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Abstract. We reduce JavaScript to a core calculus structured as a
small-step operational semantics. We present several peculiarities of the
language and show that our calculus models them. We explicate the
desugaring process that turns JavaScript programs into ones in the core.
We demonstrate faithfulness to JavaScript using real-world test suites.
Finally, we illustrate utility by defining a security property, implementing
it as a type system on the core, and extending it to the full language.

1 The Need for Another JavaScript Semantics

The growing use of JavaScript has created whole new technical and business
models of program construction and deployment. JavaScript is a feature-rich
language with many quirks, and these quirks are often exploited by security and
privacy attacks. This is especially true in cases where JavaScript has a familiar
syntax but an unconventional semantics.

Due to its popularity and shortcomings, companies and researchers have tried
to tame JavaScript via program analyses [4, 9, 10, 13], sub-language [5, 7, 17], and
more. These works claim but do not demonstrate soundness, partly because we
lack a tractable account of the language. The JavaScript standard [6] is capacious
and informal, while one major formal semantics [15] is large, not amenable to
conventional proof techniques, and inherits the standard’s complexities, as we
discuss in section 5. In contrast:

– We present a core language, λJS , that embodies JavaScript’s essential fea-
tures (sans eval). λJS fits on three pages and lends itself well to proof tech-
niques such as subject reduction.

– We show that we can desugar JavaScript into λJS . In particular, desugaring
handles notorious JavaScript features such as this and with, so λJS itself
remains simple (and thus simplifies proofs that utilize it).

– We mechanize both λJS and desugaring.
– To show compliance with reality, we successfully test λJS and desugaring

against the actual Mozilla JavaScript test suite.
– Finally, we demonstrate the use of our semantics by building a safe subset

of JavaScript. This application highlights how our partitioning of JavaScript
into core and syntactic sugar lends structure to proofs.

Our supplemental materials (full desugaring, tools, etc.) are available at

http://www.cs.brown.edu/research/plt/dl/jssem/v1/



c = num | str | bool | undefined | null

v = c | func(x · · ·) { return e } | { str:v· · · }

e = x | v | let (x = e) e | e(e · · ·) | e[e] | e[e] = e | delete e[e]
E = • | let (x = E) e | E(e · · ·) | v(v · · · E, e · · ·)

| {str: v · · · str:E, str:e · · · } | E[e] | v[E] | E[e] = e | v[E] = e
| v[v] = E | delete E[e] | delete v[E]

let (x = v) e →֒ e[x/v] · · · (E-Let)

(func(x1 · · ·xn) { return e })(v1 · · · vn) →֒ e[x1/v1 · · ·xn/vn] (E-App)

{ · · · str: v · · · }[str] →֒v (E-GetField)

strx 6∈ (str1 · · · strn)

{ str1: v1 · · · strn: vn } [strx] →֒ undefined
(E-GetField-NotFound)

{ str1: v1 · · · stri: vi · · · strn: vn } [stri] = v

→֒ { str1: v1 · · · stri: v · · · strn: vn }
(E-UpdateField)

strx 6∈ (str1 · · ·)

{ str1: v1 · · · } [strx] = vx →֒ { strx: vx, str1: v1 · · · }
(E-CreateField)

delete { str1: v1 · · · stri: vx · · · strx: vn } [strx]
→֒ { str1: v1 · · · stri: v · · · strn: vn }

(E-DeleteField)

strx 6∈ (str1 · · ·)

delete { str1: v1 · · · } [strx] →֒ { str1: v1 · · · }
(E-DeleteField-NotFound)

Fig. 1. Functions and Objects

2 λJS: A Tractable Semantics for JavaScript

JavaScript is full of surprises. Syntax that may have a conventional interpretation
for many readers often has a subtly different semantics in JavaScript. To aid the
reader, we introduce λJS incrementally. We include examples of JavaScript’s
quirks and show how λJS faithfully models them.

Figures 1, 2, 4, 8, and 9 specify the syntax and semantics of λJS . We use
a Felleisen-Hieb small-step operational semantics with evaluation contexts [8].
We typeset λJS code in a sans-serif typeface, and JavaScript in a fixed-width

typeface.
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l = · · · Locations
v = · · · | l Values
σ = (l, v) · · · Stores
e = · · · | e = e | ref e | deref e Expressions
E = · · · | E = e | v = E | ref E | deref E Evaluation Contexts

e1 →֒ e2

σE〈e1〉 → σE〈e2〉

l 6∈ dom(σ) σ′ = σ, (l, v)

σE〈ref v〉 → σ′E〈l〉
(E-Ref)

σE〈deref l〉 → σE〈σ(l)〉 (E-Deref)

σE〈l = v〉 → σ[l/v]E〈l〉 (E-SetRef)

We use ։ to denote the reflexive-transitive closure of →.

Fig. 2. Mutable References in λJS

2.1 Functions, Objects and State

We begin with the small subset of λJS specified in figure 1 that includes just
functions and objects. We model operations on objects via functional update.
This seemingly trivial fragment already exhibits some of JavaScript’s quirks:

– In field lookup, the name of the field need not be specified statically; instead,
field names may be computed at runtime (E-GetField):

let (obj = { "x" : 500, "y" : 100 })

let (select = func(name) { return obj[name] })

select("x") + select("y")

→֒∗ 600

– A program that looks up a non-existent field does not result in an error;
instead, JavaScript returns the value undefined (E-GetField-NotFound):

{ "x" : 7 }["y"] →֒ undefined

– Field update in JavaScript is conventional (E-UpdateField)—

{ "x" : 0 }["x"] = 10 →֒ { "x" : 10 }

—but the same syntax also creates new fields (E-CreateField):

{ "x" : 0 }["z"] = 20 →֒ {"z" : 20, "x" : 10 }

– Finally, JavaScript lets us delete fields from objects:

delete { "x": 7, "y": 13}["x"] →֒ { "y": 13 }
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function sum(arr) {

var r = 0;

for (var i = 0; i < arr["length"]; i = i + 1) {

r = r + arr[i] };

return r };

sum([1,2,3]) ։ 6

var a = [1,2,3,4];

delete a["3"];

sum(a) ։ NaN

Fig. 3. Array Processing in JavaScript

JavaScript also supports a more conventional dotted-field notation: obj.x is
valid JavaScript, and is equivalent to obj["x"]. To keep λJS small, we omit the
dotted-field notation in favor of the more general computed lookup, and instead
explicitly treat dotted fields as syntactic sugar.

Assignment and Imperative Objects JavaScript has two forms of state:
objects are mutable, and variables are assignable. We model both variables and
imperative objects with first-class mutable references (figure 2).1 We desugar
JavaScript to explicitly allocate and dereference heap-allocated values in λJS .

Example: JavaScript Arrays JavaScript has arrays that developers tend to use in
a traditional imperative style. However, JavaScript arrays are really objects, and
this can lead to unexpected behavior. Figure 3 shows a small example of a seem-
ingly conventional use of arrays. Deleting the field a["3"] (E-DeleteField)
does not affect a["length"] or shift the array elements. Therefore, in the loop
body, arr["3"] evaluates to undefined, via E-GetField-NotFound. Finally,
adding undefined to a number yields NaN; we discuss other quirks of addition in
section 2.6.

2.2 Prototype-Based Objects

JavaScript supports prototype inheritance [3]. For example, in the following code,
animal is the prototype of dog:

var animal = { "length": 13, "width": 7 };

var dog = { "__proto__": animal, "barks": true };

Prototypes affect field lookup:

1 In the semantics, we use E〈e〉 instead of the conventional E[e] to denote a filled
evaluation context, to avoid confusion with JavaScript’s objects.
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strx /∈ (str1 · · · strn) " proto " 6∈ (str1 · · · strn)

{ str1 : v1 , · · · , strn : vn } [strx] →֒ undefined
(E-GetField-NotFound)

strx /∈ (str1 · · · strn)

{ str1 : v1 · · · " proto ": null · · · strn : vn } [strx] →֒ undefined

(E-GetField-Proto-Null)

strx /∈ (str1 · · · strn) p = ref l

{ str1 : v1 · · · " proto ": p · · · strn : vn } [strx] →֒ (deref p)[strx]
(E-GetField-Proto)

Fig. 4. Prototype-Based Objects

dog["length"] ։ 13

dog["width"] ։ 7

var lab = { "__proto__": dog, "length": 2 }

lab["length"] ։ 2

lab["width"] ։ 7

lab["barks"] ։ true

Prototype inheritance does not affect field update. The code below creates
the field dog["width"], but it does not affect animal["width"], which dog had
previously inherited:

dog["width"] = 19

dog["width"] ։ 19

animal["width"] ։ 7

However, lab now inherits dog["width"]:

lab["width"] ։ 19

Figure 4 specifies prototype inheritance. The figure modifies E-GetField-

NotFound to only apply when the " proto " field is missing.
Prototype inheritance is simple, but it is obfuscated by JavaScript’s syntax.

The examples in this section are not standard JavaScript because the " proto "

field is not directly accessible by JavaScript programs.2 In the next section, we
unravel and desugar JavaScript’s syntax for prototypes.

2.3 Prototypes

JavaScript programmers can indirectly manipulate prototypes using syntax that
is reminiscent of class-based languages like Java. In this section, we explain
this syntax and its actual semantics. We account for this class-like syntax by

2 Some browsers, such as Firefox, can run these examples.
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desugarJ{prop: e · · ·} K =

ref {

prop : desugarJeK · · ·,
" proto ": (deref Object)["prototype"]

}

desugarJfunction(x · · ·) { stmt · · · } K =

ref {

"code": func(this, x · · ·) { return desugarJstmt · · ·K },

"prototype": ref { " proto ": (deref Object)["prototype"] } }

desugarJnew ef(e · · ·)}K =

let (constr = deref desugarJef K)
let (obj = ref { " proto " : constr["prototype"]})

constr["code"](obj, desugarJeK · · ·);
obj

desugarJobj[field](e · · ·)K =

let (obj = desugarJobjK)
let (f = (deref obj)[field])

f["code"](obj, desugarJeK · · ·)

desugarJef(e · · ·)K =

let (obj = desugarJef K)
let (f = deref obj)

f["code"](window, desugarJeK · · ·)

desugarJobj instanceof constrK =

let (obj = ref (deref desugarJobjK),
constr = deref desugarJconstrK)

done: {

while (deref obj !== null) {

if ((deref obj)[" proto "] === constr["prototype"]) {

break done true }

else { obj = (deref obj)[" proto "] } };

false }

desugarJthisK = this (an ordinary identifier, bound by functions)
desugarJe.xK = desugarJeK["x"]

Fig. 5. Desugaring JavaScript’s Object Syntax
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var obj = {

"x" : 0,

"setX": function(val) { this.x = val } };

// window is the name of the global object in Web browsers

window.x ։ undefined

obj.setX(10);

obj.x ։ 10

var f = obj.setX;

f(90);

obj.x ։ 10 // obj.x was not updated

window.x ։ 90 // window.x was created

Fig. 6. Implicit this Parameter

desugaring it to manipulate prototypes directly (section 2.2). Therefore, this
section does not grow λJS and only describes desugaring. Figure 5 specifies the
portion of desugaring that is relevant for the rest of this section.

The this Keyword JavaScript does not have conventional methods. Function-
valued fields are informally called “methods”, and provide an interpretation for
a this keyword, but both are quite different from those of, say, Java.

For example, in figure 6, when obj.setX(10) is applied, this is bound to obj

in the body of the function. In the same figure however, although f is bound
to obj.setX, f(90) does not behave like a traditional method call. In fact, the
function is applied with this bound to the global object [6, Section 10.1.5].

In general, this is an implicit parameter to all JavaScript functions. Its value
is determined by the syntactic shape of function applications. Thus, when we
desugar functions to λJS , we make this an explicit argument. Moreover, we
desugar function calls to explicitly supply a value for this.

Functions as Objects In JavaScript, functions are objects with fields:

f = function(x) { return x + 1 }

f.y = 90

f(f.y) ։ 91

We desugar JavaScript’s function to objects in λJS with a distinguished code

field that refers to the actual function. Therefore, we also desugar application to
lookup the code field.

We could design λJS so that functions truly are objects, making this bit of
desugaring unnecessary. In our experience, JavaScript functions are rarely used
as objects. Therefore, our design lets us reason about simple functions when
possible, and functions as objects only when necessary.

In addition to the code field, which we add by desugaring, and any other
fields that may have been created by the programmer, all functions also have a
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distinguished field called prototype. As figure 5 shows, the prototype field is a
reference to an object that eventually leads to the prototype of Object. Unlike the
__proto__ field, prototype is accessible and can be updated by programmers. The
combination of its mutability and its use in instanceof leads to unpredictable
behavior, as we show below.

Constructors and Prototypes JavaScript does not have explicit constructors,
but it does have a new keyword that invokes a function with this bound to a
new object. For example, the following code—

function Point(x, y) {

this.x = x;

this.y = y }

pt = new Point(50, 100)

—applies the function Point and returns the value of this. Point explicitly
sets this.x and this.y. Moreover, new Point implicitly sets this.__proto__ to
Point.prototype. We can now observe prototype inheritance:

Point.prototype.getX = function() { return this.x }

pt.getX() ։ pt.__proto__.getX() ։ 50

In standard JavaScript, because the __proto__ field is not exposed, the only way
to set up a prototype hierarchy is to update the prototype field of functions that
are used as constructors.

The instanceof Operator JavaScript’s instanceof operator has an unconven-
tional semantics that reflects the peculiar notion of constructors that we have
already discussed. In most languages, a programmer might expect that if x is
bound to the value created by new Constr(· · ·), then x instanceof Constr is true.
In JavaScript, however, this invariant does not apply.

For example, in figure 7, animalThing dispatches on the type of its argu-
ment using instanceof. However, after we set Cat.prototype = Dog.prototype,
the type structure seems to break down. The resulting behavior might appear
unintuitive in JavaScript, but it is straightforward when we desugar instanceof

into λJS . In essence, cat instanceof Cat is cat.__proto__ === Cat.prototype.3

In the figure, before Cat.prototype = Dog.prototype is evaluated, the following
are true:

cat.__proto__ === Cat.prototype

dog.__proto__ === Dog.prototype

Cat.prototype !== Dog.prototype

However, after we update Cat.prototype, we have:

cat.__proto__ === the previous value of Cat.prototype

dog.__proto__ === Dog.prototype

Cat.prototype === Dog.prototype

3 The === operator is the physical equality operator, akin to eq? in Scheme.

8



function Dog() { this.barks = "woof" };

function Cat() { this.purrs = "meow" };

dog = new Dog();

cat = new Cat();

dog.barks; ։ "woof"

cat.purrs; ։ "meow"

function animalThing(obj) {

if (obj instanceof Cat) { return obj.purrs }

else if (obj instanceof Dog) { return obj.barks }

else { return "unknown animal" } };

animalThing(dog); ։ "woof"

animalThing(cat); ։ "meow"

animalThing(4234); ։ "unknown animal"

Cat.prototype = Dog.prototype;

animalThing(cat); ։ "unknown animal"

animalThing(dog) ։ undefined // dog.purrs (E-GetField-NotFound)

Fig. 7. Using instanceof

Hence, cat instanceof Cat becomes false. Furthermore, since animalThing first
tests for Cat, the test dog instanceof Cat succeeds.

2.4 Statements and Control Operators

JavaScript has a plethora of control statements. Many map directly to λJS ’s
control operators (figure 8), while the rest are easily desugared.

For example, consider JavaScript’s return and break statements. A break l

statement transfers control to the local label l. A return e statement transfers
control to the end of the local function and produces the value of e as the result.
Instead of two control operators that are almost identical, λJS has a single break

expression that produces a value.
Concretely, we elaborate JavaScript’s functions to begin with a label ret:

desugarJfunction(x · · ·) { stmt · · · } K =
func(this x · · ·) { return ret: { desugarJstmt · · ·K } }

Thus, return statements are desugared to break ret:

desugarJreturn eK = break ret desugarJeK

while break statements are desugared to produce undefined:

desugarJbreak labelK = break label undefined
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label = (Labels)
e = · · · | if (e) { e } else { e } | e;e | while(e) { e } | label:{ e }

| break label e | try { e } catch (x) { e } | try { e } finally { e }

| err v | throw e
E = · · · | if (E) { e } else { e } | E;e | label:{ E }

| try { E } catch (x) { e } | try { E } finally { e } | throw E
E′ = • | let (x = v · · · x = E′, x = e · · ·) e | E′(e · · ·) | v(v · · · E′, e · · ·)

| if (E′) { e } else { e } | { str: v · · · str: E′, str: e · · · }

| E′[e] | v[E′] | E′[e] = e | v[E′] = e | v[v] = E′ | E′ = e | v = E′

| delete E′[e] | delete v[E′] | ref E′ | deref E′ | E′; e | throw E′

F = E′ | label:{ F } (Exception Contexts)
G = E′ | try { G } catch (x) { e } (Local Jump Contexts)

if (true) { e1 } else { e2 } →֒ e1 (E-IfTrue)

if (false) { e1 } else { e2 } →֒ e2 (E-IfFalse)

v;e →֒ e (E-Begin-Discard)

while(e1) { e2 } →֒ if (e1) { e2; while(e1) { e2 } } else { undefined }

(E-While)

throw v →֒ err v (E-Throw)

try { F 〈err v〉 } catch (x) { e } →֒ e[x/v] (E-Catch)

σF 〈err v〉 → σerr v (E-Uncaught-Exception)

try { F 〈err v〉 } finally { e } →֒ e; err v (E-Finally-Error)

try { G〈break label v〉 } finally { e } →֒ e; break label v (E-Finally-Break)

try { v } finally {e } →֒ e; v (E-Finally-Pop)

label:{ G〈break label v〉 } →֒ v (E-Break)

label1 6= label2

label1:{ G〈break label2 v〉 } →֒ break v
(E-Break-Pop)

label: {v} →֒ v (E-Label-Pop)

Fig. 8. Control operators for λJS
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2.5 Static Scope in JavaScript

The JavaScript standard specifies identifier lookup in an unconventional man-
ner. It uses neither substitution nor environments, but scope objects [6, Section
10.1.4]. A scope object is akin to an activation record, but is a conventional
JavaScript object. The fields of this object are interpreted as variable bindings.

In addition, a scope object has a distinguished parent-field that references
another scope object. (The global scope object’s parent-field is null.) This linked
list of scope objects is called a scope chain. The value of an identifier x is the
value of the first x-field in the current scope chain. When a new variable y is
defined, the field y is added to the scope object at the head of the scope chain.

Since scope objects are ordinary JavaScript objects, JavaScript’s with state-
ment lets us add arbitrary objects to the scope chain. Given the features dis-
cussed below, which include with, it is not clear whether JavaScript is lexically
scoped. In this section, we describe how JavaScript’s scope-manipulation state-
ments are desugared into λJS , which is obviously lexically scoped.

Local Variables In JavaScript, functions close over their current scope chain
(intuitively, their static environment). Applying a closure sets the current scope
chain to be that in the closure. In addition, an empty scope object is added
to the head of the scope chain. The function’s arguments and local variables
(introduced using var) are properties of this scope object.

Local variables are automatically lifted to the top of the function. As a result,
in a fragment such as this—

function foo() {

if (true) { var x = 10 }

return x }

foo() ։ 10

—the return statement has access to the variable that appears to be defined
inside a branch of the if. This can result in somewhat unintuitive answers:

function bar(x) {

return function() {

var x = x;

return x }}

bar(200)() ։ undefined

Above, the programmer might expect the x on the right-hand side of var x = x

to reference the argument x. However, due to lifting, all bound occurrences of x
in the nested function reference the local variable x. Hence, var x = x reads and
writes back the initial value of x. The initial value of local variables is undefined.

We can easily give a lexical account of this behavior. A local variable decla-
ration, var x = e, is desugared to an assignment, x = e. Furthermore, we add a
let-binding at the top of the enclosing function:

let (x = ref undefined) · · ·
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Global Variables Global variables are subtle. Global variables are properties
of the global scope object (window), which has a field that references itself:

window.window === window ։ true

Therefore, a program can obtain a reference to the global scope object by simply
referencing window.4

As a consequence, globals seem to break lexical scope, since we can observe
that they are properties of window:

var x = 0;

window.x = 50;

x ։ 50

x = 100;

window.x ։ 100

However, window is the only scope object that is directly accessible to JavaScript
programs [6, Section 10.1.6]. We maintain lexical scope by abandoning global
variables. That is, we simply desugar the obtuse code above to the following:

window.x = 0;

window.x = 50;

window.x ։ 50

window.x = 100;

window.x ։ 100

Although global variables observably manipulate window, local variables are still
lexically scoped. We can thus reason about local variables using substitution,
α-renaming, and other standard techniques.

With Statements The with statement is a widely-acknowledged JavaScript
wart. A with statement adds an arbitrary object to the front of the scope chain:

function(x, obj) {

with(obj) {

x = 50; // if obj.x exists, then obj.x = 50, else x = 50

return y } } // similarly, return either obj.y, or window.y

We can desugar with by turning the comments above into code:

function(x, obj) {

if (obj.hasOwnProperty("x")) { obj.x = 50 }

else { x = 50 }

if ("y" in obj) { return obj.y }

else { return window.y } }

Nested withs require a little more care, but can be dealt with in the same manner.
However, desugaring with is non-compositional. We will return to this point in
section 4.3.

4 In addition, this is bound to window in function applications (figure 5).
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e = · · · | opn(e1 · · · en)
E = · · · | opn(v · · ·E e · · · )
E′ = · · · | opn(v · · ·E

′e · · · )
δn : opn × v1 · · · vn → c+ err

opn(v1 · · · vn) →֒ δn(opn, v1 · · · vn) (E-Prim)

Fig. 9. Primitive Operators

What are Scope Objects? Various authors (including ourselves) have developed
JavaScript tools that work with a subset of JavaScript that is intuitively lexically
scoped (e.g., [2, 5, 7, 10, 11, 17]). We show how JavaScript can be desugared into
lexically scoped λJS , validating these assumptions. As a result, we no longer
need scope objects in the specification; they may instead be viewed as an imple-
mentation strategy.5

2.6 Type Conversions and Primitive Operators

JavaScript is not a pure object language. We can observe the difference between
primitive numbers and number objects:

x = 10;

y = new Number(7)

typeof x ։ "number"

typeof y ։ "object"

Moreover, JavaScript’s operators include implicit type conversions between prim-
itives and corresponding objects:

x + y ։ 17

We can redefine these type conversions without changing objects’ values:

Number.prototype.valueOf = function() { return 0 }

x + y ։ 10

y.toString() ։ "7"

Both + and * perform implicit coercions, and + also concatenates strings:

x + y.toString() ։ "107" // 10 converted to the string "10"

x * y.toString() ։ 70 // "7" converted to the number 7

This suggests that JavaScript’s operators are complicated. Indeed, the stan-
dard specifies x + y with a 15-step algorithm [6, Section 11.6.1] that refers to

5 Scope objects are especially well suited for implementing with. Our desugaring strat-
egy for with increases code-size linearly in the number of nested withs, which scope-
objects avoid.
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JavaScript Program
desugar

//

Real Implementations

��

λJS Program

λJS interpreter

��
stdout oo

diff
// stdout

Fig. 10. Testing Strategy for λJS

three pages of metafunctions. Buried in these details are four primitive opera-
tors: primitive addition, string concatenation, and number-to-string and string-
to-number type coercions.

These four primitives are essential and intuitive. We therefore model them
with a conventional δ function (figure 9). The remaining details of operators are
type-tests and method invocations; as the examples above suggest, JavaScript
internally performs operations such as y.valueOf() and typeof x. In λJS we
make these type-tests and method calls explicit.

This paper does not enumerate all the primitives that λJS needs. Instead,
the type of δ constrains their behavior significantly, which often lets us reason
without a specific δ function. (For instance, due to the type of δ, we know that
primitives cannot manipulate the heap.)

3 Soundness and Adequacy of λJS

Soundness We mechanize λJS with plt Redex [8]. The process of mechanizing
helped us find errors in our semantics, particularly in the interactions of control
operators (figure 8). We use our mechanized semantics to test [14] λJS for safety.

Property 1 (Progress) If σe is a closed, well-formed configuration, then ei-

ther:

– e ∈ v,

– e = err v, for some v, or

– σe → σ′e′, where σ′e′ is a closed, well-formed configuration.

This property requires additional evaluation rules for runtime type errors, and
definitions of well-formedness. We elide them from the paper, as they are con-
ventional. The supplemental material contains these details.

Adequacy λJS is a semantics for the core of JavaScript. We have described how
it models many aspects of the language’s semantics, warts and all. Ultimately,
however, a small core language has limited value to those who want to reason
about programs written in full JavaScript.
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Syntactic Form Occurrences (approx.)

with blocks 15
var statements 500
try blocks 20
functions 200
if and switch statements 90
typeof and instanceof 35
new expressions 50
Math library functions 15

Fig. 11. Test Suite Coverage

Given our method of handling JavaScript via desugaring, we are obliged to
show that desugaring and the semantics enjoy two properties. First, we must
show that all JavaScript programs can be desugared to λJS .

Claim 1 (Desugaring is Total) For all JavaScript programs e, desugarJeK is
defined.

Second, we must demonstrate that our semantics corresponds to what JavaScript
implementations actually do.

Claim 2 (Desugar Commutes with Eval) For all JavaScript programs e,

desugarJevalJavaScript(e)K = evalλJS
(desugarJeK).

We could try to prove these claims, but that just begs the question: What is
evalJavaScript? A direct semantics would require evidence of its own adequacy.

In practice, JavaScript is truly defined by its major implementations. Open-
source Web browsers are accompanied by extensive JavaScript test suites. These
test suites help the tacit standardization of JavaScript across major implemen-
tations.6 We use these test suites to test our semantics.

Figure 10 outlines our testing strategy. We first define an interpreter for λJS .
This is a straightforward exercise; the interpreter is a mere 100 LOC, and easy
to inspect since it is based directly on the semantics.7 Then, for any JavaScript
program, we should be able to run it both directly and in our semantics. For
direct execution we employ three JavaScript implementations: SpiderMonkey
(used by Firefox), V8 (used by Chrome), and Rhino (an implementation in
Java). We desugar the same program into λJS and run the result through our
interpreter. We then check whether our λJS interpreter produces the same output
as each JavaScript implementation.

Our tests cases are a significant portion of the Mozilla JavaScript test suite.
We omit the following tests:

– Those that target Firefox-specific JavaScript extensions.

6 For example, the Firefox JavaScript test suite is also found in the Safari source.
7 plt Redex can evaluate expressions in a mechanized semantics. However, our tests
are too large for Redex’s evaluator.
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– Those that use eval.
– Those that target library details, such as regular expressions.

The remaining tests are about 5,000 LOC unmodified.
Our λJS interpreter produces exactly the same output as Rhino, V8, and

SpiderMonkey on the entire test suite. Figure 11 indicates that these tests employ
many interesting syntactic forms, including statements like with and switch that
are considered complicated. We make the following observations:

– No prior semantics for JavaScript accounts for all these forms (e.g., Maffeis
et al. [15] do not model switch).

– We account for much of JavaScript by desugaring. Therefore, these tests
validate both our core semantics and our desugaring strategy.

– These tests give us confidence that our implemented tools are correct.

4 Example: Language-Based Sandboxing

Web platforms often combine programs from several different sources on the
same page. For instance, on a portal page like iGoogle, a user can combine a
weather widget with a stock ticker widget; on Facebook, users can run applica-
tions. Unfortunately, this means programs from different authors can in principle
examine data from one another, which creates the possibility that a malicious
application may steal data or create other harm. To prevent both accidents and
malice, sites must somehow sandbox widgets.

To this end, platform developers have defined safe sub-languages (often called
“safe subsets”) of JavaScript like ADsafe [5], Caja [17], and Facebook JavaScript
(fbjs) [7]. These are designed as sub-languages—rather than as whole new lan-
guages with, perhaps, security types—to target developers who already know
how to write JavaScript Web applications. These sub-languages disallow bla-
tantly dangerous features such as eval. However, they also try to establish more
subtle security properties using syntactic restrictions, as well as runtime checks
that they insert into untrusted code. Naturally, this raises the question whether
these sub-languages function as advertised.

Let us consider the following property, which is inspired by fbjs and Caja:
we wish to prevent code in the sandbox from communicating with a server. For
instance, we intend to block the XMLHttpRequest object:

var x = new window.XMLHttpRequest()

x.open("GET", "/get_confidential", false)

x.send("");

var result = x.responseText

For simplicity, we construct a sub-language that only disallows access to XML-

HttpRequest. A complete solution would use our techniques to block other
communication mechanisms, such as document.write and Element.innerHTML.

We begin with short, type-based proofs that exploit the compactness of λJS .
We then use our tools to migrate from λJS to JavaScript.
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lookup = func(obj, field) {

return if (field === "XMLHttpRequest") { undefined }

else { (deref obj)[field] }

}

Fig. 12. Safe Wrapper for λJS

4.1 Isolating JavaScript

Wemust precisely state “disallow access toXMLHttpRequest”. In JavaScript,
window.XMLHttpRequest references the XMLHttpRequest constructor, where
window names the global object. We make two assumptions:

– In λJS , we allocate the global object at location 0. This is a convenient
convention that is easily ensured by desugaring.

– The XMLHttpRequest constructor is only accessible as a property of the
global object. This assumption is valid as long as we do not use untrusted
libraries (or can analyze their code).

Given these two assumptions, we can formally state “disallow access to XML-

HttpRequest” as a property of λJS programs:

Definition 1 (Safety) e is safe if e 6= E〈〈 deref (ref 0)〉 ["XMLHttpRequest"]〉.

Note that in the definition above, the active expression is (deref (ref 0)), and
the evaluation context is E〈•["XMLHttpRequest"]〉.

Intuitively, ensuring safety appears to be easy. Given an untrusted λJS pro-
gram, we can elaborate property accesses, e1[e2], to lookup(e1,e2), where lookup
is defined in Figure 12.

This technique8 has two problems. First, this elaboration does not allow ac-
cess to the "XMLHttpRequest" property of any object. Second, although lookup

may appear “obviously correct”, the actual wrapping in Caja, fbjs, and other
sub-languages occurs in JavaScript, not in a core calculus like λJS . Hence,
lookup does not directly correspond to any JavaScript function. We could write a
JavaScript function that resembles lookup, but it would be wrought with various
implicit type conversions and method calls (section 2.6) that could break its in-
tended behavior. Thus, we start with safety for λJS before tackling JavaScript’s
details.

4.2 Types for Securing λJS

Our goal is to determine whether a λJS program is safe (definition 1). We wish
to do this without making unnecessary assumptions. In particular, we do not
assume that lookup (figure 12) is itself safe.

8 Maffeis et al.’s blacklisting [16], based on techniques used in fbjs, has this form.
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T = JS

Γ ⊢ string : JS (T-String)

Γ (x) = T

Γ ⊢ x : T
(T-Id)

Γ, x1 : JS, · · · , xn : JS ⊢ e : JS

Γ ⊢ func (x1 · · ·xn) { return e } : JS
(T-Fun)

Γ ⊢ e1 : JS · · · Γ ⊢ en : JS

Γ ⊢ δn(opn, e1 · · · en) : JS
(T-Prim)

The type judgments for remaining forms are similar to T-Prim and T-Fun: namely,
Γ ⊢ e : JS if all subexpressions of e have type JS. However, e1[e2] is not typable.

Fig. 13. Type System that Disallows Field Lookup

We begin by statically disallowing all field accesses. The trivial type system
in Figure 13 achieves this, since it excludes a typing rule for e1[e2]. This type
system does not catch conventional type errors. Instead, it has a single type, JS,
of statically safe JavaScript expressions (definition 1). The following theorem is
evidently true:

Theorem 1 For all λJS expressions e, if · ⊢ e : T and e ։ e′ then e′ is safe.

We need to extend our type system to account for lookup, taking care not to
violate theorem 1. Note that lookup is currently untypable, since field access is
untypable. However, the conditional in lookup seems to ensure safety; our goal
is to prove that it does. Our revised type system is shown in figure 14. The
new type, NotXHR, is for expressions that provably do not evaluate to the
string "XMLHttpRequest". Since primitives like string concatenation yield values
of type JS (T-Prim in figure 13), programs cannot manufacture unsafe strings
with type NotXHR. (Of course, trusted primitives could yield values of type
NotXHR.)

Note this important peculiarity: These new typing rules are purpose-built for

lookup. There are other ways to establish safe access to fields. However, since we
will rewrite all expressions e1[e2] to lookup(e1,e2), our type system need only
account for the syntactic structure of lookup.

Our revised type system admits lookup, but we must prove theorem 1. It is
sufficient to prove the following lemmas:9

Lemma 1 (Safety) If · ⊢ e : JS, then e 6= E〈v["XMLHttpRequest"]〉, for any

value v.

9 Additional proof details are in the supplemental material.
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T = · · · | NotXHR

NotXHR <: JS (Sub-Safe)

Γ ⊢ e : S S <: T

Γ ⊢ e : T
(T-Sub)

v 6= "XMLHttpRequest"

Γ ⊢ v : NotXHR
(T-SafeValue)

Γ ⊢ e1 : JS Γ ⊢ e2 : NotXHR

Γ ⊢ e1[e2] : JS
(T-GetField)

x ∈ dom(Γ ) Γ ⊢ e2 : JS Γ [x : NotXHR] ⊢ e3 : JS

Γ ⊢ if (x ==="XMLHttpRequest") { e2 } else { e3 } : JS
(T-IfSafe)

Fig. 14. Type System for Blocking Access to XMLHttpRequest

Γ ⊢ e2 : JS

Γ ⊢ if ("XMLHttpRequest"==="XMLHttpRequest") { e2 } else { e3 } : JS
(T-IfTrue-XHR)

Γ ⊢ e2 : JS

Γ ⊢ if (true) { e2 } else { e3} : JS
(T-IfTrue)

Fig. 15. Auxiliary Typing Rules for Blocking Access to XMLHttpRequest

The proof of this lemma is by induction on typing derivations, given the typing
rules in figure 13 and figure 14. This lemma also holds for the typing rules in
figure 15, which we introduce below.

Lemma 2 (Subject Reduction) If · ⊢ e : JS, and e → e′, then · ⊢ e′ : JS.

Proof Technique The typing rules for lookup (figure 14) require a technique
introduced in occurrence typing for Typed Scheme [18].

Although lookup is typable, subject reduction requires all expressions in this
reduction sequence to be typable:

lookup(window, "XMLHttpRequest")

→ if ("XMLHttpRequest" === "XMLHttpRequest") { undefined }

else { (deref window)["XMLHttpRequest"] }

→ if (true) { undefined }

else { (deref window)["XMLHttpRequest"] }

→ undefined
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The intermediate expressions above are not typable, although they are intuitively
safe. We can make them typable by extending our type system with the typing
rules in figure 15, which let us prove subject reduction.

However, we have to ensure that our new typing rules do not violate safety
(lemma 1). Intuitively, lemma 1 still holds, since our newly-typable expressions
are not of the form v["XMLHttpRequest"].

Our type system may appear ad hoc, but it simply reflects the nature of
JavaScript security solutions. Note that our type system is merely a means to
an end: the main result is the conclusion of theorem 1, which is a property of
the runtime semantics.

4.3 Scaling to JavaScript

Since we can easily implement a checker for our type system,10 we might claim
we have a result for JavaScript as follows: desugar JavaScript into λJS and type-
check the resultant λJS code. This strategy is, however, unsatisfying because
seemingly harmless changes to a typable JavaScript program may result in a
program that fails to type-check, due to the effects of desugaring. This would
make the language appear whimsical to the widget developer.

Instead, our goal is to define a safe sub-language (just as, say, Caja and fbjs

do). This safe sub-language would provide syntactic safety criteria, such as:

– The JavaScript expression e1 + e2 is safe when its subexpressions are safe.
– e1[e2], when rewritten to lookup(e1, e2), is safe, but fails if e2 evaluates to

"XMLHttpRequest".

Our plan is as follows. We focus on the structure of the desugaring rules
and show that a particular kind of compositionality in these rules suffices for
showing safety. We illustrate this process by extending the λJS result to include
JavaScript’s addition (which, as we explained in section 2.6, is non-trivial). We
then generalize this process to the rest of the language.

Safety for Addition By theorem 1, it is sufficient to determine whether Γ ⊢
desugarJe1+e2K : JS. Proving this, however, would benefit from some constraints
on e1 and e2. Consider the following proposition:

Proposition 1 If Γ ⊢ desugarJe1K : JS and Γ ⊢ desugarJe2K : JS, then Γ ⊢
desugarJe1 + e2K : JS.

By lemma 1, this proposition entails that if e1 and e2 are safe, then e1+e2 is safe.
But is the proposition true? desugarJe1+e2K produces an unwieldy λJS expression
with explicit type-conversions and method calls. Still, a quick inspection of our
implementation shows that:

desugarJe1 + e2K = let (x = desugarJe1K) let (y = desugarJe2K) · · ·

10 The supplemental material includes a 150-line implementation.
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desugarJe1 + e2K simply recurs on its subexpressions and does not examine
the result of desugarJe1K and desugarJe2K. Moreover, the elided body does not
contain additional occurrences of desugarJe1K and desugarJe2K. Thus, we can
write the right-hand side as a two-holed program context :11

desugarJe1 + e2K = C+〈desugarJe1K, desugarJe2K〉
C+ = let (x = •1) let (y = •2) · · ·

Therefore, desugaring e1 + e2 is compositional.
A simple replacement lemma [20] holds for our type system:

Lemma 3 (Replacement) If:

i. D is a deduction concluding Γ ⊢ C[e1, e2] : JS,
ii. Subdeductions D1,D2 prove that Γ1 ⊢ e1 : JS and Γ2 ⊢ e2 : JS respectively,
iii. D1 occurs in D, at the position corresponding to •1, and D2 at the position

corresponding to •2, and
iv. Γ1 ⊢ e′1 : JS and Γ2 ⊢ e′2 : JS,

then Γ ⊢ C〈e′1, e
′

2〉 : JS.

Replacement, along with weakening of environments, gives us our final lemma:

Lemma 4 If:

– x : JS, y : JS ⊢ C+[x, y] : JS, and
– Γ ⊢ desugarJe1K : JS and Γ ⊢ desugarJe2K : JS,

then Γ ⊢ C+〈desugarJe1K, desugarJe2K〉 : JS.

The conclusion of lemma 4 is the conclusion of proposition 1. The second hy-
pothesis of lemma 4 is the only hypothesis of proposition 1. Therefore, to prove
proposition 1, we simply need to prove x : JS, y : JS ⊢ C+〈x, y〉 : JS.

We establish this using our tools. We assume x and y are safe (i.e., have type
JS), and desugar and type-check the expression x + y. Because this succeeds,
the machinery above—in particular, the replacement lemma—tells us that we
may admit + into our safe sub-language.

A Safe Sub-Language The proofs of lemma 3 and 4 do not rely on the defi-
nition of C+. For each construct, we must thus ensure that the desugaring rule
can be written as a program context, which we easily verify by inspection. We
find this true for all syntactic forms other than with, which we omit from our
safe sub-language (as do other sub-language such as Caja and fbjs). If with

were considered important, we could extend our machinery to determine what
circumstances, or with what wrapping, it too could be considered safe.

Having checked the structure of the desugaring rules, we must still establish
that their expansion does no harm. We mechanically populate a type environ-
ment with placeholder variables, create expressions of each kind, and type-check.
All forms pass type-checking, except for the following:

11 Due to lack of space, we do not formally define program contexts for λJS in this
paper, but evaluation contexts offer a strong hint.
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– x[y] and x.XMLHttpRequest do not type—happily, as they are unsafe! This is
acceptable because these unsafe forms will be wrapped in lookup.

– However, x[y]++, x[y]--, ++x[y], and --x[y] also fail to type due to the
structure of code they generate on desugaring. Yet, we believe these forms
are safe; we could account for them with additional typing rules, as employed
below for lookup.

Safety for lookup As section 4.2 explained, we designed our type system to
account for lookup (figure 12). However, lookup is in λJS , whereas we need a
wrapper in JavaScript. A direct translation of lookup into JavaScript yields:

lookupJS = function(obj, field) {

if (field === "XMLHttpRequest") { return undefined }

else { return obj[field] } }

Since lookupJS is a closed expression that is inserted as-is into untrusted scripts,
we can desugar and type-check it in isolation. Doing so, however, reveals a sur-
prise: desugarJlookupJSK does not type-check.

When we examine the generated λJS code, we see that obj[field] is desug-
ared into an expression that explicitly converts field to a string. (Recall that
field names are strings.) If, however, field is itself an object, this conversion
includes the method call field.toString(). Working backward, we see that the
following exploit would succeed:

lookupJS(window, { toString: function() { return "XMLHttpRequest" } })

where the second argument to lookupJS (i.e., the expression in the field po-
sition) is a literal object that has a single method, toString, which returns
"XMLHttpRequest". Thus, not only does lookupJS not type, it truly is unsafe!

Our type system successfully caught a bug in our JavaScript implementation
of lookup. The fix is simple: ensure that field is a primitive string:

safeLookup = function(obj, field) {

if (field === "XMLHttpRequest") { return undefined }

else if (typeof field === "string") { return obj[field] }

else { return undefined } }

This code truly is safe, though to prove it we need to extend our type system.
We design the extension by studying the result of desugaring safeLookup.12

We have noted that desugaring evinces the unsafe method call. However,
toString is called only if field is not a primitive. This conditional is inserted by

desugaring :

if (typeof field === "location") { ... field.toString() ... }

else { field }

12 Desugaring produces 200 LOC of pretty-printed λJS . We omit this code from the
paper, but it is available online.
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Thus, the second if in safeLookup desugars to:

if (typeof field === "string") {

obj[if (typeof field === "location") { ... field.toString() ... }

else { field }] }

To now reach field.toString(), both conditions must hold. Since this cannot hap-
pen, the unsafe code block is unreachable.

Recall, however, that we designed our type system for λJS around the syntac-
tic structure of the lookup guard. With this more complex guard, we must extend
our type system to employ if-splitting—which we already used in section 4.2—a
second time. As long as our extension does not violate safety (lemma 1) and
subject reduction (lemma 2), the arguments in this section still hold.

4.4 Perspective

In the preceding sections, we rigorously developed a safe sub-language of JavaScript
that disallows access to XMLHttpRequest. In addition, we outlined a proof of
correctness for the runtime “wrapper”. To enhance isolation, we have to disallow
access to a few other properties, such as document.write and Element.innerHTML.
Straightforward variants of the statements and proofs in this section could verify
such systems. We believe our approach can scale to tackle more sophisticated
security properties as well.

Nevertheless, our primary goal in this section is not to define a safe sub-
language of JavaScript, but rather to showcase our semantics and tools:

– λJS is small. It is much smaller than other definitions and semantics for
JavaScript. Therefore, our proofs are tractable.

– λJS is adequate and tested. This gives us confidence that our arguments are
applicable to real-world JavaScript.

– λJS is conventional, so we are free to use standard type-soundness tech-
niques [20]. In contrast, working with JavaScript’s scope objects would be
onerous. This section is littered with statements of the form Γ ⊢ e : JS.
Heap-allocated scope objects would preclude the straightforward use of Γ ,
thus complicating the proof effort (and perhaps requiring new techniques).

– Finally, desugar is compositional. Although we developed a type system for
λJS , we were able to apply our results to most of JavaScript by exploiting
the compositionality of desugar.

5 Related Work

JavaScript Semantics JavaScript is specified in 200 pages of prose and pseu-
docode [6]. This specification is barely amenable to informal study, let alone
proofs. Maffeis, Mitchell, and Taly [15] present a 30-page operational semantics,
based directly on the JavaScript specification. Their semantics covers most of
JavaScript directly, but does omit a few syntactic forms.
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Our approach is drastically different. λJS is a semantics for the core of
JavaScript, though we desugar the rest of JavaScript into λJS . In section 3,
we present evidence that our strategy is correct. λJS and desugaring together
are much smaller and simpler than the semantics presented by Maffeis, et al. Yet,
we cover all of JavaScript (other than eval) and account for a substantial portion
of the standard libraries as well (available in the supplementary material).

Maffeis, et al. demonstrate adequacy by following the standard, though they
discuss various differences between the standard and implementations. In sec-
tion 3, we demonstrate adequacy by running 3rd-party JavaScript tests in λJS

and comparing results with mainstream JavaScript implementations.
A technical advantage of our semantics is that it is conventional. For example,

we use substitution instead of scope objects (section 2.5). Therefore, we can use
conventional techniques, such as subject reduction, to reason in λJS . It is unclear
how to build type systems for a semantics that uses scope objects.

David Herman [12] defines a ceks machine for a small portion of JavaScript.
This machine is also based on the standard and inherits some of its complexities,
such as implicit type conversions.

CoreScript [21] models an imperative subset of JavaScript, along with por-
tions of the dom, but omits essentials such as functions and objects. Moreover,
their big-step semantics is not easily amenable to typical type safety proofs.

Object Calculi λJS is an untyped, object-based language with prototype inheri-
tance. However, λJS does not have methods as defined in object calculi. With-
out methods, most object calculi cease to be interesting. However, we do desugar
JavaScript’s method invocation syntax to self-application in λJS [1, Chapter 18].

λJS and JavaScript do not support cloning, which is a crucial element of
other prototype-based languages, such as Self [19]. JavaScript does support Self’s
prototype inheritance, but the surface syntax of JavaScript does not permit
direct access to an object’s prototype (section 2.3). Without cloning, and without
direct access to the prototype, JavaScript programmers cannot use techniques
such as dynamic inheritance and mode-switching [1].

Types for JavaScript There are various proposed type systems for JavaScript
that are accompanied by semantics. However, these semantics are only defined
for small subsets of JavaScript, not the language in its entirety. For example,
Anderson et al. [2] develop a type system and a type inference algorithm for
JS0, a subset that excludes prototypes and first-class functions. Heidegger and
Thiemann’s recency types [11] admit prototypes and first-class functions, but
omit assignment. In contrast, we account for all of JavaScript (excluding eval).
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