
A Model of Garbage Collection

for OO Languages

Rob Hunter and Shriram Krishnamurthi

Brown University
Providence, RI

Contact: rob@cs.brown.edu

1 Abstract

Traditional programming language models ignore garbage collection. When semanticists leave it as an imple-
mentation detail separate from the model, any properties they prove are less meaningful because the model
does not accurately describe the implemented system. Some language models do incorporate garbage collec-
tion, but none of these models handle side effects, objects, or sub-typing, which are each realistic language
features.

We present the first semantics for an object-oriented language that explicitly models garbage collection.
We prove that the model is sound and that inserting garbage collection steps into evaluation preserves the
original semantics. Our work provides a framework for future research on semantic foundations for systems
that need to make high-level guarantees in the presence of complex memory management operations.

2 Introduction

Assume we are given a proof of the correctness of a programming language model. This proof does not
guarantee that the implementation is correct. Having a model is still beneficial, of course, because it can
give system designers and users confidence in the correctness of the implementation. As a model more closely
approximates the actual implementation, confidence in the implementation increases.

Moving a model closer to the implementation, however, generally introduces both complexity and inflexi-
bility. As a result, semanticists usually opt for a simple model that can cover a wide range of implementations.
The most disturbing consequence of this choice, however, is that a program, well-typed with respect to a
simple language model, may still “go wrong.” That is, if a programmer incorrectly implements a portion of
the language that the model designers considered an implementation detail, the model and implementation
will be inconsistent. A richer model that explicitly handled this detail would likely expose the problem when
a semanticist attempted, for example, a soundness proof.

ClassicJava [4] is a semantics that captures the object-oriented complexities of Java in the relatively
simple style of the well-studied semantics and type systems of Scheme and ML ([3, 5, 10]). Many modern
languages, Java included, manage memory automatically. Unfortunately, neither ClassicJava, nor any other
object-oriented models, incorporate garbage collection.

1

2.1 A Motivating Example

Reiss, et. al. [9] present a Java-based system that supports dynamic upgrades. As motivation for our work, we
now briefly describe their system. Suppose we would like to upgrade a Java class while a program is running.
In particular, for some class A, we want to provide a new implementation, class A′. Thus, for example, if the
program executes the code x = new A after the upgrade, then x should be bound to an instance of A′, and
not A.

Any dynamic upgrade system needs a mechanism for handling “old” instances of upgraded classes. Consider
an instance a of class A. After the upgrade to A′, the code of the original class A should never be executed.
But what if, after the upgrade, the program calls method someMethod() on a? Reiss, et. al. [9] handle this
at upgrade time by patching the dynamic dispatch table (vtable) of class A to trap all method calls. The
patched vtable is filled with stub methods which, when invoked, check to see if an upgraded version of the
class exists. If not, then a special upgrade method is called on the current instance. This upgrade method
converts old instances to upgraded instances. When the upgrade is complete, the stub executes the upgraded
method code on the upgraded instance.

In the previous example, calling someMethod() on a results in the execution of a stub version of someMethod.
This stub calls the upgrade method on instance a, which produces a′, a proper instance of class A′. A pointer
to a′ is stored so that future a.someMethod() calls will not require a call to the upgrade method. As a last
step, the stub invokes someMethod() on a′.

The system, as described, is inefficient. After the first call to an old object (during which we upgrade it to
a new version), each time we access the object the user pays a run-time penalty due to the level of indirection
through the vtable stubs. That is, a call to an old instance results in the execution of a stub function, which
in turn executes the proper method.

To fix this inefficiency, the garbage collector collapses these indirections and updates pointers from old
objects to their upgraded instances. In more general terms, the implementers of this system have augmented
the standard Java garbage collector with extra, non-trivial operations. In particular, in a system like this,
garbage collection is no longer an implementation detail—it is an integral part of the system’s behavior.
Therefore, any model of this system that omits garbage collection is unacceptable.

This paper does not provide a semantics for this dynamic upgrade system, but it does provide an object-
oriented model that makes garbage collection explicit, which is the necessary first step in writing such a
semantics.

2.2 Overview

We will refer to our extension of ClassicJava as ClassicJava
gc. In Section 4 we describe ClassicJava

gc.
In Section 5 we show that our garbage collection rule is correct. The type soundness proof and the definition
of ClassicJava are included in the Appendix.

3 Related Work

We base our semantics on ClassicJava [4], which does not model garbage collection. As a starting point for
our formalization of garbage collection, we use the calculi of Morrisett, et. al. [7]. Their work, however, models
collection in a lambda-calculus language with explicit heap allocation. They do not consider state, objects, or
sub-typing. We extend their work to model a realistic object-oriented language. Morrisett and Harper [8] also
extend Morrisett, et. al. [7]. They make certain details explicit which allows them to formalize, for example,
tail-call elimination. Their work focuses on a language with parametric polymorphism, and they provide a

2

P = defn∗ e

defn = class c extends c implements i∗ {field∗ meth∗} |
interface i extends i∗ {meth∗}

field = t fd
meth = t md (arg∗) {body}

arg = t var
body = e | abstract

e = new c | var | null | e : c.fd | e : c.fd = e

e.md (e∗) | super ≡ this : c.md (e∗)
view t e | add1 e | n

var = var | this
c = a class name or object
i = an interface name or Empty

fd = a field name
md = a method name

t = c | i | nat

n = a natural number

Table 1: The syntax of ClassicJava
gc

model for tag-free garbage collection in this polymorphic context. They do not consider state, objects, or
sub-typing.

In Section 2.1, we presented a dynamic upgrading system as motivation for our work. Hicks [6] describes a
different system for dynamic upgrades, which is lower-level than the system of Reiss et. al. [9]. In particular,
Hicks’ system does not have a notion of objects, nor does he use garbage collection as a means to efficient
upgrading. Hence, while he does provide a formal model of his system, his model does not overlap with our
work.

4 ClassicJavagc

In describing ClassicJava
gc, we will assume an understanding of ClassicJava. For those unfamiliar with

ClassicJava, its typing and reduction rules are included in the Appendix. The set of programs in Classic-

Java
gc is defined by the syntax in Table 1. A program P is a set of class and interface definitions followed

by an expression. The typing rules of Tables A5 and A6 (and the rules which we define in this section) assign
types to a subset of syntactically correct programs.

A number of predicates and relations ensure that the classes and interfaces have certain structural properties
before assigning a type to the program (see Tables A1, A2, A3 and A4). For example, P is not typable if
FieldOncePerClass(P) does not hold. Similarly, consider a field-access expression of the form e.fd . The [get, `e]
typing rule (see Table A5) will not assign a type t to this expression unless the relation 〈c.fd , t〉 FieldInClassP

t′ holds, and e has type t′. In words, this relation means that a field, with name fd and type t, is declared in
class c and is available in class t′ through inheritance. In this paper, all relations are written as a RelationP b,
which means the relation RelationP , which is parameterized over a program P , relates a and b.

ClassicJava
gc is a reduction semantics. Evaluation is the application of rewriting steps (reduction rules).

Evaluation halts when we reach a value or an error.1 The reduction rules are shown in Table A7. Since
1Evaluation also halts if it gets stuck (i.e., if no reduction rule applies even though the current expression is neither a value

3

(standard variables) var ∈ Var
(object locations) object ∈ Loc
(values) v ∈ Val ::= n | object | null

(errors) error ∈ Error ::= error: bad cast | error: deref null

Table 2: Notations of ClassicJava
gc

programs create new objects during evaluation, evaluation is the rewriting of a tuple 〈e,S〉, where e is the
expression and S is the store which maps object names (locations) to object values.

In addition to assigning types to expressions, the typing rules also annotate expressions with extra infor-
mation. These annotations are called elaborations. Consider the consequent of the [get, `e] judgment, which
is P, Γ `e e.fd =⇒ e′ : c.fd : t. Note that =⇒ is the elaboration symbol, and that the underlined text is the
result of elaboration. In this example, we annotate the get-expression with c, which is the class in which the
programmer declared field fd .

Once type checking is complete, we are left with elaborated expressions. To prove correctness properties,
we need to be able to apply typing rules during evaluation. Because the evaluation rules operate on elaborated
expressions, we need new typing rules. Consequently, we define (just as in [4]), for each `e and `s rule, a
corresponding `e or `s rule. These new rules are exactly the same, except that they apply to elaborated
expressions.

The new−−→ reduction rule reduces 〈E [new c] ,S〉 to 〈E [object] ,S[object 7→ 〈c,F〉]〉. In the resulting tuple,
object is a previously unused (memory) location, and 〈c,F〉 is the representation of an object (defined precisely
in Table A7). Note that the store, S, was augmented with a new location-value binding. At any point in
evaluation, this binding may become garbage. Roughly, an object is garbage if it is not needed during the rest
of evaluation. Garbage collection, for our purposes, will be the removal of bindings from the store. As in [7],
we introduce a garbage collection reduction rule, which we can apply at any stage of evaluation.

Intuitively, if removing a particular binding from the store will not introduce any free locations2 with
respect to the current expression and store, then we can remove that binding. We formalize this intuition with
the

fl−→ rule below. This rule depends on the definition of FL (see Table 3), which formally captures the no-
tion of a free location. The symbol] denotes union, with the restriction that the two argument sets are disjoint.

〈e,S1] S2〉 fl−→ 〈e, S1〉 [
fl−→]

where FL (e, S1) = ∅

Type soundness is not sufficient to show that the garbage collection rule is correct. We will need a way to
check that the return values across several evaluations of the same program are equivalent, independent of how
garbage collection is interleaved. Our equivalence metric needs to respect the intensional nature of garbage
collection. We cannot use location names as a test for equality, since locations differ across different runs. We
cannot use structural equality, because this would fail to capture object identity and sharing relationships.

To address this difficulty, we follow the lead of Morrisett, et. al. [7], and require that all programs return
a natural number. Our measurement of equality (and hence, measurement of the correctness of a garbage
collection scheme) is simple—does a program with garbage collection return the same number as the program
without it?

Note that this is not a restriction on the expressiveness of programs. If we really want to return an object

nor an error). However, we will show that this is impossible.
2By free location we mean an object that may be reachable during evaluation, and yet is unbound in the store.

4

FL (i) = ∅
FL (object) = {object}
FL (new c) = ∅

FL (null) = ∅
FL (e : c′ .fd) = FL (e)

FL (e1 : c .fd = e2) = FL (e1) ∪FL (e2)
FL (e.md(e1, ..., en)) = FL (e) ∪FL (e1) ∪ ... ∪FL (en)

FL (super ≡ ∗ : c.md(e1, ..., en)) = FL (e1) ∪ ... ∪FL (en)
FL (view t e) = FL (e)
FL (add1 e) = FL (e)

FL (object1 = 〈c1,F1〉 , ..., objectn = 〈cn,Fn〉) = [FL (〈c1,F1〉) ∪ ... ∪ FL (〈cn,Fn〉)] \ {object1, ...objectn}
FL (〈c,F〉) = ∪(c′.fd=v)∈FFL (v)

FL (e, S) = (FL (e) ∪ FL (S)) \dom (S)

Table 3: Definition of the FL function. ∗ above means either this or object .

(as we were able to in ClassicJava) we can encode the creation of the object in the number we return. For
example, consider a class c which has f nat fields, each of size b bits. We can represent any specific instance
of c with an f × b bit number.

The [prog, `p] typing rule requires that the type of all programs be numbers. We add numbers to our
syntax, and we assert the existence of a type nat with the typing rule [nat-type, `t]. We also need the typing
rule [nat, `e] which declares that numbers are of type nat:

P `t nat [nat-type,`t]
P , Γ `e n =⇒ n : nat [nat,`e]

We need a way of manipulating natural numbers, and thus we provide a simple add1 function, which has
the following typing and reduction rules:

[add1, `e]
P, Γ `e e =⇒ e′ : nat

P, Γ `e add1 e =⇒ add1 e′ : nat

P ` 〈E [add1 n] ,S〉 −→ 〈E [n + 1] ,S〉 [add1−−−→]

5 Correctness of ClassicJavagc

We formulate a type soundness theorem which shows that well-typed programs do not get stuck. The proof,
which uses standard progress and subject reduction lemmas, is in the Appendix.

Theorem 1 (Type Soundness) If `p P =⇒ P ′ : nat and P ′ = defn1 ... defnn e, then either

1. Evaluation diverges; or

2. Evaluation results in an error configuration; or

5

3. P ′ ` 〈e, ∅〉 −→∗ 〈null,S〉; or

4. P ′ ` 〈e, ∅〉 −→∗ 〈n,S〉

5.1 The Garbage Collection Rule is Correct

To establish correctness, we need to show that a particular program returns the same number, regardless of how
fl−→ is interleaved in evaluation. Specifically, we will use Kleene Equivalence to measure semantic preservation.

In the following sections, G is some set of reduction rules. R represents the set of reduction rules from
Table A7 (R does not contain

fl−→). R + fl is the set of all reduction rules. We use r to mean an element of
R. ST is an evaluation state of the form 〈e,S〉.

Definition 1 (Full Evaluation) ST ⇓G ST ′ means ST −→∗
G ST ′ and there is no r−→ rule in G such that

ST ′ −→ ST ′′, for some ST ′′.3

Definition 2 (Kleene Equivalence)
(ST1, G1) ∼= (ST2, G2) means ST1 ⇓G1 〈n,S〉 iff ST2 ⇓G2 〈n,S′〉.

By showing that we can “postpone” applications of the
fl−→ rule to the end of evaluation, we conclude that

adding the
fl−→ reduction rule does not interfere with evaluation.

Theorem 2 (Correctness) For all programs P , for all evaluation states ST (where `p P =⇒ P ′ : nat,
P ′ = defn∗e, and ST = 〈e,S〉, for some S), (ST, R) ∼= (ST, R + fl).

Proof: Fix some P and ST which satisfy the conditions of the theorem statement. Assume ST ⇓R 〈n,S〉.
By not performing any

fl−→ steps, we can perform this same evaluation under R + fl. Thus, ST ⇓R+fl 〈n,S〉.
Conversely, assume ST ⇓R+fl 〈n,S〉. We can write out the full evaluation as follows:

ST
R+fl−−−→ ST1

R+fl−−−→ ST2
R+fl−−−→ ...

R+fl−−−→ STn−1
R+fl−−−→ 〈n,S〉

We can rearrange this evaluation using Lemma 1:

ST
r1−→ ST ′

1
r2−→ ...

rk−→ ST ′
k

fl−→ ...
fl−→ ST ′

n−1
fl−→ 〈n,S〉

Since an
fl−→ step never changes the expression and can only remove bindings, it must be the case that

ST ′
k = 〈n, S] S′〉, for some S′. Therefore, ST ⇓R 〈n, S] S′〉.

Lemma 1 (Repeated Postponement) If ST 0
R+fl−−−→ ST 1

R+fl−−−→ ...
R+fl−−−→ STn, then ST 0

r1−→ ST ′
1

r2−→
...

rk−→ ST ′
k

fl−→ ST ′
k+1

fl−→ ...
fl−→ ST ′

n−1
fl−→ STn.

Proof: We induct on the number of rewrite rules in this evaluation. If no evaluations are performed, then
the lemma is vacuously true. Now assume this holds for n − 1 rewriting steps. Applying the assumption,
reorder these evaluations so that all the R rules occur first. If the nth rewrite rule is an

fl−→ rule, we are done.
If the nth rule is an R rule, we can write

3If we had used
r+fl−−−→ in place of

r−→ in this definition, then full evaluation would be unsatisfiable since
fl−→ can always be

applied.

6

ST0
r1−→ ST ′

1
r2−→ ...

rk−→ ST ′
k

fl−→ ST ′
k+1

fl−→ ...
fl−→ ST ′

n−2
fl−→ STn−1

rn−→ STn

By repeatedly applying Lemma 2, we can rewrite the evaluation in the following way:

ST0
r1−→ ST ′

1
r2−→ ...

rk−→ ST ′
k

rn−→ ST ′′
k+1

fl−→ ...
fl−→ ST ′′

n−2
fl−→ ST ′

n−1
fl−→ STn.

Lemma 2 (Postponement) If ST 1
fl−→ ST 2

r−→ ST 3, then ∃ ST ′
2 s.t. ST 1

r−→ ST ′
2

fl−→ ST 3.

Proof: We case on the possible forms of ST 1:

Case [new]:

Assume 〈E [new c] ,S1] S2〉 fl−→〈E [new c] , S1〉 new−−→〈E [object] , S1] {object 7→ 〈c,F〉}〉,
where FL (E [new c] , S1) = ∅, F = {c′.fd 7→ null | ...}, and object 6∈ dom (S1).

By definition, 〈E [new c] ,S1] S2〉 new−−→〈E [object ′] ,S1] S2]
{
object ′ 7→ 〈c,F〉}〉 ≡ ST ′

2 where object ′ /∈
S1] S2 and 〈c,F〉 is as before.

FL
(
E
[
object ′

]
, S1]

{
object ′ 7→ 〈c,F〉})

=
(
FL
(
E
[
object ′

]) ∪ FL
(
S1]

{
object ′ 7→ 〈c,F〉})) \dom (S1]

{
object ′ 7→ 〈c,F〉})

=
[
FL (E [new c]) ∪ FL

(
object ′

) ∪ FL
(
S1]

{
object ′ 7→ 〈c,F〉})] \ [FL (new c) ∪ dom

(
S1]

{
object ′ 7→ 〈c,F〉})],

by Lemma 4.

=
[
(FL (E [new c]) ∪ FL (S1)) \dom

(
S1]

{
object ′ 7→ 〈c,F〉})]

∪ [(FL
(
object ′

) ∪ FL (〈c,F〉)) \dom (S1]
{
object ′ 7→ 〈c,F〉})]

=
[
FL
(
object ′

) ∪ FL (〈c,F〉)] \dom (S1]
{
object ′ 7→ 〈c,F〉}) (by the assumption)

= ∅ (since, by the construction of object ′,FL (〈c,F〉) = ∅).

Thus, ST ′
2

fl−→ 〈
E
[
object ′

]
, S1]

{
object ′ 7→ 〈c,F〉}〉 ≡ STX . Since object 6∈ S1 and object ′ 6∈ S1, STX is

related by alpha to 〈E [object] , S1] {object 7→ 〈c,F〉}〉. We conclude that

ST ′
2

fl−→ 〈E [object] , S1] {object 7→ 〈c,F〉}〉.

Case [get]:

Assume 〈E [object : c′ .fd] ,S1] S2〉 fl−→〈E [object : c′ .fd] , S1〉 get−−→ 〈E [v] , S1〉
where FL (E [object : c′ .fd] , S1) = ∅, S1(object) = 〈c,F〉, and F(c′.fd) = v. Since object ∈ dom (S1),
〈E [object : c′ .fd] ,S1] S2〉 get−−→〈E [v] ,S1] S2〉 ≡ ST ′

2.

(FL (E [v]) ∪ FL (S1)) \dom (S1)

= [FL (E [object : c′ .fd]) ∪ FL (v) ∪ FL (S1)] \ (dom (S1) ∪ FL (object : c′ .fd)) (by Lemma 4)

= [(FL (E [object : c′ .fd]) ∪ FL (S1)) \ (dom (S1) ∪ FL (object : c′ .fd))]∪[FL (v) \ (dom (S1) ∪ FL (object : c′ .fd))]

= FL (v) \ (dom (S1) ∪ FL (object : c′ .fd)), by the assumption.

Combining the fact that FL (v) ⊆ FL (〈c,F〉) with Lemma 5, we conclude that the previous line equals ∅.
Thus, ST ′

2
fl−→ 〈E [v] , S1〉

7

Case [set]:

Assume 〈E [object : c′ .fd = v] ,S1] S2〉 fl−→〈E [object : c′ .fd = v] , S1〉 set−−→〈E [v] , S′
1〉,

where FL (E [object : c′ .fd = v] , S1) = ∅, S1(object) = 〈c,F〉, and S′
1 = S1 [object 7→ 〈c,F [c′.fd 7→ v]〉].

Since object ∈ dom (S1), 〈E [object : c′ .fd = v] , S1] S2〉 set−−→〈E [v] , S′
1] S2〉 ≡ ST ′

2.

(FL (E [v]) ∪ FL (S′
1)) \dom (S′

1)

= [FL (E [object : c′ .fd = v]) ∪ FL (v) ∪ FL (S′
1)] \ (dom (S′

1) ∪ FL (object : c′ .fd = v)) (by Lemma 4)

= [(FL (E [object : c′ .fd = v]) ∪ FL (S′
1)) \ (dom (S′

1) ∪ FL (object : c′ .fd = v))]
∪ [FL (v) \ (dom (S′

1) ∪ FL (object : c′ .fd = v))] (?)

Using Lemma 3 and the fact that [FL (E [object : c′ .fd = v] , S1) = ∅], we get that FL (v) ⊆ dom (S1)

=⇒ FL (〈c,F [c′.fd 7→ v]〉) \dom (S′
1) = ∅

=⇒ FL (S′
1) = ∅

=⇒ (?) = FL (v) \ (dom (S′
1) ∪ FL (object : c′ .fd = v))

= ∅.

Thus, ST ′
2

fl−→ 〈E [v] , S′
1〉.

Case [call]:

Assume 〈E [object .md(v1, ..., vn)] ,S1] S2〉 fl−→〈E [object .md(v1, ..., vn)] , S1〉
call−−→〈E [e [this← object , var1 ← v1, ..., varn ← vn]] , S1〉, where FL (E [object .md(v1, ..., vn)] , S1) = ∅, S1(object) =
〈c,F〉, and 〈md, T, var1 ... varn, e〉 MethInClassP c.

Since object ∈ dom (S1), 〈E [object .md(v1, ..., vn)] ,S1] S2〉
call−−→〈E [e [this← object , var1 ← v1, ..., varn ← vn]] ,S1] S2〉 ≡ ST ′

2.

FL (E [e [this← object , var 1 ← v1, ..., varn ← vn]] , S1)

= [FL (E [object .md(v1, ..., vn)]) ∪ FL (e [...]) ∪ FL (S1)] \ [dom (S1) ∪ FL (object .md(v1, ..., vn))]
(by Lemma 4)

= (FL (E [object .md(v1, ..., vn)]) ∪ FL (S1)) \ [dom (S1) ∪ FL (object .md(v1, ..., vn))]
∪ [FL (e [...]) \ (dom (S1) ∪ FL (object .md(v1, ..., vn)))]

= [FL (e [...])] \ [dom (S1) ∪ FL (object) ∪ FL (v1) ∪ ... ∪ FL (vn)]

= [FL (v1) ∪ ... ∪ FL (vn)] \ [dom (S1) ∪ FL (object) ∪ FL (v1) ∪ ... ∪ FL (vn)] (by Lemma 6)

= ∅.

Thus, ST ′
2

fl−→ 〈E [e [this← object , var 1 ← v1, ..., varn ← vn]] , S1〉.

Case [super]:

The proof for this case is almost exactly the same as the proof for [call].

8

Case [cast]:

Assume 〈E [view t object] ,S1] S2〉 fl−→〈E [view t object] ,S1〉 cast−−→ 〈E [object] ,S1〉,
where S1(object) = 〈c,F〉 and c SubTypeP t.

〈E [view t e] ,S1] S2〉 cast−−→ 〈E [object] ,S1] S2〉, where (S1] S2)(object) = 〈c,F〉 and c SubTypeP t.

Combining the fact that FL (view t object) = FL (object) with Lemma 4, we get that FL (E [object] ,S1) = ∅.
Therefore, 〈E [object] ,S1] S2〉 fl−→ 〈E [object] ,S1〉.

Lemma 3 (FL and Evaluation Context)
FL (E [e]) =

⋃
n FL (n), where n ranges over the nodes of the syntax tree E [e].

Proof: Show by inducting on the height of the syntax tree.

Lemma 4 (FL Substitution)
FL (E [e]) = [FL (E [e′]) ∪ FL (e)] \FL (e′)

Proof: Follows immediately from Lemma 3.

Lemma 5 (Enclosed Fields) If S = {..., object 7→ 〈c,F〉 , ...} ,FL (S) = ∅, and some set A ⊆ FL (〈c,F〉)
then A ⊆ dom (S).

Proof: FL (S) = ∅ =⇒ FL (〈c,F〉) ⊆ dom (S) =⇒ A ⊆ dom (S).

Lemma 6 (FL and Methods)
If P, t0 `m t md(t1 var 1, ..., tn varn) {e} , then FL (e [v1/var1, ..., vn/varn]) ⊆ FL (v1) ∪ ... ∪ FL (vn).

Proof: The body e can contain no object locations, and therefore, all free locations must be introduced by
the substitution.

5.2 The Correctness of Diverging Programs

Non-terminating programs are useful only to the extent that they can communicate with the user or another
program. For example, an operating system, the canonical infinite loop, is useless if it does not interact with
the user.

In this section we sketch how our existing theoretical machinery might be used to derive correctness
properties for non-terminating programs. We assume the existence of a special instance of a class which
appears in all programs at the same location, output. The instance has a field of type nat named datum. We
further assume that object is never garbage collected. Intuitively, the program passes a message to the user
by mutating the field datum in output.

Consider two runs of the same program in which only the second run performs garbage collection. Intu-
itively, we would like to verify that the datum fields of both runs are always the same. Since our only notion of
time is through reduction rules, we provide the following definition which allows us to speak about a particular
point of evaluation across runs even when we interleave garbage collection:

9

Definition 3 (Intermediate Evaluation) ST ⇓i
G 〈e,S〉 means that the program state, after i reduction

steps, is 〈e,S〉. Each rule in G counts as 1 reduction step, except for
fl−→, which counts as 0 steps.

Given the object output and the previous definition, we can concisely formulate a correctness property
which applies to all well-typed programs:

Property 1 For all programs P , (where `p P =⇒ P ′ : nat, P ′ = defn∗e0, and ST0 = 〈e0, ∅〉), if ST 0 ⇓i
R

〈e,Si〉 and ST 0 ⇓i
R+fl

〈
e′,S′j

〉
, then F(c.datum) = F ′(c.datum), where Si(output) = 〈c,F〉 and S′j(output) =

〈c,F ′〉.

Proof: (Sketch) We assume ST 0
r1−→ ST 1

r2−→ ...
ri−→ ST i and ST 0

R+fl−−−→ ST ′
1

R+fl−−−→ ...
R+fl−−−→ ST ′

j , where

j ≥ i. Applying Lemma 1 and alpha-renaming, we conclude ST 0
r1−→ ST 1

r2−→ ...
ri−→ ST i

fl−→ ST ′′
i+1

fl−→ ...
fl−→

ST ′′
j−1

fl−→ ST ′
j . Assume that F(c.data) 6= F(c.data). Only set−−→ (an R rule) can change the value of a field,

and thus the first time the fields carry different values must occur with one of the rules r1, ..., ri. But we have
already shown that the first i + 1 states of both evaluations are equivalent up to alpha-renaming, and so this
is a contradiction.

6 Conclusion

Our work was inspired by an implementation of dynamic upgrading [9]. Its authors claim that their system
preserves both performance and correctness. We wanted to prove the latter. To do so, however, we needed
to be able to model their implementation (which significantly modifies the garbage collector to preserve
performance).

Unfortunately, there is a mismatch between the previously existing garbage collection models [7, 8] and
the dynamic upgrading system. The former are variants of the lambda calculus; the latter is an enhanced
form of Java. Hence, it is not possible to directly adapt these existing models to yield a close approximation
of the upgrading system.

Therefore, we designed a model of Java with explicit support for garbage collection. We present the model,
prove it type sound, and then prove that our addition of the garbage collection reduction rule is also sound.
In particular, we show that this rule does not affect the return values of programs. Finally, we propose a
correctness property which applies to non-terminating programs.

We still face interesting and significant open problems. First, our garbage collection reduction rule is
atomic, and thus our model is inadequate for systems with concurrent garbage collection (for a recent example,
see [2]). Second, the next Java standard will include parametric polymorphism to complement the subtype
polymorphism already present in the language. This standard is based on the work of Bracha, et. al. on
Generic Java [1]. As run-time systems implement this extension, we will have to extend our proofs to handle
this richer type context.

10

References

[1] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past: Adding
genericity to Java programming. ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications, October 1998.

[2] P. Chang. Scalable Real-time Parallel Garbage Collection for Symmetric Multiprocessors. PhD thesis,
Carnegie Mellon University, 2001.

[3] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and state.
Theoretical Computer Science, 102:235–271, 1992.

[4] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction semantics for classes and mixins.
Technical Report TR 97-293, Rice University, June 1999. Previous version appeared in ACM Symposium
on Principles of Programming Languages, 1998.

[5] R. Harper and C. Stone. A type-theoretic interpretation of Standard ML. Proof, Language and Interaction:
Essays in Honour of Robin Milner, 1998.

[6] M. Hicks. Dynamic Software Updating. PhD thesis, University of Pennsylvania, 2001.

[7] G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory management. ACM Conference
on Functional Programming and Computer Architecture, 1995.

[8] G. Morrisett and Robert Harper. Semantics of memory management for polymorphic languages. Higher-
Order Operational Techniques in Semantics, pages 175–226, 1998.

[9] D. Reiss, G. Cooper, and S. Krishnamurthi. Efficient run-time support for type safe dynamic class
upgrades. Technical Report CS-01-08, Brown University, 2001.

[10] A. Wright and M. Felleisen. A syntactic approach to type soundness. Information and Computation,
115(1):38–94, 1991.

11

Appendix

In this section, we prove that ClassicJava
gc is sound. For completeness, in the tables that follow, we also

present the typing and reduction rules of the original ClassicJava.
Since evaluation may introduce objects as expressions, we need to be able to type check these new expres-

sions in order for the soundness proof to work. Thus, as is standard in the literature, we introduce a new
typing rule4:

[obj]object ∈ dom (Γ)
P, Γ `e object : Γ(object)

As in Flatt, et. al. [4], we replace [wcast, `e] and [ncast, `e] with a new casting relation. This relation
allows us to assign types to all intermediate expressions of the reduction:

[cast, `e]
P, Γ `e e : t′

P, Γ `e view t e : t

We also need to ensure that the typing environment and store each self-consistent and consistent with each
other. We use the following condition to express this property:

Definition 4 (Environment-Store Consistency)
P, Γ `σ S ⇔

[S(object) = 〈c,F〉
Σ1: =⇒ Γ(object) = c

Σ2: and dom (F) =
{
c1.fd | 〈c1.fd , c2〉 FieldInClassP c

}
Σ3: and rng (F) ⊆ dom (S) ∪ {null} ∪ Nat

Σ4: and
(
F(c1.fd) = object ′ and 〈c1.fd , c2〉 FieldInClassP c

)
=⇒

((S(object ′) = 〈c′,F ′〉) =⇒ c′ SubTypeP c2

)
Σ5: and

(
F(c1.fd) = n and 〈c1.fd , c2〉 FieldInClassP c

)
=⇒ (c2 = nat)]

Σ6: and object ∈ dom (Γ) =⇒ object ∈ dom (S)
Σ7: and dom (S) ⊆ dom (Γ)

Note that the this in a source code super expression may become object , for some object , during evalua-
tion.5. As in [4], we need to ensure that the following property of super expressions always holds:

Definition 5 (Well-Formed Super Calls)
SuperOK(e)⇔ For all super ≡ e0 : c .md(e1, ..., en) in e, either e0 = this or e0 = object , for some object .

We are now ready to prove type soundness. For convenience, we duplicate the theorem statement here:

Theorem 1 (Type Soundness) If `p P =⇒ P ′ : nat and P ′ = defn1 ... defnn e, then either

1. Evaluation diverges; or
4This rule would not appear in any implementation of this model. It only exists to make the soundness proof work.
5This can happens under substitution, since this is a variable.

12

2. Evaluation results in an error configuration; or

3. P ′ ` 〈e, ∅〉 −→∗ 〈null,S〉; or

4. P ′ ` 〈e, ∅〉 −→∗ 〈n,S〉

Proof: If evaluation diverges then we are done. Thus, assume evaluation does not diverge. We first show:

If at least s steps of evaluation apply and the resulting state (after s steps) is 〈es,Ss〉 and not an error config-
uration, then ∃ Γ s.t. P ′, Γ `e es : nat and P ′, Γ `σ Ss and SuperOK(es). (?)

When s = 0: From [prog, `p] we know P ′, {} `e e : nat, P ′, ∅ `σ ∅, and SuperOK(e) is trivially true. Thus,
(?) is true for s = 0. Now assume (?) holds for s = k. By Subject Reduction, then, we know that (?) holds for
s = k + 1. Thus (?) is proved. We know evaluation halts in a finite number s steps. By combining (?) with
Progress, we prove Type Soundness.

Lemma 7 (Subject Reduction) If P, Γ `e e : nat and P, Γ `σ S and SuperOK(e) and 〈e,S〉−→〈e′,S′〉,
then e′ is an error configuration or there exists a Γ′ s.t.

1. P, Γ′ `e e′ : nat;

2. P, Γ′`σ S′; and

3. SuperOK(e′)

Proof: We case on every possibility of −→. If e′ is an error configuration, then we’re done. Otherwise, we
construct a Γ′ and show that it satisfies the required properties. For property 3, we point you to Flatt, et. al.
[4], except for the

fl−→ case, in which it is trivially true.

Case [new−−→]: Let Γ′ = Γ [object 7→ c].

1. We know P, Γ `e E [new c] : nat. From new−−→, object 6∈ dom (S) =⇒ (by Σ6) object 6∈ dom (Γ) =⇒ (by
Lemma 9) P, Γ′ `e E [new c] : nat. Since P, Γ′ `e new c : c and P, Γ′ `e object : c, we get from Lemma
10 that P, Γ′ `e E [object] : nat.

2. Σ5 is unaffected by the change to S and Γ.

Case [
get−−→]: Let Γ′ = Γ.

1. P, Γ `e E [object : c′ .fd] : nat. Let t be such that P, Γ `e object : c′ .fd : t. If v = null then v can
be typed as t =⇒ (by Lemma 10) P, Γ `e E [v] : nat. Now assume v is some object ′. We know by
inversion of [get, `e] that 〈c′.fd , t〉 FieldInClassP c, for some c. By Σ6 and Σ4, c′′ SubTypeP t, where
S(object ′) = 〈c′′, 〉 =⇒ (by Σ1) P, Γ `e object ′ : c′′ =⇒ (by Lemma 12) P, Γ `e E [v] : nat. Finally, if
v is a number then Σ5 gives us t = nat. Since P, Γ `e v : nat, by Lemma 10 we get P, Γ `e E [v] : nat.

2. S and Γ are unchanged.

Case [set−−→]: Let Γ′ = Γ.

1. Very similar to previous case.

13

2. Σ3, Σ4, and Σ5 are the properties affected by the field update, but the proof of Σ4 can be used from [4].
Σ3: By definition of v and Lemma 13.
Σ5: By inversion of [set,`e], c2 = nat.

Case [call−−→]: Let Γ′ = Γ.

1. We assume P, Γ `e E [object .md(v1, ..., vn)] : nat. Thus, we know P, Γ `e object .md(v1, ..., vn) : t for
some t. By inversion of

[
call, `e

]
, we get P, Γ `e object : t′ and

〈md , t1 ... tn → t, var 1 ... varn, eb〉 MethInClassP t′ and P, Γ `e vi : ti =⇒ P, Γ `s vi : ti =⇒ P, t0 `m

t md (t1 var 1, ..., tn varn) {eb}, where t0 is the defining class of md =⇒
P, [this : t0, var1 : t1, ..., varn : tn] `s eb : t =⇒ (with an alpha-renaming if necessary)
P, Γ [this : t0, var1 : t1, ..., varn : tn] `s eb : t =⇒ (by inversion of

[
sub, `s

]
)

P, Γ [this : t0, var1 : t1, ..., varn : tn] `e eb : t′′, for some t′′ SubTypeP t. From MethInClassP we know
that t′ SubTypeP t0 =⇒ P, Γ `s object : t0 =⇒ (by Lemma 11) P, Γ `s eb [object/this, v1/var1, ..., vn/varn] :
t′′ =⇒ P, Γ `s eb [...] : t =⇒ (by Lemma 12) P, Γ `s E [eb [...]] : nat =⇒ P, Γ `e E [eb [...]] : nat.

2. S and Γ are unchanged.

Case [
super−−−→]: The proof is very similar to the proof for object .md(v1, ..., vn).

Case [cast−−→]: Let Γ′ = Γ.

1. We assume P, Γ `e E [view t′object] : nat =⇒ view t′object : t′. By the side-conditions of [cast],
we know that S(object) = 〈c, 〉 and c SubTypeP t′ =⇒ P, Γ `s object : t′ =⇒ (by Lemma 12)
P, Γ `s E [object] : nat.

2. S and Γ are unchanged.

Case [add1−−−→]: Let Γ′ = Γ.

1. We assume P, Γ `e E [add1 v] : nat. By inversion of
[
add1, `e

]
, we get that P, Γ `e v : nat. By Lemma

10, since v + 1 is also of type nat, P, Γ′ `e E [v + 1] : nat.

2. S and Γ are unchanged.

Case [
fl−→]: Let Γ′ = Γ\ {object 7→ c | object ∈ dom (S2) and Γ(object) = c}.6 P ` 〈e,S1] S2〉 −→ 〈e,S1〉.

1. We assume P, Γ `e e : nat. Let G ≡ Γ\Γ′. Assume that rule
[
obj,`e

]
with some object ∈ dom (G) is

used in the typing derivation of e. Since, in a derivation, a typing environment is never extended or
reduced with respect to Loc’s, we know that P, Γ `e object : c, for some c =⇒ object ∈ dom (Γ). Thus,
P, Γ `σ (S1] S2), e =⇒ (by Σ6) object ∈ dom (S1] S2) =⇒ (by choice of object) object ∈ dom (S2).
Also, object in the typing derivation of e =⇒ object ∈ FL (e) =⇒ (since object ∈ dom (S2), and hence

object 6∈ dom (S1)) FL (e,S1) 6= ∅, which is a contradiction by the side-condition of the
fl−→ reduction

rule. Thus, object ∈ dom (G) cannot exist in the typing derivation of e with Γ =⇒ the same typing
derivation can be used for Γ′.

2. For Σ1...Σ5, assume S1(object) = 〈c,F〉.
Σ1: Satisfied since S1 ⊆ S1] S2 and P, Γ `σ S1] S2

Σ2: Same argument as Σ1.

6Γ′ is a subset of the bindings in Γ. We define Γ′ as such so that environment-store consistency is preserved across an
fl−→

application.

14

Σ3: We have only removed bindings with this step. So we only need to consider the possibility that
we removed something in the rng (F). Precisely, assume some object2 ∈ dom (S2) such that F(c1.fd) =
object2 for some c1 and fd . We know object2 ∈ FL (〈c,F〉) ⊆ FL (S1) =⇒ {object2 7→ ...} ∈ FL (e,S1)

which violates the side-condition of
fl−→.

Σ4: By a similar argument to the one we used for Σ3, we get object ′ ∈ dom (S1) =⇒ (since P, Γ `σ

S1] S2, e) Σ4 is satisfied.
Σ5: Same argument as Σ1.
Σ6: Let object ∈ dom (Γ′) =⇒ (by P, Γ `σ S1] S2, e) Γ(object) = c, for some c =⇒ (by definition of
Γ′) object 6∈ dom (S2).
Σ7: Assume S1(object) = 〈c,F〉 =⇒ Γ(object) = c =⇒ (since object ∈ dom (S1)) object ∈ dom (Γ′).

Lemma 8 (Progress) If P, Γ `e e : nat and P, Γ `σ S and SuperOK(e), then either e is null or n or there

exists an 〈e′,S′〉 such that P ` 〈e,S〉 −→ 〈e′,S′〉, where −→ must not be
fl−→.7

Proof: If e is null or e is a number then we are done. If not, then we case on the redex in e.

Case [new c]: The proof follows directly from the [new] reduction rule.

Case [v : c.fd]: By type-checking, v 6∈ Nat . If v = null,
nget−−−→ applies. If v = object , then we can show

that [get] applies: Type checking (specifically inversion of
[
get, `e

]
) =⇒ P, Γ `e object : t′, for some

type t′ =⇒ (by Lemma 13) S(object) = 〈t′,F〉, for some F . By inversion of
[
get, `e

]
we also know that

〈c.fd , t〉 FieldInClassP t′, for some t =⇒ (by Σ2) c.fd ∈ dom (F).

Case [v : c.fd = v′]: Similar to v : c.fd .

Case [v.md(v1, ..., vn)]: By type-checking, v 6∈ Nat . If v is null, ncall−−−→ applies. Assume v = object . Type-
checking =⇒ P, Γ `e object : t′ =⇒ (by Σ6) object ∈ dom (S) =⇒ S(object) = 〈t′,F〉, for some F . Type
checking =⇒ 〈md , T, V, eb〉 MethInClassP t′.

Case [super ≡ v : c]: By SuperOK(e), v is some object . Type-checking =⇒ 〈md , T, V, eb〉 MethInClassP c.

Case [view t v]: By type-checking, v 6∈ Nat . If v = null, ncast−−−→ applies. Assume v = object , and type-checking
=⇒ P, Γ `e object : t′ =⇒ (by Σ6) S(object) = 〈t′,F〉 for some F .

Case [add1 v]: Since type-checking guarantees v ∈ Nat , add1−−−→ applies.

Lemma 9 (Free) If P, Γ `e e : t and a 6∈ dom (Γ), then P, Γ [a : t′] `e e : t.

Proof: From Flatt, et. al. [4], Lemma C.3.1.

Lemma 10 (Replacement) If P, Γ `e E [e] : t, P, Γ `e e : t′, P, Γ `e e′ : t′, then P, Γ `e E [e′] : t.

7Note that e cannot be an error expression since such expressions are not typable.

15

Proof: From Flatt, et. al. [4], Lemma C.3.2.

Lemma 11 (Substitution) If P, Γ [var 1 : t1, ..., varn : tn] `e e : t and P, Γ `s vi : ti for i ∈ [1, n], then
P, Γ `s e [v1/var1, ..., vn/varn] : t.

Proof: From Flatt, et. al. [4], Lemma C.3.3.

Lemma 12 (Replacement with Subtyping) If P, Γ `e E [e] : t, P, Γ `e e : t′, and P, Γ `e e′ : t′′ where
t′′ SubTypeP t′, then P, Γ `s E [e′] : t.

Proof: From Flatt, et. al. [4], Lemma C.3.4.

Lemma 13 (Consistency Consequence) If P, Γ `σ S and P, Γ `e object : c, then S(object) = 〈c,F〉, for
some F .

Proof: P, Γ `e object : c =⇒ (by inversion of
[
obj, `e

]
) Γ(object) = c =⇒ (with P, Γ `σ S) object ∈

dom (S) =⇒ S(object) = 〈c′,F〉, for some c′ and F =⇒ (by Σ1) Γ(object) = d =⇒ c = d.

.

16

predicate Each class name is declared only once.
ClassesOnce(P) class c ... class c′ ... is in P =⇒ c 6= c′

predicate Field names in each class declaration are unique.
FieldOncePerClass(P) class ...

{
... fd ... fd ′ ...

}
is in P =⇒ fd 6= fd ′

predicate Method names in each class declaration are unique.
MethodOncePerClass(P) class ...

{
... md ... md ′ ...

}
is in P =⇒ md 6= md ′

predicate Each interface is declared only once.
InterfacesOnce(P) interface i ... interface i′ ... is in P =⇒ i 6= i′

predicate Method declarations in an interface are abstract.
InterfacesAbstract(P) interface ... {... md(...) {e} ...} is in P =⇒ e is abstract
predicate Each method argument name is unique.
MethodArgsDistinct(P) md (t1 var 1 ... tn varn) {...} is in P =⇒ var1, ..., varn and this are all distinct
relation Class is declared as an immediate subclass.

SubClassDecP c SubClassDecP c′ ⇔ class c extends c′ ... {...} is in P

relation Field is declared in class.
ClassFieldDecP 〈c.fd, t〉 ClassFieldDecP c⇔ class c... { ... t fd ...} is in P

relation Method is declared in class.
ClassMethDecP 〈md , (t1 ... tn → t), (var 1 ... varn), e〉 ClassMethDecP c⇔

class c ... {... t md(t1 var 1 ... tn varn) {e} ...} is in P

relation Interface is declared as an immediate sub-interface.
SubInterfaceDecP i SubInterfaceDecP i′ ⇔ interface i extends ... i′ ... {...} is in P

relation Method is declared in an interface.
IntMethDecP 〈md, t1, t2, ..., tn → t, var 1, ..., varn, e〉 IntMethDecP i

⇔ interface i ... {... t md (t1 var 1 ... tn varn) {e} ...} is in P

relation Class declares implementation of an interface.
ImplementsDecP c ImplementsDecP i⇔ class c ... implements... i ... {...} is in P

Table A1: Predicates and relations of ClassicJava

17

relation Class is a subclass.
SubClassP SubClassP ≡ the transitive, reflexive closure of SubClassDecP

predicate Classes that are extended are defined.

CompleteClases(P) rng
(

SubClassDecP

)
⊆ dom

(
SubClassDecP

)
∪ {object}

predicate Class hierarchy is an order.
WellFoundedClasses(P) SubClassP is antisymmetric
relation Interface is a sub-interface.

SubInterfaceP SubInterfaceP ≡ the transitive, reflexive closure of SubInterfaceDecP

predicate Extended/implemented interfaces are defined.

CompleteInterfaces(P) rng
(

SubInterfaceDecP

)
∪ rng

(
ImplementsDecP

)
⊆
[
dom

(
SubInterfaceDecP

)
∪ {Empty}

]
predicate Interface hierarchy is an order.
WellFoundedInterfaces(P) SubInterfaceP is antisymmetric
relation Class implements an interface.

ImplementsP c ImplementsP i⇔
∃c′, i′ s.t. c SubClassP c′ and i′ SubInterfaceP i and c′ ImplementsDecP i′

Table A2: Predicates and relations of ClassicJava

predicate Method overriding preserves the type.
ClassMethodsOK(P) 〈md, T, V, e〉 ClassMethDecP c and 〈md, T ′, V ′, e′〉 ClassMethDecP c′

=⇒
(
T = T ′ or c NOT SubClassP c′

)
relation Field is contained in a class.

FieldInClassP 〈c′.fd, t〉 FieldInClassP c⇔[〈c′.fd, t〉 ClassFieldDecP c′ and

c′ = min
{
c′′|c SubClassP c′′ and ∃t′ s.t. 〈c′′.fd, t′〉 ClassFieldDecP c′′

}]

relation Method is contained in a class.
MethInClassP 〈md, T, V, e〉 MethInClassP c⇔

〈md , T, V, e〉 ClassMethDecP c′ and
c′ =

min
{
c′′ | c SubClassP c′′ and ∃e′, V ′ s.t. 〈md , T, V ′, e′〉 ClassMethDecP c′′

}
predicate Interface inheritance or re-declaration of methods is consistent.
IntMethodsOK(P) [〈md, T, V, abstract〉 IntMethDecP i and

〈md, T ′, V ′,abstract〉 IntMethDecP i′]
=⇒ (T = T ′ or ∀i′′(i′′ NOT SubInterfaceP i or i′′ NOT SubInterfaceP i′))

relation Method is contained in an interface.
MethInIntP 〈md, T, V, abstract〉 MethInIntP i⇔

i SubInterfaceP i′ and 〈md, T, V, abstract〉 IntMethDecP i′

Table A3: Predicates and relations of ClassicJava

18

predicate Classes supply methods to implement interfaces.
ClassesImplementAll(P) c ImplementsDecP i =⇒

∀md, T, V,

(
〈md, T, V, abstract〉 MethInIntP i =⇒
∃e, V ′ s.t. 〈md, T, V ′, e〉 MethInClassP c

)

predicate Class has no abstract methods.
NoAbstractMethods(P ,c) 〈md, T, V, e〉 MethInClassP c =⇒ e 6= abstract
relation Type is a subtype.

SubTypeP SubTypeP ≡ SubClassP ∪ SubInterfaceP ∪ ImplementsP

relation Field or method is in a type.
InTypeP InTypeP ≡ MethInClassP ∪ FieldInClassP ∪ MethInIntP

Table A4: Predicates and relations of ClassicJava

19

[prog, `p]

ClassesOnce(P) InterfacesOnce(P) MethodOncePerClass(P)

FieldOncePerClass(P) CompleteClasses(P) WellFoundedClasses(P)

CompleteInterfaces(P) WellFoundedInterfaces(P) IntMethodsOK(P)

InterfacesAbstract(P) MethodArgsDistinct(P) ClassesImplementAll(P)

P `d defn j =⇒ defn ′
j , for j ∈ [1, n] P, [] `e e =⇒ e′ : nat where P = defn1 ... defnn e

`p defn1 ... defnn e =⇒ defn ′
1 ... defn ′

n e′ : nat

[defn-class, `d]

P `t tj for each j ∈ [1, n] P , c `m methk =⇒ meth′
k for each k ∈ [1, p]

P `d class c ... {t1 fd1 ... tn fdn meth1 ... methp} =⇒
class c ... {t1 fd1 ... tn fdn meth′

1 ... meth′
p}

[defn-int, `d]
P , i `m methj =⇒ methj for each j ∈ [1, p]

P `d interface i ...{meth1 ... methp} =⇒ interface i ...{meth1 ... methp}

[meth, `m]
P `t t P `t tj for j ∈ [1, n] P , [this : t0, var1 : t1, ..., varn : tn] `s e =⇒ e′ : t

P , t0 `m t md(t1 var 1, ..., tn varn){e} =⇒ t md(t1 var 1, ..., tn varn){e′}

[new, `e]P `t c NoAbstractMethods(P,c)

P, Γ,`e new c =⇒ new c : c

[var, `e]
var ∈ dom (Γ)

P, Γ `e var =⇒ var : Γ(var)

[null, `e]P `t t

P, Γ `e null =⇒ null : t

[get, `e]
P, Γ `e e =⇒ e′ : t′ 〈c.fd, t〉 FieldInClassP t′

P, Γ `e e.fd =⇒ e′: c.fd : t

[set, `e]
P, Γ `e e =⇒ e′ : t′ 〈c.fd, t〉 FieldInClassP t′ P, Γ `s ev =⇒ e′v : t

P, Γ `e e.fd = ev =⇒ e′: c.fd = e′v : t

Table A5: ClassicJava typing rules

20

[call, `e]
P, Γ `e e =⇒ e′ : t′ 〈md, T, V, eb〉 MethInClassP t′ P, Γ `s ej =⇒ e′j : tj for j ∈ [1, n]

P, Γ `e e.md(e1...en) =⇒ e′.md(e′1...e
′
n) : t

[super, `e]

P, Γ `e this =⇒ this : c′ c′ SubClassDecP c

〈md, T, V, eb〉 MethInClassP c eb 6= abstract P, Γ `s ej =⇒ e′j : tj for j ∈ [1, n]

P, Γ `e super.md(e1...en) =⇒ super ≡ this : c.md(e′1...e
′
n) : t

[wcast, `e]
P, Γ `s e =⇒ e′ : t t 6= nat

P, Γ `e view t e =⇒ e′ : t

[ncast, `e]

P, Γ `e e =⇒ e′ : t′




t SubTypeP t′ or

t ∈ dom
(

SubInterfaceDecP

)
or

t′ ∈ dom
(

SubInterfaceDecP

)

 t′ 6= nat

P, Γ `e view t e =⇒ view t e′ : t

[abs, `e]P `t t

P, Γ `e abstract =⇒ abstract : t

[sub, `s]
P, Γ `e e =⇒ e′ : t′ t′ SubTypeP t

P, Γ `s e =⇒ e′ : t

[type, `t]
t ∈
[
dom

(
SubClassDecP

)
∪ dom

(
SubInterfaceDecP

)
∪ {object , Empty}

]
P `t t

Table A6: ClassicJava typing rules

21

E = []
| E : c .fd
| E : c .fd = e | v : c .fd = E

| E.md(e ...) | v.md(v ... E e...) [evaluation contexts]
| super ≡ v : c.md(v...E e...)
| view t E

| add1 E

P ` 〈E [new c] ,S〉 −→ 〈E [object] ,S[object 7→ 〈c,F〉]〉 [new−−→]
where object 6∈ dom (S) and

F =
{

c′.fd 7→ null | c SubClassP c′ and∃t s.t. 〈c′.fd, t〉 ClassFieldDecP c′
}

P ` 〈E [object : c′.fd] ,S〉 −→ 〈E [v] ,S〉 [
get−−→]

where S(object) = 〈c, F 〉 and F(c′.fd) = v

P ` 〈E [object : c′.fd = v] ,S〉 −→ 〈E [v] ,S[object 7→ 〈c,F [c′.fd 7→ v]〉]〉 [set−−→]
where S(object) = 〈c,F〉

P ` 〈E [object .md(v1, ..., vn)] ,S〉 −→ 〈E [eb [this← object , var1 ← v1, ..., varn ← vn] ,S]〉 [call−−→]

where S(object) = 〈c,F〉 and
[
〈md , T, var1 ... varn, eb〉 MethInClassP c

]

P ` 〈E [super ≡ object : c′.md(v1, ..., vn)
]
,S〉 −→ [

super−−−→]
〈E [eb[this← object , var1 ← v1, ..., varn ← vn]] ,S〉
where 〈md , T, var1 ... varn, eb〉 MethInClassP c′

P ` 〈E [view t′object] ,S〉 −→ 〈E [object] ,S〉 [cast−−→]
where S(object) = 〈c,F〉 and c SubTypeP t′

P ` 〈E [view t e] ,S〉 −→ 〈error: bad cast,S〉 [xcast−−−→]
where S(object) = 〈c,F〉 and c NOT SubClassP t

P ` 〈E [view t null] ,S〉 −→ 〈error: bad cast,S〉 [ncast−−−→]

P ` 〈E [null : c .fd] ,S〉 −→ 〈error: deref null,S〉 [
nget−−−→]

P ` 〈E [null : c .fd = v] ,S〉 −→ 〈error: deref null,S〉 [nset−−−→]

P ` 〈E [null.md(v1, ..., vn)] ,S〉 −→ 〈error: deref null,S〉 [ncall−−−→]

Table A7: ClassicJava operational semantics

22

