run of an asm. That is,
this represents the change to the state caused by a transition.



{-isAdmin(alice)}

Having seen these three rules and examples of requests, let us now consider
what happens if the requests are made concurrently. Typical asm semantics
would leave us with the result set

{+isAdmin(fred), -isReviewer(fred),
+isPaperReviewer(bob, iliad),
-isAdmin(alice)}

which appears perfectly reasonable. If, however, the last request is to remove
administrative privilege for fred instead of for alice, the result set is instead

{+isAdmin(fred), -isReviewer(fred),
+isPaperReviewer(bob, iliad),
-isAdmin(fred)}

which of course is inconsistent because of conflicting updates to the isAdmin
relation. What should happen now?

The traditional definition dictates total failure. The justification for this out-
come is that a pair of updates that conflict are the result of an error in the
specification; consequently, the system should halt. While this is a very safe out-
come, it is sometimes too harsh: in the example above, it is clear that there are
several outcomes less drastic than termination that we can consider reasonable.

A simple way to make progress is to simply disregard these two conflicting
updates, treating their net effect as a no-op. That is, the resulting effect would
therefore be:

{-isReviewer(fred),
+isPaperReviewer(bob, iliad)}

In principle, the system can recognize such a partial update and retry the re-
quest (as we discuss in more detail [12]). However, we reject such an outcome
as unreasonable (in the very literal sense). Though the inconsistent updates are
gone, we still have -isReviewer(fred) in the resulting set of updates. This re-
moves fred from the reviewer role, while failing to reassign him to any other
role. Therefore, any local reasoning performed by the author of R1 has now
been destroyed, leaving the system in an inconsistent state. That is, while we
have eliminated the inconsistent update, we have ended up with a semantically
inconsistent model.

Irrespective of which composition semantics we choose, to ensure complete
updates and progress an author is forced to encode the dependency between the
rules R1 and R3 in the model. For instance, we can rewrite R3 to R3′:

IF RemoveAdmin(u) AND NOT ChangeJobToAdmin(u) THEN
NOT isAdmin(u)

Now, whenever R1 and R3 would have been in conflict, R3′ will fail to fire,
resolving our immediate problem.



This seems like a reasonable solution, although it is not difficult to see that
such encoded dependencies could easily become quite complex because system
modelers will need to consider every possible combination of dependencies.

A more subtle problem lurks, and it’s even worse. Tracking dependencies only
makes sense in a closed model, where the designer can account for all depen-
dencies. In a product-line, such as a conference manager, each collection of rules
(corresponding to a feature) must minimize assumptions about the structure
of the rest of the model. In particular, subsequent changes to the policy may
remove the dependence, as a result of which the augmented guard above may
prevent R3′ from firing—even though that was not the designer’s intent. Put
differently, the augmentation to the guard of R3 expresses not a natural depen-
dency between R1 and R3 that arises from the domain, but an artificial one due
to the asm update semantics. We should avoid forcing designers to introduce
and manage such dependencies.

One natural solution is, of course, to eschew concurrency entirely. We can
force the designer to make the system behave entirely sequentially and ensure
this by checking, for instance, that no guards overlap. However, we find this an
onerous burden and one inconsistent with the modeling principles engendered
by asms. We therefore seek ways to compose collections of rules in a way that
enables a reasonable measure of concurrency while guaranteeing agreeable se-
mantics for the composed behavior.

3 Desired Properties for Composition

We begin by supposing the rules have been grouped into modules, with each
module presumably representing one feature of the product-line. Our implicit
assumption is that each module has been validated locally, and we focus on the
effect of module interactions.

Recall the outcome from the original three rules:
R1: {+isAdmin(fred), -isReviewer(fred)}
R2: {+isPaperReviewer(bob, iliad)}
R3: {-isAdmin(fred)}

Let us treat each rule as its own module. We argue that one acceptable result
from composing these three rules is the following outcome:

{+isPaperReviewer(bob, iliad)}

This output is the consequence of the three properties described below, which
we name and justify.

Containment : First, if the final update set contains an update, that update
came from an actual update set (in this case, that of R2). We would like all final
update sets to satisfy this property: that every update in the final composition
must be an effect from one of the individual update sets. That is, we reject
algorithms that try to combine update sets and in the process create artificial



updates that did not result from any one particular rule. (It is possible to loosen
this criterion if, for instance, the updates satisfy some ordering relationship that
enjoys limit and closure properties—such as a lattice—but the examples we have
worked with do not naturally subscribe to such an order, so we do not consider
this possibility further in this paper.)

Confined Inconsistency : Since our goal is to eliminate conflicts introduced by
composition, we eliminate all conflicting updates—with one caveat. Suppose
one module (not shown in our running example) itself results in a conflict. In
such a case, we permit the conflict to remain in the composed output on the
grounds that, because the module was presumably validated by the designer,
this conflict was somehow intended. That is, we want to prevent conflicts from
the composition of modules, but not take a position on conflicts that originate
entirely within a single module. Thus, each inconsistency in the composed update
set must be traceable to individual modules.

Atomicity : Finally, eliminating inter-module conflicting updates can result in
a module having only partial effect. As we have argued above, this can violate
invariants intended to be established by that module. As a result, we demand
that if part of a module’s effect is pruned due to conflict, that entire effect should
be nullified. We argue that from a system design perspective, it is much easier to
establish whether a module has fired at all (and, if it has not, to re-try it) than to
identify and—more importantly—correct for partial commitment. Furthermore,
this is entirely consistent with traditional transactional practice in databases.
As a corollary, if one update from a rule’s update set occurs, we can be sure that
all the updates occurred.

To be more precise about these properties, let us define some basic terminol-
ogy. First, for purposes of defining these formulas, let us consider each module
as a set of update rules, where each rule takes the form:

IF mg ∧ ug THEN s r(p)

which can be condensed into a tuple

(mg, ug, s, r,p)

where mg is the condition under which the entire module fires (if there is such
a general condition), ug is the set of any additional conditions under which that
particular update would fire, s is the sign of the update (none or + for additive
updates, − for removal), r is the relation, and p is the set of parameters to which
this update applies. We will set aside the issue of universally bound quantifiers
to simplify notation, but these can be abstracted out of every update as well,
and in our technical report [12] we do so. However, for the purposes of matching
parameter lists, universally bound quantifiers can be considered to match any
term to which they are compared.

To simplify later presentation, we first define a function that captures the
decision of a module.



Definition 1. Let the decision of a module mj for a particular relation r and
parameter list q be in the set {+,−,NOOP ,NA}, whose elements respectively
denote addition to that relation, removal, a module-local conflicting update, and
lack of an update to r with the parameters q. A function for a decision can
formally be defined as decision(r, q,mj) =



NA ∀(mgi, ugi, si, ri, qi) ∈ mj .(r 6= ri ∨ qi 6= q)

+
∃(mgi, ugi, si, ri, qi).(r = ri ∧ mgi ∧ ugi ∧ q = qi ∧ si = +)
∧ ∀(mgf , ugf , sf , rf , qf ).(r = rf ∧ mgf ∧ ugf ∧ q = qf ) sf = +

− ∃(mgi, ugi, si, ri, qi) ∈ mj .(r = ri ∧ mgi ∧ ugi ∧ q = qi ∧ si = −)
∧ ∀(mgf , ugf , sf , rf , qf ).(r = rf ∧ mgf ∧ ugf ∧ q = qf ) sf = −

NOOP
∃(mgi, ugi, si, ri, qi), (mgf , ugf , sf , rf , qf ) ∈ mj .

r = ri = rf ∧ mgi ∧ ugi ∧
mgj ∧ ugf ∧ q = qi = qf ∧ si 6= sf

Definition 1 is what one would expect. If no update in the module addresses
the relation in question, or no update to that relation ever matches the param-
eters specified, the decision is not applicable. If there is a matching update that
adds p to the relation, and no update in that module which removes it, then the
decision is positive. The case is analogous for negative decisions. The decision is
a no-op (inconsistent update) if both positive and negative updates occur in the
same module.

With this, we can formally define the properties that the composition must
satisfy.

Definition 2. A composition mj of a set of modules {mi} satisfies the contain-
ment property if

∀r∀q∀d ∈ {+,−} decision(r, q,mj) = d =⇒ ∃ml ∈ {mi}.decision(r, q,ml) = d

According to Def. 2, if the composition reaches a decision on a particular relation
and parameter list, then there was a module in the input that reached that
decision.

Definition 3. A composition mj of a set of modules {mi} satisfies the confined
inconsistency property if

∀r∀q decision(r, q,mj) = NOOP =⇒ ∃ml ∈ {mi}.decision(r, q,ml) = NOOP



Definition 3 says that if the composition causes a conflicting update to occur, it
is because there is a module in the input that causes a conflicting update when
run in isolation.

Definition 4. A composition mj of a set of modules {mi} satisfies the atomicity
property if

∀d ∈ {+,−, NOOP}∀r∀q
decision(r, q,mj) = d =⇒
∃mk ∈ {mi}.∀r′∀q′

decision(r′, q′,mk) = decision(r′, q′,mj) ∨ decision(r′, q′,mk) = NA

Definition 4 says that for any decision other than NA, for any relation and
parameters, if the composition makes that decision, then there is some module
for which on all relations and parameters, the module and composition make
the same decision or the module reached no decision on that relation and those
parameters.

It is also worth noting that these properties provide no progress guarantees:
a trivial composition algorithm which satisfies these properties is one that per-
forms no updates. The algorithm described below provides stronger guarantees
of progress. We prove in our technical report [12] that it actually satisfies the
bidirectional implication versions of all three of these properties, which would
imply more progress than these strictly require.

4 The Composition Algorithm

Suppose the user has chosen a set of modules that will be composed to create
the current product. Our algorithm operates over this set of modules as a whole.

To keep discussion concise, we will define a notion of what it means for two
modules to reach conflicting decisions on a relation. Two decisions on the same
relation and parameters conflict if they are different and neither decision is NA.
More precisely:

Definition 5.

conflict(d, rd,pd, d
′, rd′ ,pd′) =

 false
d = d′ ∨ d = NA ∨ d′ = NA
∨ rd 6= rd′ ∨ pd 6= pd′

true otherwise

The algorithm proceeds one module at a time. For each update in the current
module, find all other modules with updates to the same relation but which might
reach a conflicting decision on this relation. (We cannot be certain there will be
a conflict until we have examined the parameters, which may not be known at
the time of composition: for instance, one rule may add alice while the other
deletes fred.) For each such rule, the algorithm augments the pre-conditions of



the current rule with the following conjuncts: the negation of the pre-conditions
of the potentially conflicting rule, and argument checks to establish whether the
identities coincide. Proceed in this fashion until all rules in all modules have been
considered. Clearly, this algorithm can be implemented as a source-to-source
transformation.

To demonstrate this algorithm, consider our running example (rules R1, R2
and R3), where each rule is treated as its own module. The first update in the
R1, isAdmin(u), conflicts with the update in the third module, which executes
when RemoveAdmin(u) is true. Therefore, the pre-condition for R1 is augmented
by conjoining checks that (a) there is no request to RemoveAdmin(u2) for some
user u2, and (b) that u2 is not the same as u. Thus, the rewritten rule is

IF ChangeJobToAdmin(u) AND isReviewer(u)
AND NOT (RemoveAdmin(u2) AND u = u2) THEN

isAdmin(u)
NOT isReviewer(u)

The second update in R1 has no conflicts, and neither does the sole update
in R2. This leaves the sole update of R3. We must symmetrically modify R3’s
pre-conditions to ensure that the user surrendering administrative privilege is
not simultaneously being given that privilege by R1:

IF RemoveAdmin(u)
AND NOT (ChangeJobToAdmin(u1) AND isReviewer(u1) AND u = u1) THEN

NOT isAdmin(u)

Note that this is effectively identical to R3′, which we considered earlier. Recall
that the objections to R3′ were not on the grounds of correctness, but rather on
maintenance. By automating the process of modifying such rules, we avoid those
difficulties. (Furthermore, we symmetrically modify both R1 and R3, whereas a
manual adaptation is almost certainly liable to miss some such cases.)

Note that when examining other rules for conflicts, we need to consider rules
in their original form only, not with the augmented pre-conditions. Therefore,
there is no danger of the pre-conditions growing without limit and the process
failing to terminate. Indeed, because we consider each pair of rules, the algorithm
takes time quadratic in the number of rules to compose a set of modules into a
single asm.

We provide the pseudocode for the composition operator in Fig. 1. (The
technical report [12] proves that this algorithm satisfies our desired properties.)
We assume the modules provided are in the normal form discussed earlier in
Sec. 3. The outermost two loops iterate over all updates. The nested loops in the
body of these two look through every possible update in the system. The loop
that iterates over m2 builds additional conditions for execution that negate the
conditions under which conflicting updates would occur. The last loop mutates
the module guard for each update in the current module, so that if an update
conflicting with the update under consideration would fire, none of the updates
in the current module will fire.



Compose({Mi}):

copy = DeepCopy(Mi)

foreach m in copy

foreach (mg,ug,s,r,p) in m

newguard = false

foreach m2 in Mi

if conflict(decision(r,p,m),decision(r,p,m2)) then

foreach u2 = (mg’,ug’,s’,r’,p’) in m2

newguard = newguard OR (mg’ AND ug’)

foreach (mg’’,ug’’,s’’,r’’,p’’) in m

mg’’ = mg’’ AND NOT (newguard)

return copy

Fig. 1. The Composition Algorithm

A more refined implementation would use only one copy of the module guard
for each module, conjoining the guards in a single statement rather than in a
loop. In contrast, this implementation requires repeated mutation because the
choice of normal form duplicates the module guard. Note that the mutation
affects copies, not the original input, so the appended guards do not cascade.

5 Related Work on ASM Composition

Nicolosi Asmundo and Riccobene propose two composition techniques [13]. The
first, feature composition, joins asm programs by straightforward concatenation,
then checks for potential inconsistent updates; if any such updates are found, the
entire composition is rejected. This works well for systems with relatively little
overlapping state between rules, but is not useful for systems like Continue
that exhibit significant overlap in the state manipulated by different rules.

Nicolosi Asmundo and Riccobene also propose a second approach, called
component composition [13]. This approach effectively converts each unit of com-
position into an isolated system with read-only and write-only communication
channels for communicating with other parts of the larger system. Relations
marked for communication are checked for appropriate use (i.e., no updates to
read-only input relations, no reads from an output relation). Other relations are
renamed on a per-component basis, effectively placing the non-communication
relations of each component in separate namespaces. This works well for mod-
elling systems which consist of subsystems with largely independent state. For
such systems, it guarantees that composing these components will not introduce
additional inconsistent updates. As with feature composition, however, compo-
nent composition is not an appropriate choice for modelling Continue, because
the rules dealing with access control share too much state. To use component
composition for Continue would require either (a) writing additional compo-
nents to merge output from various policy components, or (b) modifying each



component to deal with the global state changes itself. The former moves the
problems with inconsistent updates to a new form, and the latter recreates the
initial problem many times over, in each component. Using component composi-
tion for a system with large amounts of global, frequently-modified state presents
many of the same problems as attempting to hardcode dependencies.

Gurevich and Rosenzweig point out that reasoning about partially-ordered
runs of distributed asms can be used to reach useful conclusions about such
systems [14]. Some implementations of multi-agent asms apply concurrent up-
dates from separate agents in a nondeterministic, but serialized, order, which
alleviates the problem of inconsistent updates from separate agents. This will,
however, likely yield less parallelism than our composition operator, and may
also not simplify the process of specifying the system.

6 Future Work

Our technique disables updates by selectively strengthening guards with condi-
tionals. Naturally, this suggests that we can achieve different properties by using
different forms of guard augmentation. Our prefixing algorithm is very conser-
vative, by upholding the three properties described in this paper—especially
atomicity—at the cost of progress. Currently, in case of conflict we disable all
participating modules. We could achieve greater progress by being less pes-
simistic, enabling enough modules so that there is still no conflicting update
but now at least some otherwise conflicted modules can complete their transi-
tion. (As a result, if the system is entirely deterministic and retries all failed
modules, it is less likely to livelock.) Determining which module to permit is a
matter of policy; a common policy used to resolve feature interactions is a simple
priority scheme. Encoding such schemes using relations and inspecting them in
the guards is usually straightforward.

Even prioritized composition is slightly conservative, as the only guarantee
which must be made by the composition to prevent new inconsistent updates is
that in any pair of modules with conflicting updates, only one of them executes.
So in a set of modules with conflicts on a given relation, all modules yielding
a positive (or negative) update to that relation might be permitted (subject
to checking conflicts on other relations). Thus, with other modifications to the
prefixing conditions, it is possible that even more progress might be permitted.

Another possible extension is to report no-ops. Doing this can help guide
retries. Recording this information requires adding new output relations for no-
tification of conflicts, and adding new updates to write to these relations when
a conflicting update is detected.

Acknowledgments

We thank Dan Dougherty, Kathi Fisler, and students of the Spring 2006 cs296-1
course at Brown University for their comments. We are grateful to Egon Börger,
Marianna Nicolosi Asmundo, Wolfram Schulte, Wolfgang Shoenfeld, and Yuri



Gurevich for discussions and for pointing us to resources, and to Don Batory for
his extensive comments on an earlier draft. This work is partially supported by
NSF grants CPA-0429492 and CNS-0627310.

References

1. Graunke, P.T., Krishnamurthi, S., van der Hoeven, S., Felleisen, M.: Programming
the Web with high-level programming languages. In: European Symposium on
Programming. (April 2001) 122–136

2. Krishnamurthi, S., Hopkins, P.W., McCarthy, J., Graunke, P.T., Pettyjohn, G.,
Felleisen, M.: Implementation and use of the PLT Scheme Web server. Higher-
Order and Symbolic Computation (2007) To appear.

3. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Specifying and reasoning about
dynamic access-control policies. In: International Joint Conference on Automated
Reasoning. (August 2006) 632–646

4. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access-control policies. In: International Conference on
Software Engineering. (May 2005) 196–205

5. Krishnamurthi, S.: The Continue server. In: Symposium on the Practical Aspects
of Declarative Languages. Number 2562 in Springer Lecture Notes in Computer
Science (January 2003) 2–16

6. Gottlob, G., Kappel, G., Schrefl, M.: Semantics of object-oriented data models—
the evolving algebra approach. In: Next Generation Information System Technol-
ogy, First International East/West Database Workshop. (October 1990) 144–160

7. Gurevich, Y.: Evolving algebras: An attempt to discover semantics. In: Current
Trends in Theoretical Computer Science. (1993) 266–292

8. Spielmann, M.: Automatic verification of abstract state machines. In: International
Conference on Computer-Aided Verification. (1999) 431–442

9. Spielmann, M.: Model checking Abstract State Machines and beyond. In: Inter-
national Workshop on Abstract State Machines. (2000) 323–340

10. Spielmann, M.: Verification of relational transducers for electronic commerce. In:
Symposium on Principles of Database Systems. (2000) 92–103

11. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2002)

12. Meyerovich, L.A., Weinberger, J.H.W., Gordon, C.S., Krishnamurthi, S.: ASM re-
lational transducer security policies. Technical Report CS-06-12, Computer Science
Department, Brown University, Providence, RI, USA (2006)

13. Nicolosi Asmundo, M., Riccobene, E.: Consistent integration for sequential Ab-
stract State Machines. In: International Workshop on Abstract State Machines.
(2003) 324–340

14. Gurevich, Y., Rosenzweig, D.: Partially ordered runs: A case study. In: Interna-
tional Workshop on Abstract State Machines. (2000) 131–150


