Foundations of Incremental Aspect Model-Checking

Shriram Krishnamurthi Kathi Fislef
Brown University WPI
May 27, 2006
Abstract

Programs are increasingly organized around features, which eap#riated using aspects and other linguistic
mechanisms. Despite their growing popularity amongst developers,ighedearth of techniques for computer-aided
verification of programs that employ these mechanisms. We presehtitretical underpinnings for applying model-
checking to programs (expressed as state machines) written usingrieelanisms. The analysis is incremental,
examining only components that change rather than verifying the enstemsyevery time one part of it changes.
Our technique assumes that the set of pointcut designators is knowalstahiat that the actual advice can vary. It
handles both static and dynamic pointcut designators. We present thighatggrove it sound, and address several
subtleties that arise, including cascading advice application and probferinsudar reasoning.

Categories and Subject Descriptors:D.2.4 [Software Engineering: Software/Program Verification; D.3.2fo-
gramming Language$: Language Classifications
General Terms: Algorithms, Languages, Verification

Keywords: incremental verification, modular verification, model-ckiag, aspect-oriented programming, feature-
oriented software

1 Introduction

There is growing consensus [5] that traditional softwaracstires have notable abstraction weaknesses, and new
software composition techniques are evolving to addressetleriticisms. These new techniques help a developer
incrementally link segments of user-visible functionalisometimes called “features” [16]) to programs. Writing
these identifiable increments in conventional programrtanguages is challenging because an increment may affect
parts of a program across traditional module boundariesh swcrements are callegtosscutting This has led to a
growing body of work on developing new forms of program madity that go by different names includimgiEAD,

mixin layers, etc. [6, 8, 9, 25, 29, 47, 51, 59]. Some techeécare purely static, effectively manipulating the progsam

*Preliminary versions of this material appeared in confergnigications [26, 41].

tThis work is partially supported by NSF grants CCF-0447%00OR-0132659 and CCR-0305834.
fComputer Science Department, Brown University, ProvideR¢eJSA, sk@s. br own. edu
§Department of Computer Science, WPI, Worcester, MA, USHA, s| er @s. wpi . edu

source, while others have dynamic elements, offering thilgyato reflect on the state of the program’s execution and
then to modify it.

Aspect-oriented programmin@@P) [39], especially as realized in the AspectJ language [88ne of the most
popular forms of incremental program composition. Aspsaggport both static and dynamic linking specifications,
but their most distinctive techniques are arguably in thetacategory. In particular, AspectJ provides a pattern
language that can predicate the execution of an aspect otuthent shape of a program’s stack. It can therefore
express a rich family of coherent, conceptual ideas thabeadifficult to encapsulate in more traditional notions of a
module.

With the popularity ofaop burgeoning, software engineers should expect tool sujaatl stages of the software
cycle—including validation of behavioral properties. Thisspecially important because the expressive power that
aspects unleash also heightens the potential for erroecif@ally, a program may satisfy a behavioral property but
the application of an aspect to the program may now invadidiaat property. The problem is especially insidious
because the application of one aspect may cause the aplioAtinother, and so on; the resulting property violations
can be quite subtle, making their identification daunting.

In this paper, we adattL model checking [12] to verify aspect-oriented programgessible as state machines.
Our technique is designed to identify situations where th@ieation of an aspect to a program (which may already
be the result of aspect composition) may violate some d#simroperties of the program and, also, of the resulting
composed system. Verifying whether a given program exitgrtain properties is a straightforward application of
model checking. In contrast, establishing that the apitinaf an advice does not violate the properties is challeng
A model checker traverses program paths, so to establisbpery of the composition, it must traverse paths that lie
partly within the program and partly within the advice. Ha@e demanding that the developer combine the advice
and program prior to each verification is onerous:

1. The advice may be authored at a different time or in a diffeplace than the program, just as modules are
developed in spatial and temporal independence.

2. The advice may be edited repeatedly; verification timedpgrtional to the size of the system, so constantly
verifying the changing advice against a fixed program isficient.

We instead develop modulartechnique that analyzes a program and a family of applicagpects independently,
while caching just enough information to identify inteliaos between them.

Modularity has multiple interpretations. We assume a tsthtack-box interpretation, whereby an aspect can
assume and return control only at well-defined interfaceestaA looser, white-box interpretation is that modularity
merely means avoiding repeated analysis over the prograngtherwise making information from all states of the
program available when analyzing aspects. By treatingygyair of states as potential points for attaching advice, ou
technique could simulate this looser notion, and thus sagpmuch richer family of aspects [35].

To enable modular analysis, we require some informatiom filee programmer specifying where an aspect will
apply, which enables our technique to cache some informatiout the program. Specifically, we depend on specifi-
cations called pointcut designators, which programmeezadly write. Changes to these specifications may invalidate
the cached information, forcing a fresh round of modulanyses. Therefore, we conceive this asiaoremental
technique: analogous to incremental compilation, it ®iggfresh verification when certain portions of the system

change, while trying to avoid having to verify the system ashale. Because our technique supports static linking
specifications in addition to dynamic ones, it can just afyebe applied to many of the other attempts to improve
program modularity [8, 25, 47, 59].

Our result suggests a change to the design of aspect larggyu&grently, an aspect in AspectJ requires the
co-specification of where an aspect will apply (the pointtegignator) and what it will perform at those points. The
formal model in this paper mirrors this tradition. In comstsdhowever, our verification technique exploits the sefpara
of these two concerns: knowing where the aspect will appabks our algorithms to record information that can be
used to verify the actual injected behavior, which may ormykhown later (and may change repeatedly).

To use the terminology of Filman and Friedman [24], our wakres “quantification” over “obliviousness”. In this
respect, our work is not alone: there is growing interestdaalets that have partial specifications of aspectual behavio
Kiczales and Mezini's paper on modular reasoning propasesfaces with lightweight aspect specifications [40].
Furthermore, the paper by Sullivan, et al. [61] stronglyliemges the traditional belief that obliviousness is caintr
to aspect-orientation. Since the separation we introdaocea@ other reasoning techniques, as well as tools such as
compilers, we believe it would be beneficial for future agpaoguage designs to cleave the definition of an aspect
asunder.

To apply finite-state model checking to infinite-state seypscograms we must impose some restrictions on the
kinds of systems we can analyze, and these are augmenteeé bwtilre of aspects. Our work therefore makes the
following assumptions:

e The model restricts the sharing of data between the prognahadvice. It permits advice to read the data of the
program, which is already sufficient to implement standaukeat examples such as tracing and logging. The
model does not, however, permit an aspect to modify a progrdata.

This begs the question of whether it is possible to have rigiattaspects that do not modify the main program’s
data. To answer this question, we examined all the examiplggibook by Laddad [43], which appears to be
the most comprehensive catalog of non-trivial aspect usé®acompasses many of the examples presented in
the research literature (such as adding transactionabsyamd a variation on implementing design patterns).
Our examination of the book revealed that virtually all sféxamples fit the assumption we make: most of the
interesting advice reads the program’s data, but virtuadyadvice modifies it. The primary counter-example
we found was on pages 404-405: an overdraft rule that tremsfeney from one account into another. (Even
the variants of that rule presented in the same chapter (€hap) do not have this property.) Therefore, there
are numerous interesting and non-trivial aspects that fitreadel.

It is not impossible to verify programs when advice are p#gdito modify the program’s data, but it does
require a different approach to verification (such as tiwaaed model checking). We discuss these approaches
briefly in section 8. That work is largely orthogonal to thepagach we present here, but would need to be
augmented with some of the techniques discussed in thig.pape

e The form of program model we describe here is not well-suitegrograms with heavily recursive control
structure. Heavily recursive programs tend to take thimfbecause they are processing rich, recursive data.

1our technique does not need the pointcut designators toemfigol with the program: it only demands that the designatersupplied at the
time of verifyingthe program. This is a subtle but important difference.

These are, however, the kinds of programs for which modetking is itself often ill-suited, so our choice of
model does not impose a fresh restriction beyond that ajrpleded by the use of model-checking.

¢ Although model checking is, in principle, both sound and ptate, we can only ensure soundness. We discuss
this in the context of algorithm 5 in section 6.3.

We propose the following route to navigating this paper.deesiunfamiliar with aspects or model checking should
consult the background material in section 2. Those who wariverview of the work can skim section 3 for the
formal models and then read section 4, which presents the coatribution through a running example, covering the
subtleties that arise. The details of how to approximatganm stacks, which section 4 depends on, are in section 5.
Understanding the rest of the paper requires a more thoneugérstanding of section 3. A more precise exposition of
the algorithms is in section 6. Finally, the stout of healt want to study the proofs, which are in section 7. They will
be rewarded with a detailed description of how our algorifimuperly addresses the circular reasoning issues raised
in section 4.4.

2 Background

2.1 Aspect-Oriented Programming

This paper uses a simplified versionap. Informally, our model has a notion efdvising or altering, a program’s
behavior. The locations where this alteration occurs dtedcthejoinpoints and we say that the altered code has been
advised Advice is a fragment of code that is executed either befiter or “around” the evaluation of the joinpoint.
(The example in section 4.1 makes these notions concrete.aréund advice is executed in place of the original
joinpoint, though the advice can executgraceedcommand, which executes the code that would otherwise heae b
elided. In this way, the programmer who ugesr can directly simulate some of the power of metaprogramn) [

The Aspectd implementation ePP provides a powerful language for describing when an adviceilsl apply.
This language, gbointcut designatorépcbs), can name either static or dynamic conditions under wiaiealvise the
program. Stati®@cbs name static program attributes, while dynamims specify a run-time condition. The dynamic
PcD language of AspectJ permits patterns over the shape ofdbk, o that programmers can, for instance, write a
pcDof the form “when procedurg is being invoked in the dynamic extent of procediitéi.e., a stack frame fog is
lower on the stack whembecomes the procedure at the top of the stack).

2.2 Model Checking

Model checking is a popular automated verification techaigsed to establish properties of finite-state systems. A
model checker consumes a description of a system, usugby gis a state machine (technically a Kripke structure),
and a specification of a property (in a temporal logic) that sgstem must obey. The state machine can be non-
deterministic. The model checker exhaustively exploresstite machine to search for executions that could violate
the property. The result is either a counterexample shoWwivgthe system could violate the property, or a statement
that the system respects the property.
Model checking algorithms exist for a variety of temporajitts for property specification. This work usesL

model checking [12]. The atoms affL are propositions that label statesTL permits combination of these atoms

using the standard propositional operators and connedtivggation, conjunction, implication, etc). FinallyrL can
capturetemporalproperties. A statement of the forjgy U] (where¢ andi) are bothcTL formulas) is true at a state
if ¢ is true now and in the future until a state wherés true (read thé& as “until”). Because many paths leave a state,
CTL requires us to quantify this statement by whether we expecptoperty to hold in all possible future worlds or
only in some. ThecTL formulaA[¢ U] expects that ol paths,¢ will hold in every state until a state wheteis
true (which must eventually occur), whild¢ U ¢] requires that therExists a path where this holds. Other temporal
operators express “in next stateg{ andEX), “in all future states” AG andEG), and “in some future state’AF
andEF).

The formal syntax and semantics@fL are as follows:

Definition 1 (cTL Syntax) The set ofcTL formulas contains propositions and the logical constamuis andfalse,
and is closed under the following operators, wheendy arecTL formulas:—¢, ¢V, p A, AX(¢), EX(¢), AG(8),
EG(¢), A[¢ U v], andE[¢ U 9]. AF(¢) andEF(¢) abbreviateA[true U ¢] andE[true U ¢], respectively.

Definition 2 (CTL Semantics) A Kripke structureis a tuple(S, R, L) whereS is a set of statesR C S x Sis a
transition relation, and is a function fromS' to sets of atomic propositions that label statespathis a potentially
infinite sequence of states, s1, ... such that for ali > 0, (s;, s;+1) € R. Given a Kripke structurd/ = (S, R, L),

states € S, and acTL formulay, the formulayp is true ats (denotedM, s |=) under the following conditions:

e M, s = p, wherep is an atomic propaosition, iff € L(s)

o M sk —¢iff s = ¢

e M,sk=¢Vuiff M,sl=¢orM,s k=1

o M,skE¢AYiff M,s|=¢andM,s =

o M, s = EX(¢) iff for some states’ such thats, s’) € R, s’ |= ¢.

o M, s = AX(9) iff for all statess’ such thaf(s, s’) € R, s’ = ¢.

e M, s EE[p U] iff M,s =« orif there exists a pathy, s1, . . ., s; starting froms such thatV/, s;, = ¢ and
forall0 <i <k, s; E ¢.

o M,s E Alp U] iff M,s = « or if every pathsy, s1, ... starting froms contains a state, such that
M, s, E=vyandforalld <i <k, M,s; E ¢.

o M, s = EG(¢) iff there exists an infinite path = s, s1, ... such that for ali, M, s; = ¢.

o M, s = AG(¢) iff for every infinite paths = sg, s1,..., M, s; = ¢ for all i.

Model checkers usually implement tbgL semantics by traversing a formula bottom-up, labeling estate with
those subformulas that are true at that state. As a resutinwie checker is doneach state is labeled with all the
sub-formulas of the property that are true of that state will exploit this important invariant in this paper. (Fo
readers who want to study the model checking algorithm, wemenend the expository presentation in the book by
Huth and Ryan [33, pages 222-230].)

The dependence of our technique on this invariant justifieg @ur work use<TL rather tharLTL [64]. LTL is
a temporal logic in which formulas descripathsrather tharstates A state-labeling approach is known to handle a
subset of TL (the deterministic subset defined by Maidl [48]), but in gahthe state-centric view is inconsistent with
theLTL semantics. It would be possible to create a modular aspatisas usingL.TL instead, but we do not explore
this problem in this paper.

3 Formal Models

3.1 Programs

We represent programs as Kripke structures (state maghigtges correspond to statements and expressions in the
program, while transitions reflect the control flow betwe&pressions. A set of propositional labels indicates the
information known at each state.

To more closely resemble the structure of source code, wievgith state machines that capture individual func-
tions (with special states to designate function call ahgtrdocations), including a main function. Given a set atst
machines for functions, we then use a straightforward &lyuorto produce a state machine for the entire program by
inlining copies of the function state machines betweenaradl return states (up to a given inlining depth parameter).
It is important to note that this only requires the inliningpess, not the program itself, to terminate. While thistech
nigue appears restrictive, it is the same one used by stdale-art tools such as FLAVERS [23] and Bandera [17],
which have been successfully employed in several softwetiéication tasks.

In principle, our work does not rely on inlining as a constioe technique. All we require are state machines
that follow astack disciplineof calls and returns (meaning that calls and returns aregpipmatched), and access to
the bodies of individual advisable code (to analyze whendsica proceeds). Tools such as FLAVERS and Bandera
consume program source and employ program analyses toagerstate machines similar to those we need. We
therefore regard the use of inlining as orthogonal to outkwor

The rest of this section presents these details formallg. detiinitions assume the existence of a¢bf function
names, including the nanmeain.

Definition 3 A state machiné/ is a tuple(S, T, L, Ss:c, Ssink, Scall, Srtn, Ler) Where
e Sisa set of states.
e TTCSxS.
e L:S — 24T for some set of atomic propositions AP, which are booleaméings of program data.

e Sy € SandSgnk € S such thatS,,. is a source and;,x is a sink when viewindgS, T') as a directed graph.
We call these thsourceandsink states ofM. (Intuitively, these are the entry and exit points of thegoeon
fragment.)

e S.an C SandS., € S. We call the states in these setl andreturn states, respectivel\s..;; and S, are
disjoint and are in a bijective relationship that is captuie7,, C Scan X Siin (Te: is called thecall-return
relation). The states irS.,; carry the labekall(f) (where f is the function being called), and those i,
are correspondingly labeledt(f). Intuitively, every state irb.,;; denotes an invocation of a function, and the
correspondingb,,, State is where control returns when the function completesigion.

Preserving the projection of a state machine’s transitionisose between call and return states (as record&d.bys
important because the inlining construction will remove dilges between these states, but our verification technique
needs to determine which return states correspond to whithktates.

Definition 4 A functionis a tuple(name, M), wherename € FN andM is a state machine.

Algorithm 1 (Constructing Programs from Source) Given a set of functions with distinct names, including one
namedmain, and a number indicating the inline-depth, generapeogramby traversingmain. At each call-return
state pair, inline &esh copyof the state machine for the function labeling the call statdnline a functionF' between
statesc andr in M, add an edge fromto the source staté,,. of F'; and add an edge from the sink sta&tg,, of F’

to r. Continue inlining recursively iF" until the depth parameter is exceeded, at which point addige betweerm
andr.

3.2 Aspects

In a typical aspect language, a proceed statement is aneldga procedure call to the elided code. To mimic the
structure of our function call-and-return states, we m@deteed statements with proceed-resume state pairs.

Definition 5 Adviceis a state machine with two additional componesigsceed C S andSiesume C S. These are
the proceed andresume states, respectivelySyroceed aNdSiesume are in a bijective relationship, and are disjoint
from one another and frol..; andS;n. Sproceed ANASresume MaAy be empty.

Pointcutsare sets of states at which advice can apply. Our model toa#function applications as joinpoints.
Our techniques extend naturally to richer sets of joingoad long as those joinpoints are represented in the finite-
state program model. The choice of joinpoint language ctihdcefore affect the choice of model extraction algorithm.
Pointcuts are specified through a subset of regular expressiver function calls; these regular expressions describ
the shape of the stack at program states (as opposed to sequéicalls leading to states). This allows our language to
capture dynamic pointcuts analogous to those captured bpwandwi t hi n in AspectJ. The following definition
presents our regular expression languagerfops. Section 6.1 describes the process of identifying thestitat
match aPCD.

Definition 6 The following grammar specifies expressions that definetpais:
A pointcut atonis one of the following:

o call(f) for some function nam¢ (other tharmain)
e Icall(f) for some function nam¢ (other tharmain)

e true
A pointcut elemenis one of the following:

e a pointcut atom
e (e) wheree is a pointcut element
e ¢ A eg Wheree; andes are pointcut elements

e ¢1 V ey Wheree; ande, are pointcut elements
A pointcut designatofpcD) is one of the following:

e a pointcut element

e* wheree is a pointcut element

e (d) whered is a pointcut designator

dy; ds whered; andd, are pointcut designators

dy | d2 whered; andd, are pointcut designators

di & do whered; andd, are pointcut designators

Informally, a state satisfiesrcDif some stack trace leading up to the state is in the langutpe ecb. The operators
have the usual semantics from propositional logic and ezgexkpressions. The alphabet of these expressions are
atoms of the forntall(f) and!call(f) for some function namg, wherelcall(f) denotes a call to a function other than
f. Allowing both call and!call atoms enables the language to distinguish between topdadenested invocations
(Kiczales [36] provides a good use-case for this). Theperator is only meaningful if at most one of its operands
is acall label, since one state can have a call to at most one funcmeratorg and & represent disjunction and
conjunction, respectively. Concatenation (;) distrilsieross and &, while| and & distribute across one another in
the usual way.

Our language is less expressive than full regular expresdig virtue of the restriction that Kleene-star operates
only on pointcut elements rather than faltbs. This restriction supports sound and complete identifinadf stack-
based joinpoints (barring functions that cannot terminagng a technique described in Section 5.2. Section 5.1
presents a sound but incomplete approach to joinpointifitetton that could handle full regular expressions. Build
ing this restriction into the grammar results in separafmi®ns for pointcut elements arrtps. To help distinguish
between these levels, we use different symbols for disjpn¢t/ and|) and conjunctionf and &) across the levels.

Definition 7 An aspectis a tuple(d, t, A), whered is aPCD, ¢ is an advice typetlefore, after, or around), and A is
an advice.

Given a program and an aspect, applying advice at the aspmsititcut yields a new;omposedprogram. This
program is constructed according to the type of advice, Wwimiclicates where to insert the advice relative to the
pointcut (recall that we advise only function invocatiangjgure 1 (left) illustrates the source and target states fo
transitions to inserted advice based on the advice typendsg apcbD matched at the state labeleall(f). Our model
inserts before and after advice within the scope of the advisnction; this decision could be changed by moving the
Beforg and other labels to different positions relative to the.cale construct a composed program from a program
and aspect according to the advice type as described inltbwifag algorithm. (The definition of a composed program
is necessary to provide a point of reference for demonstrdlie soundness of our method in section 7.)

Algorithm 2 (Advising Programs) To advise a program with an aspect based on the type of advice:

If the advice type ibefore: for each state in the pointcut, replace the edge from tHestzae Beforq) to the source
state of the function with an edge to the source state of thie@dadd an edge from the sink state of the advice
to the source state of the functioBefore), as shown in figure 1 (right).

If the advice type isfter: for each state in the pointcut, replace the edge from thmaited state of the function
(After;) to the return state for the call with an edge to the sourde sifethe advice; add an edge from the sink
state of the advice to the return state for the caftdr,).

) ,@'V'C?J
4 /
call))) Before2 (call(f))

Before
Aroundl

After2 ' i
Around2 0 —) Afterl ([ret(h) }-—{)

Figure 1: Where Advice Connects (left); lllustrating Befdrdvice (right)

If the advice type isaround: replace the outgoing edge from the call sta&eo(ind,) with an edge to the source
state of the advice. Replace the incoming edge to the retate g\round,) with an edge from the sink state
of the advice. Between each pair pfoceed-resume states in the advice, insert a copy of the body of the
advised function. It is not necessary to remove any elide@stecause the algorithms in this paper depend on
reachability, which automatically ignores any such states

4 The Verification Process, Informally

Given our model of programs and aspects, we can now destwbactual verification technique. To make the pre-
sentation more accessible, we first present our work in tefassimple running example, before formalizing it in
section 6.

4.1 Scenario

Our running example illustrates aspects in the context nfmdaer-based slideshow presentations. Consider preparin
a slideshow presentation on a research project. Ideallis pathe talk should be reusable in different venues such as
a conference, a general computer science colloquium, anaaetalk to colleagues in the same research area. The
project motivation, core techniques, and experimentailteshould be common to all of the talks, but the colloquium
version should review background material while the semieasion should cover deeper technical details. Different
seminar audiences may even need different combinationaakigoound material. Users of modern slideshow tools
either copy and paste slides across the talks (which hasabwhortcomings when edits are required), or switch
between slideshows during the talk. An aspect-orientedrorgtion provides a clean alternative.

Consider a talk on the work in this paper as an example; figsteofvs the talk outline in the form of a state ma-
chine (representing the control flow of the tatkjo maintain the analogy to programs, we view talks as progrtiat
have cohesive sections that are invoked (akin to functi@ssjvell as standalone slides (akin to program statements).
The talk’s background section contains slides on aspeagatsidbackground slides on model checking. Figure 3 shows
two pieces of advice: one containing slides on the modellihgalgorithm, and one containing slides on the formal

2Although this example program contains no cycles, our formalehand algorithms fully support cycles.

l
[call(Bkgnd)]——(Aspects]

!
\

call(Impl) C

/

’
7

\
\ ’
\

'
\
s

\

‘
\

«-~_~

Figure 2: Sample Program

syntax and semantics afrL. Turning these into aspects requiresds and advice types that identify where the addi-
tional slides would be appropriate. The model checkingeslicbuld be inserted at the end of the background section
(asafter advice); thecTL slides must precede the presentation of the model checlgogthm within the background
section (adefore advice). The followingpcps capture these two l08i:

P: true*; call(Bkgnd)
Q: true*; call(Bkgnd); true*; call(MC)

Observe that the original talk enablkesDp P at thecall(Bkgnd) state. Furthermore, the programartially enablescb
Q by callingBkgnd, leaving open the possibility that an advice might insegtrtiodel checking section and thereby
trigger thercp.

We now turn our attention to properties. In the context oféneentally building up talks, we care that certain
material be presented in a particular order: for examp&es#ttion on implementing an algorithm should never come
before the algorithm description. The followingL formula captures this property:

Allcall(Impl) U call(Alg)]

4.2 Basic Algorithm

We begin by model checking the property on the program. Iptiogerty fails to hold, the designer should correct the
program before applying advice (recall that the goal in tinisk is to preserve program properties over applications
of advice; section 9 discusses properties that arise frgpacas). Section 2.2 mentioned that the model checking

3In Aspectl, these would be written@al | (Bkgnd) andcal | (MC) && cf | ow(cal | (Bkgnd)), respectively.

10

i) (papsios

CTL syntax

Shorthands

Figure 3: Two Pieces of Advice

tcall(Impl .
A[!call(lmpl)uggn((ﬂg)]) ntroduction) Atcalimp) U!ca||||((|/mp)|])
call(impl) U call(Alg
Icall(l
Alicall(Impl) U?:gll(,’r\]?g)] [Ca”(Bkgnd)]H[Aspects |
tcall(Impl
Al'call(impl) U ‘éiuﬁ/i'ﬂgp)]) ret(Bkgnd)
tcall(impl
Allcall(impl) U EZHEATS)] call(Alg)

call(Alg
tcall(impl) [ret(Alg) Lo

Figure 4: Program Annotated wittrL Labels

algorithm labels each state of the program with those suhbitas of the property that are true at that state. Figure 4
shows the program annotated with labels after checkingrbygepty. For each state at which advice might apply, these
labels form thenterfacefor verification at that state. The interface is effectivalgache of the state of the verification
process at that program stéte.

Interfaces need to be stored only for states to which advightneonnect. Advice can connect to tBeforg,
Before and similar states from figure Pcbs identify theBeforg states; the rest are computed fr@aforg states.
Recall thatrcbs describe stacks: we therefore need to locate those statisch the program’s stack could match a
PCD. Several techniques could perform this analysis; we defés@ission of the tradeoffs and our specific technique
to section 5. Figure 5 shows our example program annotatibeth model checking labels and stack contents (the
latter in bold). Thecall(Bkgnd) state matcheBCD P; we must generate an interface at this state to use for \rmgify
the advice when it becomes available. The interface refthetstate of the model checking process. It includes the
labels on the states that lead to and return from the advigeddes not include information about the rest of the

4The interface is thus analogous to a closure that repreentielayed substitutions in a programming language withdlests procedures.

11

Icall(Impl :
A['call(Impl) u(éznmg)]) Icall(Impl)

rcall(im A['call(lImpl) U call(Alg)]
true* ; call(Bkgnd) A['call(lmpI)U((::gll(AIg)]

Icall(lmpl)
ret(Bkgnd)

Aflcall(Impl) U call(Alg)]
. Icall(; —
e Aftcall(impl) uf:g||(ArTg)] ?

call(Al ;

\

lcall(lmpl) (ret(Alg) «—)
truer call(impl) (call(Impl) /»

‘

\

~_-~<_7

\
\ /
\
7

Icall(Impl)

Icall(Impl)

Figure 5: Program Annotated wittirL Labels and Stack Contents

program’s state®.

The heart of advice verification is as follows. Suppose thécador the model checking slides (shown in figure 3)
is applied as after advice at the pointcutrafD P. Note that the advice in isolation does not satisfy the priype
because the advice does not show g slides, but that the advised program continues to do so. (@oritam
extends the advice with statesandout, seedoutwith the labels ofAfter, (in this case, the state labelext(Bkgnd))
from the interface and seedswith the propositions oAfter; from the interface; figure 6 shows the resulting state
machine. It then verifies that each label on &fter; state holds on thin state of the advice, assuming that the labels
for After, hold on theout state (checking source labels against copied sink labetishesthe backward propagation
inherent in thecTL model-checking algorithm [13]). If all of these checks pdke program with advice will satisfy
the property. If a check fails, the advice may violate thaipgrty (if the property depended on the violated label); the
algorithm uses the location of the pointcut to report theeptial violation of the program’s behavior at that locus and
by the corresponding aspect. Before advice is treated goasy using the statd®eforg andBefore (as illustrated
in figure 1 (left)). Around advice is addressed in section 4.4

Observe that the algorithm verifies the advice state maatith@ut traversing the program’s state machine (though
it may need to traverse fragments of the program sourcereefén by the advice). Ideally, we would like to show that
this process is nevertheless sufficient: if this check setseso would verifying the program with the advice exgicit
spliced in. Unfortunately, this is not (yet) true!

SWhile there is one interface for each state in the pointcundst cases these interfaces will have logically related ftas{because in general,
the advice will tend to apply in similar circumstances). Impiple, we could employ deductive reasoning over temporat limgshrink the number
of distinct interfaces.

12

in

'

[call(MC)]—»[Properties]

1
[ret(MC) }—{Algorithm]

: Icall(Impl)
Allcall(Impl) U call(Alg)]

Figure 6: Advice Prepared for Verification

in

true* ; call(Bkgnd) :}

true* ; call(Bkgnd) ; true* ; call(MC) —»
ou
)

t

Figure 7: Detecting Joinpoints in Advice

4.3 Cascading Advice

To see the problem, recatlcD . The main program invokesall(Bkgnd); the applied advice invokesall(MC).
Therefore, the program and advicembineto trigger thepcD. Indeed, an actualop implementation would detect
this condition. Our technique relies on having accuraterfates for all states at which advice might apply; this nrsean
that we must generate interfaces for states in the advitéritpger existingpcos.

While it is clear we must compute the stacks that could exisbah state in the advice (for the same reason we
did with the main program), it is easy to do this incorrectiywe compute the stacks in the advice starting with the
empty stack, we would still fail to notice the enablingrafD Q. Instead, we need to initialize the stackith their
contents at the point of applying the advigéhich is information we must record in the interface. Irstinistance, the
stack at the entry to the advice contains a caBkgnd. The annotated advice is shown in figure 7. It shows mitai
Q is satisfied by a combination of the main program and the firgica in the indicated state, resulting in a second
generated interface. If an advice associated @itholates a property, our algorithm can report the violaiioterms
of both aspects, resulting in a helpful diagnostic.

13

e)

; i b 1 i) ; [
| i AF(b) | C nob

Figure 9: When Around Advice Violates Properties

4.4 Around Advice

Verifying around advice modularly is more subtle. Consitierprogram in figure 8 (left), which shows labels ascribed
to states by model checking the formul&(b). (The dashed lines show control paths along which somesshatee
potentially been suppressed.) The program in figure 8 (rigisults from applying an around advice withpubceed
to the original program: as shown, around advice withmpoteed can bypass states from the original program. Our
verification process as described so far will copy Ati€b) label from thereturn state of the left figure to theeturn
state of the right figure and attempt to confirm &i&(b) label on thecall state. This check succeeds, even though the
call state on the right clearly violatésF (). To avoid this form otircular reasoningwe need to refine the verification
process when states can be bypassed (which by construeaticonty occur with around advice withoptoceed).
Understanding our refined algorithm requires some intuigibout why the problem arises in the first place. Con-
sider the program in figure 9 (left). The original algorithoffeces for this program because tA&(b) label on the
return state does not depend on the occurrenciinfthe bypassed states. This suggests that the problenmltbs i
location of theb: in figure 8 (left) the labels on theall andreturn states rely on thé label on the same state, while in
figure 9 (left) different instances éfjustify thecall andreturn labels. The issue, however, is deeper than whethler
andreturn depend on the sandestates. In the program in figure 9 (right), the instanceleétween theall andreturn
helps justifyAF(b) on both thecall andreturn states, but the original algorithm suffices. The real isswehiether the
AF(b) label on thereturn state depends on theF (b) label on thecall state: if it does, then because advice can elide
paths, the original technique may be unsound.

14

We could attempt to augment the model checker to track farmependencies, but this would be overkill because
we generally don’t need dependency information on all subédas. The original algorithm is only unsound when (1)
the sameAU or EU formula labels both a@all state and its correspondimgturn (recall thatAF is a special case of
AU), (2) thereturn state label depends on thall state label, and (3) the applied advice is around witippateed.®
Items 1 and 3 are easy to check. For item 2, we can writalaformula to check whether theeturn state label
depends on aall state label. For the labd&lF(b) in our example, checking[!call(f) U b] at thereturn state returns
true when thereturn state label does not depend onall state label. If theeturn state label does depend omall
label, then the label is not copied to theturn state during modular verification. This forces the advicgsify the
label on thecall state, which the bypassed states must have done in theanigogram.

Now suppose we are verifying around advice that does ingokieeed. Say the advice advises an application
of function f. The body off in the source program has already been traversed by the rologleker at the point of
application of the advice. Since this is the same code thaexacute at theproceed-resume states, it is tempting
to reuse this verification effort by adopting the labels adiein the program, thereby avoiding re-verification of the
body of f.

Reusing the labels on this copy ¢fis, unfortunately, not necessarily sound. The fragmenhefadvice that
appears after resumption may invalidate some of the lahatsare on the states ¢f (For instance, since we have
added a new path, a label of the foAR(¢$) may no longer hold.) For this reason, we currently replaegthceed-
resume states with a copy of and repeat verification ofi's body.

5 Approximating Program Stacks, Informally

Our technique relies on the ability to predict the conteritthe stack at each state in the program. Our technique
is sound so long as the stack analysis locates all statesiel Wie stack could match rcp. If the stack analysis
over-approximates this set of states, our technique cayddrt property violations that could not occur in practice.
We discuss two different techniques for computing the stambntent.

5.1 Using Automata

One approach observes thtps are regular expressions, and hence can be compiled taaregutomata. (An
extended version of this is employed by Sereni and de Modr)[9@king the cross-product of a program and@Dd
automaton would identify states at which the program coatisfy thepcb. Two subtleties arise in building a regular
automaton for @cp for this purpose. Consider thcD true*; call(f); call(g): as a standard regular expression, this
expectscall(g) to occur in the state immediately following the one satisfiycall(f). Recall, however, thatcbs
describe call stacks, not traces of all program states. Asudty the automaton needs to stutter until the next ca# sta
Furthermore, th@cb does not (by design) account faaturn states; aall(g) state that occurred afterrat(f) state
should not satisfy the giveincb. The compilation algorithm would need to address both corxce

Even after addressing these concerns, the automaton-appezhch suffers from two potential drawbacks. First,
this technique will overapproximate the set of identifieates on most programs as it uses a regular automaton (for the

6The Until operators are the only ones that need this checkusecthey are the only ones that depenédwentuallyreaching a state that satisfies
a formula in a variable number of steps.

15

PCD) to approximate a context-free language (the actual s¢toks). Second, it has the potential to be too expensive
on PCDs that use Kleene-star and disjunction operators. In thetveaise, cross-product constructions grow the size
of one machine by a multiplicative factor in the other. K@D is just a concatenation efll statements, thecp and
program transitions will align deterministically, resndj in no growth in the program state space. Growth occurswhe
the PCcD automaton is non-deterministic, as can happen with thert€estar and disjunction operators. However, we
might be able to generate fewer interfaces by being ablats tvhen multipleecbs are triggered simultaneously; this
requires constructing a cross-product of severads with the program. Experimental analysis would help deireem
the extent to which these issues would be problematic irtipeac

5.2 Using CTL

As an alternative (the one we formalize in this paper), weedoit thecTL model-checker to track stack contents.
Thepcblabeled® in section 4 resembles tlerL formulaEF(call(Bkgnd) A EF(call(MC))). Can we use the model
checker to find those states that satisfy this formula, amdénéhercD? This approach would not properly identify
pointcut states because the formula would be true at stetiessiart of a path that could reach pointcut state, rather
than at the pointcut state itself—a reflection of the futumeetnature ofcTL. Capturing the pointcut states requires a
way to look at the past from a given state and ask whetherdatsfthe correct sequence of calls in progress. (Past-time
CTL could handle this, but would either require a separate #kgoror incur an exponential blow-up on translation
into regularcTL [44].)

A different approach results in a cleaner algorithm and naaeirate joinpoint identification. We can look at the
past as follows. First, weeverseeach of the edges in the program’s state machine. SecondnpleyeacTL formula
that matches the stack’s contents in reverse. Foptie(Q), this formula would be

call(MC) A EF(call(Bkgnd))

This formula should label exactly those states in the redersachine with @all(MC) label and for which the stack
has a form that matches twecD. It is crucial to note that this model-checking run cannatl"f failure to assign

a label to a state signifies only that the state is not a membarmpointcut. (That is, we are exploiting the model
checker’s traversal power to do something quite distiranfwverification.)

In its current form, this proposal overapproximates theo§épinpoint states. Consider a program that contains
functionsf andh; the program invokeg andh in sequence, witlf in turn also invokingh (as shown on the left in
figure 10). Assume we were matching this program agairstzasimilar in shape t@), namelycall(f) AEF(call(h)).
This program should match ttrecD only once (the call té within the dynamic extent of). The formula is, however,
true at two states of the reversed machine. The error herdaituge to handle return states. (Put otherwise, this
formula cannot distinguish between sequential and nestitsl)cIn this case, the formula needs to check thdbes
not return on the path from the invocation/ofo that of f. While we could patch the formula to check for return states,
the resulting formula would be cumbersome and could stidlragproximate the set of joinpoints, as CTL captures
only regular sets.

Our solution to this problem lies in constructing the reeerstate machine differently. On a reverse path from a
given states, subpaths that traverse the program betwemstian state and its correspondirngll explore states that
have been popped from the stack before control arrivesHte traversal should therefore “bypass” matchiatj and

16

(caly J—={ ¢) (caly J=—(*)
(_calith) }—=(‘) (_calith) J=— *)
(rei(h) Pt) re;(h) JI)
(rett) J=—o) e) ()
[calith) }—=(¢) (_calith) J=—(*)
(rewt) J=—o) ey) ()

Figure 10: A Program and its Reverse-Bypass Version

return states and the paths betwixt, visiting owlyll states whose returns have not yet occurred. Bypassing sate
straightforward: any edge in the reverse graph that goekamutareturn state is redirected to point to the successors
(in the reversed graph) of the correspondiad state. For instance, the graph on the right of figure 10 shoxession

of the graph on the left with the edges reversed and callsdsguh This construction effectively removes the called
function from the stack at the return state. Formulas cheelgainst this state machine need not match calls with
returns because completed function invocations have Herddrom the paths the model checker will traverse. This
addresses the mismatch between the context-free stack@nebjulaircb, and provides exact joinpoint identification
(relative to the inlining depth and assuming that every fiomccan terminate on some path).

Reversing the machine takes time linear in its size (thekdtacks the bypass states). The formula is linear in the
size of therch. The model checker takes time linear in the product of thessif the state machine and the formula.
Since the size of the formula can usually be bounded by a stoa#itant (becausecos tend to be small, and the
corresponding formula as constructed in section 6.1 istime the size of theecD), we can usually determine the
pointcut states in linear time. We note that the reverseabyonstruction could, if desired, be implemented easily
with symbolic representations [13]: reversing the edgesesponds to swapping the current- and next-state vagable
(or their interpretation) in th&DD for the transition relation, projection identifies the eslge add and delete (for
bypassing), and actual addition and deletion aregosi-or and -and, respectively.

This cTL-based approach cannot be used iffl® language is extended to all regular expressions becausdl not
regular expressions can be capturedin. Consider theecD (true; call(f))* which checks whether every eveall
is a call tof. Wolper proved that the regular expressigns true in every even state” is not expressiblen [67].

The proof that Wolper’s result extends to the subsettf used here is beyond the scope of this work. Nonetheless,
Wolper’s result motivated the restriction of Kleene-star®ur PCD language to a useful subset that is expressible
within CcTL.

“All of these operations are standard in the APIsgob packages.

17

6 The Verification Process, Formally

This section formalizes the intuitive description of oug@ithm and its data structures. Specifically, we define how
to locate states that satishrDs, define interfaces, and give the algorithms for generatitegfaces, verifying advice,
and generating new interfaces from advice. Section 7 pribvesoundness of these details.

6.1 Locating Joinpoints

To locate joinpoints, our algorithm constructs the revdrggass version of a state machine, compiless toCcTL
formulas, and uses the model checker to analyze the reveraeline against the formulas.

Constructing a reverse-bypass version of a state machiuéres two steps: reversing transitions, and bypassing
paths fromreturn states to their correspondirggll states (thus leaving only those paths that correspond tmlact
stack traces). The following formal definition construdis transition relation for the reverse-bypass machine from
the transition relation of the original machine and thetretaT,, that stores the correspondence betwealhand
return states for the original machine; the latter is used to lottatdarget states for the bypassing transitions.

Algorithm 3 (The Reverse-Bypass Construction)Let M be a state machine with transition relatidhand call-
return relationT,,. Thereverse bypass a¥/, denotedMRgg, is the state machine with the same component&/as
other tharl", which is replaced with transition relatidfk g, defined as follows (recall th&,, and.S.,);; are the sets
of call andreturn states inM):

Trp = {(s2,51) | 52 & Srtn A (51,82) € T} U
{(8r,8) | 8r € Srtn A TSc € Scan | (8¢, 8r) € Ter A (8,8.) € T}

We now turn to compilingecbs intocTL formulas. This translation is cleaner if theDs are in a form where the
; operators are distributed over thand & operators.

Definition 8 A pcDis in concatenation styldf it does not contain thé and & operators. ApcD in which the ;
operators are distributed over thand & operators maximally (resulting in n@r & operator within a ; operator) is
in concatenation normal forrftalled simplyconcatenation fornm the rest of this paper).

By these definitions, ®cD in concatenation normal form consists of a boolean expras@ising| and &) over
concatenation-stylecos.

Given aPcD, our translation strategy reverses the order of concatditatms, appends a “bottom of stack” marker,
converts to concatenation-normal form, then translatesdbultingecbinto cTL. The bottom-of-stack marker pro-
vides a base case for the translation. béte the bottom-of-stack marker. Giverrap d, d—' denotes its reversal
(reversing the order of all concatenated terms, but makinghanges to the terms themselves). The térrh o de-
notes the reversal with the appended markerPlcg2CNF be a function that convertsrecDinto concatenation normal
form. Given arcb d, its corresponding TL identifieris PCD2CTL(PCD2CNF(d~!; o)) wherePcD2CTL is shown in
figure 11. This algorithm assumes every call state has thet ¢ali, that the source state of tieain function has the
labelscall andcall(main) and that the sink state of timeain function has the labekturn.

18

PCD2CTL(expr) =

caseexpr of
o = call(main)
a =aq

e1 AN ey =PCD2CTL(e1) A PCD2CTL(e2)
€1V ey =PCD2CTL(e1) V PCD2CTL(e2)

e*;sp = (call AE[(call = pcD2cTL(e)) U PCD2CTL(p)])
ep = call A PcD2CTL(e) A EX(E[lcall U PcD2CTL(p)])
(de) = (PcD2CTL(de))

dy | da =PcCD2CTL(dy) V PCD2CTL(d2)
d1 & dy =PCD2CTL(dy) A PCD2CTL(d>)

whereq is a pointcut atome, e; ande, are pointcut elementg; andds are concatenation-formcos, de is aPCD or
pointcut elementp is a concatenation-stylecd andexpr is a concatenation-forracb with appended end-of-stack
marker. Appending the end-of-stack marker implies thataseds needed for a standalone pointcut element.

Figure 11: TheecD2CTL Procedure

The translation fromPcbs intocTL formulas is a bit more subtle than our intuitive example s because the
PCDis an expression overall states while the formula must be an expression over stamgsnearal. The use d&U
rather tharEF in the compilation highlights this difference.

Definition 9 Let M be a state machine antlbe arcD. States in M is ajoinpoint statefor d if Mgp,s
PCD2CTL(d™};0).

6.2 Generating Interfaces

The informal description of our algorithm motivated theamrhation that an interface must cache to reconstruct the
state of the verification process and the shape of the stackffarticularrcb. At each joinpoint stat®eforg that
satisfies thecp, the labels on the stat&eforg, Before, After; and After, as shown in figure 1 (left) capture the
state of the verification procesArpund, is the same aBeforg andAround, is After;). An additional set of formulas
(calledUgeck) cONtains labels oAfter, that may be violated by around advice. The labels ascrib&&forg while
analyzing thecTL form of thepPcD capture the shape of the stack. We do not need to store tHesdtape at state
After; because our stack discipline assumptions guarantee thatabk shape is the sameBatforg andAfter;. We
could eliminate some of this information if we knew the advigpe in advance; here, we present only the general
case.

Definition 10 A joinpoint interfaces a tuple of the form{d, ¢, L1, L2, L3, L4, Ucheck, Stacks whered is aPcCD, ¢ is
acTL formula, and the remaining components are setstafformulas.

This definition of an interface does not include the actuatlesat which the interface is generated. Storing this state
would be useful for tasks such as counterexample generatiemefrain from doing so in this paper to reduce notation
and to focus on the heart of the algorithms and their coresstn

19

Joinpoint interfaces can be generated automatically frpnogram,pcb, and property using atL model checker
as follows:

Algorithm 4 (Generating Joinpoint Interfaces) Given a progranP, a concatenation-forracbd d andcTL formula
¢, the set of all joinpoint interfaces is generated by theofeihg steps:

1. Use acTL model checker to verifyp againstP. Let lab be the function from states i to the labels ¢TL
formulas) that the model checker assigned to states.

2. Use acTL model checker to analyze; = Pcp2cTL(d~!; o) againstPgg. Letlabgp be the function from states
in P (same as the states ifxp) to the labels¢TL formulas) that the model checker assigned to states/Pet
be the set of statessuch thatp,; € labrp(s).

3. For each joinpoint stateeforg in J P, create a joinpoint interface
(d, p,lab(Beforg), lab(After;), lab(Before), lab(After,), Ucpheck, Stacks
where

e Before is the state such thaBéforg, Before) is in T of P,
e After, is the state such thaBéforg, After,) is in T, of P,
e After, is the state such thaffter;, Aftery) is in T of P,

e Upneck IS defined below, and

o stackss labgp(Beforg).

U.neck is defined as follows. Lef) be a meta-variable representing either Aher E path quantifier, ang be
the function being called &eforg. The setU .. consists of all formulas of the for@[¢ U] that are in
bothlab(Beforg) andlab(After,) and for which the propert@[(!call(f) A ¢) U 9] fails to verify atAfter, in
P.

6.3 Analyzing Advice

Joinpoint interfaces identify those properties that aglvinist satisfy in order to preserve desired program preerti
As aspects advise a verified program, two steps must ocast, fiie aspects must be checked against the interfaces
(for whether they preserve properties). Second, intesfawest be generated for all new joinpoints that are triggered
by the combination of the program and the advice: this allfutigre applications of advice to be checked against all
relevant joinpoints in the advised program. We preseneth&e steps as separate algorithms, but note that in practice
they would operate in tandem: an aspects compiler genatladigks whether new advice triggers new joinpoints for
aspects that have already advised the program; if so, thersare advised at the new joinpoints [31]. To ensure
soundness, each application of advice requires the usalbbthe following algorithms until no additional advising
is required.

We employ the following algorithm at every joinpoint intecke that was generated for theD in the advice to be
applied:

20

Algorithm 5 (Advice Verification) Given an aspedd, t, A) to verify against a joinpoint interface
(d, o, lab(Befora), lab(After;), lab(Before), lab(Afters), Ucheck, Stack$
(for the samercD, d, as in the aspect):

1. (Prepare the aspect) Add new states calte@indout to A such thatin has an outgoing transition to the start
stateS;.. of A andout has an incoming transition from the terminal st&tg,, of A. No other edges should
enter or leavén andout

2. (Check the advice)

e If t = before, copy the labels itab(Before) to out, copy the propositions frorfab(Beforg) to in, and
verify each label idab(Beforg) atin.

o If t = after, copy the labels itab(After,) to out, copy the propositions frodab(After;) to in, and verify
each label idab(After;) atin.

e If ¢ = around and A has noproceed states, copy the labels Iab(After;) — Ucpeck to out Copy the
propositions fromab(Beforg) to in and verify all formulas idab(Beforg) atin.

3. (Report result) If all checks succeed, report the advicgraserving the program’s properties; otherwise report
thaty may fail.

Note that a check failing does not guarantee that the advidates a program property because the algorithm is not
complete. Intuitively, the incompleteness arises bec#usdabels that we check against the advice are sufficient,
but not necessary, to preserve properties; disjuncts arafesexample of potentially unnecessary labels. A more
sophisticated analysis would be required to determine tdtich labels are necessary and which labels could be
satisfied through alternate formulas.

Algorithm 6 (Generate Interfaces from Advice) Given an aspedid, ¢, A) and a joinpoint interface
(d, o, lab(Beforq), lab(After;), lab(Before), lab(Afters), Ucheck, Stack$

for which algorithm 5 has been run (so the model checker hatbasl labels to states in the advice), seeth Arp
with the formulas fronmstacks then reuse steps 2 and 3 of algorithm 4, repladingith A.

Using algorithm 6, the set of joinpoint interfaces for a payg grows as advice is applied to the program. Each
aspect applied to the system must be analyzed against ettehioferfaces corresponding to that asperets.

7 Soundness

Our approach is sound if all properties declared true usiagtgorithms of section 6 would be true if verified against
the entire composed program. To prove this, we must showotlratechnique locates all joinpoints, and that labels
ascribed to states in the modular algorithm would also behksext by model checking the entire composed program.
This section formally states and proves these correctm#gesa. All these statements and proofs are stated reladiv
the state machine model of the program, but the model mayreotgely capture the original program due to inlining
and other approximations made during model generation.

21

7.1 Joinpoint Identification

Definition 11 A stackis a sequence of labels of the formall(f) (wheref is a function name other thanain). Given
a finite pathlI through a state machine, titack tracecorresponding tdl, denotedstacKII), is the stack obtained
by starting with an empty stack and traversifigfrom initial to final state, pushing eadmall(f) label (other than
call(main)) and popping at eaateturn label alongdlI (other than the sink state of the main function).

This definition excludemain from the call stack because our proofs depend on identifgiatgs that terminate paths
whose stack traces are in the languages definettivg. ThePcDlanguage treats the bottom of stack (represented by
call(main) as implicit (all(main) is not in thepcD language). The restriction against popping the fretirn label
prevents a pop with no corresponding push.

Joinpoint identification is sound if it locates every state/hich the program stack can satisfpab. Soundness
allows the technique to over-approximate the set of joingspiideally, the technique should only identify stateg tha
satisfypcps. Under the assumptions of stack discipline and every immd¢tavingsometerminating path, oucTL-
based technique satisfies both requirements. We prove @achiah in a separate theorem.

The proof of soundness must show that every state that teggecDd (on a path that satisfies stack discipline)
satisfies thecTL identifier for thepcD in the reverse-bypass machine. ToeL formulas for concatenation-style
PCDs are essentially chains of nested operators, where eadBU expression detects a prefix of the desired stack
contents. Intuitively, eachall state in the path that satisfies a prefix of a concatenatide-stD should satisfy the
correspondindeU formula that detects that stack in the reversed prograns dihim is the heart of the proof. Given
a concatenation-stylecDand a path, we construct a function that stores which statesysprefixes of thecbalong
the path; the proof will show that the same states satisfyfdimaulas for those prefixes. This function is formally
defined as follows:

Definition 12 Let IT be a path through a program atde a concatenation-styfecD such thatstacKII) is in the
language ofi. Letd; denote the prefix off with k£ concatenated terms. Define tstack witness functio W from
prefixes ofd to sets of states ifil such thatSTV (dy) is the set of alkall statess in II for which the stack trace of
the prefix ofII up to and including is in the language of,. For the empty prefixiy, defineSW (dy) to be the set
containing the initial state dfl (which is also labeled withall by construction—our proofs depend on the invariant that
call labels every state in a set in the codomaib®¥). For a concatenation-formcb D, we defineSW as described
for all maximal-length concatenation-stye s within D.

Example Given PcD call(f);true*;call(g) and a pathsg, s1, 2, s3 Wheres; has labelcall(f), s2 has labekall(g)
ands; has labetall(h), SW (call(f)) = {s1}, SW(call(f); true*) = {s1, s2, s3} and.SW (call(f); true*; call(g)) =
{s2}.

Observation 1 Note that ifstacKII) is in the language of concatenation-stpleD d, thenSW must be non-empty
for all prefixes ofd. This is obvious for prefixes ending in non-starred atom®ah non-starred atom must appear

somewhere in the stack. For starred atoms, any state whiidfiesthe previous prefix will also satisfy the prefix
ending in a starred atom (because the starred atom appeatsizes). Our soundness proof relies on this observation.

Given that our joinpoint identification method operatesimmreverse-bypass version of the original program, our
soundness proof must show that the paths that witness stdst(via the formulas) in the reverse-bypass version

22

reflect paths in the original program. The next lemma provesralition for when a path between twall states in
the reverse-bypass program also exists (in reverse dirgdti the original program.

Lemma 1 Lets ands’ becall states in a progran® such that there is a path fromto s’ that obeys stack discipline.
There is a path from’ to s in Prp unless thaeturn state corresponding te occurs betweer ands’ on all paths in
P.

Proof: The transition relation in the reverse-bypass constradidgorithm 3) changes only transitions that would
otherwise start from eeturn state. As a result, if there is a path with rurn state betweer ands’, then there must
be a path inPr from s’ to s. Assume that every path fromito s’ in P contains aeturn state; lefll be such a path.
Following the assumptions of the lemma statement, we asso@ataone of theeturn states orll is for the same
function as thecall at s. The reverse-bypass construction removes paths fromreauin to its correspondingall.
For s to become unreachable froghin Prp via bypassings would have to have occurred between corresponding
call andreturn states. Sincea is itself acall state, stack discipline would require that tteturn state fors also
occur between the states that resulted in the bypass. Tdi&es the assumptions of the lemma, so the lemma holds.
O

We now present the theorems that joinpoint identificatiosoisnd and complete using oarL-based approach.
The main theorems prove soundness and completeness fateonation-styleecps. The following lemma argues
that these theorems extend to concatenation-focms (which in turn cover alPcDs).

Lemma 2 (Concatenation-Style Suffices) et D be a concatenation-forracb and letdy, . .., d; be the maximal-
length concatenation-stylecDs within D. An algorithm for identifying joinpoints that is sound (pescomplete) for
all d;'s is also sound (resp. complete) fbx.

Proof: By definition, a concatenation-formcD is a boolean logic expression over concatenation-stgles. The
boolean operators incbs have their standard semantics, so the lemma follows frersdhindness and completeness
of propositional boolean logic.

Theorem 1 (Joinpoint Identification Sound) Let s be a state in progran®, d be a concatenation-stykecp, andp,
bepPcp2cTL(d~!;0). If there exists a pathl in P from the initial state tos such thatstacKIl) is in the language of
andTI follows stack discipline theRgg, s E ¢q4.

Proof: LetII be a path inP such thasstacKII) is in the language of. Let STV be the stack witness function for
andd (definition 12). We claim that for all prefixe# of d and all states’ € SW(d’), Prg, s’ = PCD2CTL(d'~*; 0).
The desired result is a corollary of this claim. We prove tt@nc by induction on the length of the prefix. Lét
denote the prefix of lengthand ¢, denotePCDZCTL(d,;l; o). In the base case, the prefid}j contains no atoms
from d; it therefore contains only the end of stack markeBy definition, SW (dy) contains only the start state 6¥
PcD2CTL(o) is the formulacall(main), which labels only the initial state, so the base case holds.

For the inductive case, assume that the claim holds for afbygs up throughl;,_;. We must prove that it holds
for di. Lets’ be a state irfW (dy). By thepcbgrammard,, (which is concatenation-style) has one of two forms:

o If dj, = dj,_1;e, thenpg, iscall A PcD2cTL(e) A EX(E[lcall U PcD2CTL(d} ! ;0)]). By the definition ofSTV,
s’ satisfiescall; it must also satisfypcb2cTL(e) because the prefix di ending ats’ includess’ and the stack

23

trace ofII is in the language ofi,. The EX(...) portion of the formula is satisfied by finding a statéin

SW (dy—1) such that there is a path froghto s” in Prp with no call states betwees’ ands’. Lets” be the
state inSW (dy—_1) closest tos’ on IT; by the definition ofSTV, states’ must be the first state aftet’ onII

to satisfyd,. Therefore, anyall states betwees” ands’ in II must have been popped from the stack by a
matchingreturn state. The reverse-bypass construction elides tbalbstates, so we only need to show that
Prp contains a path frons’ to s”. Since thecall ats” is on the stack at’, thereturn state corresponding t¢’
must occur afteg’; lemma 1 therefore guarantees that there is a path ffbta s’

o If d, = dj_1;e*, thengg, is (call A E[(call — Pcp2cTL(e)) U PcD2CTL(d, ! 50)]). If 8" isin SW(dx_1),
thens’ satisfiesp,, , (= PCD2CTL(d;';0)) by the inductive hypothesis. By the semanticEbf and the fact
that every state in a set in the codomairb6¥” has acall label, s’ satisfiesp,, _, so the theorem holds. Assume
s"is not in SW(dx—1). The difference between this case and the one for the other dbd;, is that, in this
case,SW (dy) could have multiple elements (due to the * @n Using a similar argument as in the previous
case, we can build a path from the elemenf®F (dy) that is closest to the initial state Ifi that satisfiesg, .
We can complete the proof for the remaining stateSiti(dy) inductively, again using a similar argument as
in the previous case to construct the path between them.lBoedm therefore holds.

O

Theorem 2 (Joinpoint Identification Accurate) Lets be a state in progran®, d be a concatenation-stykecp, and
pq bePcp2cTL(d™1;0). If Prp, s = g4 and all functions terminate along some path, then theretezipathll in P
from the initial state tos such thatstack1I) is in the language of andTI follows stack discipline.

Proof: Let s be a state such th@tzi, s |= pq. By the form ofp, (nestedEUS), satisfyingp, requires the existence
of a path froms to sy along which the subformulas qf; are satisfied; call this paffirs. Reversing the direction of
the transitions idlgp yields a patilI,q from sg to s; note that while the transitions I, q are in the same direction
as transitions irP, Ilg,q is not itself a path inP (due to the states that were bypassed during the constmudtiez).

In order to prove the existence of a pathas required in the theorem, we will first prove that the staake ofll;,q

is in the language af, then we will constructI from Il,q in @ manner that preserves the stack trace ffhqy.

Computing the stack trace of;,,q accurately requires us to first remover@turn labels from the states iHyq.
The reverse-bypass construction guarantees thedlhstate that matchesraturn state inlls,q can itself lie inllgyq.
Removing thereturn labels prevents the stack trace computation from poppimgaxistent calls, while retaining all
un-returned calls. Removing these labels would not hawetdd the truth of, onTlgrg, as that formula never refers
to areturn label.

Let d; be the prefix off containingi concatenated terms. We claim that for all prefidesf d, if ¢4, labelss’” in
IIrs, then the stack trace of the prefixdf,,q up to and includings’ is in the language of;. Our desired result that
the stack trace dfls,q is in the language of is a corollary of this claim. We prove the claim inductively © In the
base case,is zero:dy is empty andpg, is call(main), which is true only at the start state Bf The start state has the
empty stack trace (since stack traces ignorectiiémain) label by definition), which is in the language of the empty
prefix, so the base case holds.

For the inductive case, assume the claim holds for prefixe¢e apd includingd;_1. We must prove it holds for
di. Lets’ be a state illgp such thatp,, is true ats’. Unlessdy, is the empty prefixPCDZCTL(d,jl; o) requires some

24

states” in IIrp to satisfyPcp2cTL(d; ' ;o). By the inductive hypothessis, the stack trace up'tas in the language

of di,_1. ThepPcDd;, has one of two forms:

o If dj, = djy_1;e, thenPcD2cTL(d,, '; o) requires that there be reall state betweer’ ands” (by virtue of the
expressiorg[!call U .. .]); this portion of the path therefore cannot push any cati®dahe stack. In addition,
it cannot pop any calls becauBg,,q has no return labels by construction. The stack trace a stéterefore
appends theall at s’ onto the stack trace at’, resulting in a stack which is in the languagedpf

o If dj, = dj,_1;e*, then the argument depends on whetHesatisfiesecp2cTL(d, ' |; 0). If it does, thens’ = s”

and by the inductive hypothesis the stack trac&lgm up tos’ satisfiesi;_;. The same stack trace must satisfy
di by interpreting the * as zero occurrences, so the claim hdfds does not,s” is different froms’ and the
argument is similar to that in the non-starred case, exdept the call labels pushed on the stack satisfithe
resulting stack is in the language &f since the * can match all of the occurrences.

Having established that the stack tracdpfq is in the language of, we now need to construct a pdthin P
with the same stack trace 8k, q. First, restore theeturn labels on the states if,q. Next, undo the bypass step
of the reverse-bypass algorithm: for eveegurn states,. in Ilg,q replace the transition from its predecessoi(in
IItwa) to s, with a path froms; to s,. in P that has matchingall andreturn states. (Such a path must exist because
we assumed that every function has some path along whialmintates and® has matchingall andreturn states by
construction.) The matching states imply that the addgestannot change the stack traces at statBstivat were
in Il;q SO the theorem holds.

O

Theorem 3 (Identifying Joinpoints in Aspects) Lets, be a state ird and letd be aPcp. Arg, s, = PCD2CTL(d™!;0)
(from algorithm 6) iff(P-A)rg, s, = PCD2CTL(d™};0).

Proof: Theorems 1 and 2 establish that e formulas forpcbs accurately reflect the stack contents. Algorithm 6
ascribes these stack labels to the initial state of an aspketstack discipline assumption implies that an aspect can
not affect the advised program'’s stack. The correlatiowbeh the formulas and the stacks therefore extends into the
aspects by a repetition of the argument in the precedingé¢heowith a change only to the base case (to initialize the
stacks with the contents frof, rather than the empty stack).

7.2 Modular Verification

In the following theorem statements, [Btbe a programA be advice to be applied tB, and P- A be the composed
program (constructed using algorithm 2).

Theorem 4 (Program Labels Accurate) Lety be acTL formula. For all states in bothP andP-A, (P-A), s = ¢ f
P, s = ¢ and the advice verification algorithm reports that all labake preserved. For all statesn A, (P-A), s = ¢
if A, s = ¢ during the advice verification algorithm.

Proof: We assume without loss of generality that@tiL formulas are given in negation normal form (meaning that
all negation operators are pushed inward so that only pitigos are negated). The proof is by induction on the

25

structure ofp. In the base case, is a positive or negative atomic proposition. Since adgigirograms does not alter
propositional values in either programs or aspects, theréme holds in the base case.

For the inductive case, assume that the theorem holds féoralulas of size up to and including By thecTL
semantics, the labels on statesdrdepend on the propositions i#hand the labels assumed on statgin A, which
are copied from the corresponding stateFinIf the theorem holds for formulas of size+ 1 on states inP, then it
must hold for formulas of siz& + 1 in A by the semantics of model checking. We therefore only needgoe the
inductive case for states il (using the inductive assumption on states from b@thnd A).

Let ¢ be a formula of siz& + 1 that labels state in P. We must prove thap labelss in P-A; the proof depends
on ¢'s outermost operator.

o If ¢ is of the form¢ A 1), then bothp andi must labels in P by thecTL semantics and must labeln P- A by
the inductive assumptioz must therefore label in P-A by thecTL semantics.

e If pis of the form¢ V ¢, then one ofp andvy must labels in P by thecTL semantics and must labgin P-A
by the inductive assumptio: must therefore label in P-A by thecTL semantics.

e If ¢ is of the formAX(¢) or EX(¢) the argument depends on whetRes a joinpoint state. If it is not, then
all of its successors must also lie fh By the inductive hypothesis, all those successors wists a label inP
must havep as a label inP- A, sop must also be true atin P-A. If s is a joinpoint state, then by construction
its only successor - A is the start state ofl; this means that there is no distinction betwdefiandEX at
s. Since the advice verification algorithm reported tHgpreserves by assumption, the start state 4fmust
satisfy¢. This label must carry over t&- A by the inductive assumption, somust labels in P-A.

e If ¢ is of the formA[¢ U] then the argument depends on whethés a joinpoint state. We first prove that the
theorem holds for the joinpoint states, then use that togtioat it holds for all other states.

Assumes is a joinpoint state. I satisfiesy, the theorem holds due to the inductive hypothesis andthe
semantics (which dictates that a state that satigfisatisfies a formula of the foriA[- - - U ¢]). By thecTL
semantics, i does not satisfyp, then it must satisfyp and every path leaving must eventually reach a state
that satisfies (or “dischargesi).

The argument depends on the location of the states thatadggelt. Let W P (for “witnesses inP”) be the
minimal set of states closest to statie P that satisfy,) and that thecTL semantics uses to justify. Lets,_.,
be the state itP to which the instance ofl inserted ak returns toP. The proof must consider how applyint
alters the paths td’ P under each advice type.

If the advice type idbefore or after, then all states il P, and all states leading up to stated4fP from s in

P, lie in both P and P- A by construction. By the inductive hypothesi3,and P-A agree on whethep and)
label each such state, gomust be a valid label og,_.,. The preservation check ot would only confirme

on A if every path satisfiech under the assumption gf on s,_.,, (even if this assumption was not necessary,
due toA satisfyingy) so the result holds in this case.

If the advice type isaround and the advice does not invokeoceed, then states iV P may have been
removed. If all paths froms in A satisfiedy without relying on ap label ons,_.,,, theny is clearly true at in
P-A and this case is complete. Assume tHatontains a path frors (in) to s,_.,, (out) that does not contain a

26

state satisfying). Since the advice verification algorithm reports thas true, the model checker needed label
0N sq—,, to provey atin. The proof therefore reduces to showing thatas an accurate label @utin P-A.
The aspect verification algorithm only copi@bl labels froms,_,, to out that do not lie inUcpeck. From the
definition of Ucpeck (in Algorithm 4), if ¢ is not inUepeck then the formuldA[(!call(f) A ¢) U 1] must be true
from s,_,,. This formula requires that was discharged before reaching a state labeddiff): in other words,
no path that witnesses required any states that could be elided by applying arodnita at a call tof. This
means that all states needed to estalgli$iom s,_.,, are in both?” and P- A; by the inductive hypothesis, their
¢ andy labels fromP are valid inP-A. They label ons,_., is therefore accurate iR- A4, so this case holds.

If the advice type isiround and the advice does involgoceed, no states are elided, but the labebn s,_,,

in P could still be invalid inP- A if (1) that label depended anlabelings and some state inserted by the advice
violateso, or if (2) A contains a cycle that does not satigfy The advice verification algorithm only copiég
labels fromUgpeck to outthat could be satisfied fromwithout the same label o,_.,; this restriction breaks
any potential circular dependency betwegn,, ands with regard top labels. The inductive case therefore
holds wherns is a joinpoint state.

If s is not a joinpoint state, then either each path from P discharges) before reaching a joinpoint, ar
must have labeled the joinpoint. On paths that dischardgefore reaching a joinpoint, all states involved in
satisfyingy lie in P and have the samgand+) labels in P-A by the inductive hypothesis; all of these states
must be inP- A because to be elided they would have to be on a path frtmat includes a joinpointy must
therefore labek in P-A. On paths that dischargeafter reaching a joinpoint, must label the joinpoint by the
CTL semantics. We have already established ¢ghatust label the joinpoint ifP-A. The states betweenand
the joinpoint lie in bothP and P- A, and preserve theis and labels inP- A by the inductive assumption. The
inductive case therefore holdssat

e The argument foE[¢ U v/] is analogous to that fohU.

e If ¢ is of the formAG(y) or EG(¢)), the result holds because all statesArand P-A agree on the) labels
by the inductive hypothesis, and all statesdirare checked againgtby the aspect verification algorithm. The
aspect check relies on thelabels on the return state from the aspect for this checkthmse labels cannot be
inaccurate without some state ihfailing to satisfy: (since advising adds no new states other than thodg.in
The inductive case therefore holds in this case.

8 Related Work

There are many efforts to define formal semantics for aspseth as the denotational model of Wand, Kiczales and
Dutchyn [66]. Some of these have been accompanied by prispasa&mploying the semantics for verification. For
instance, Andrews [4] uses process algebras to offer a fiomdforaop. That work is based on the earlier formulation
of aspects [39] in terms of arbitrary “weavers”. The work émagizes proofs of the correctness of program weaving,
using program equivalence to establish the correctnespafteular weaver.

27

The notion of compiling thecbs to automata and matching these against the stack is duestahisliaa et al. [50].
This idea is refined by Sereni and de Moor [56]. They providargliage oPcD primitives (which we used as the
basis for ours), and present a static analysis based onTthesanalysis determines, for each call site, the shapes of
the stacks possible at that site, and presents a pre-cotigpuba a fixed set obcDs that can reduce the work of the
analysis. Their work does not, however, discuss verificabough it is a natural application) and, in particulareslo
not provide a methodology for, or discuss the subtletiemofjular verification in this context. Adaptive programming
systems like Demeter [47] also rely on compiling regularc#ations into automata to guide the traversal process.
While we have not formally investigated the application of techniques to Demeter, we believe such an application
should indeed be possible.

Some researchers have considered aspect verificationthet@éontext of analyzing the program after composition.
Deng, et al. [19] use aspects to specify concurrency priggethen synthesize code with appropriate safety prasocol
and verify the result. Nelson, et al. [54] use both model kbescand model-builders to verify woven programs. Both
Ubayashi and Tamai [63] and Denaro and Monga [18] employ fmateekers to verify Java programs. These papers
do not, however, describe a modular verification methodotogaddress the accompanying subtleties such as advice
triggering fresh advice.

There is a growing body of work on techniques to study interiee between aspects, such as thosed8t and
Krinke [60] and Kniesel [personal comm.]. These approaaresssentially orthogonal to our work in that they do
not consume a user-specified property but rather analysetssior a fixed characteristic (like traditional type sysse
do). These efforts are therefore complementary to the waggsed here, but could potentially strengthen our work.

In a series of papers (e.g., [22]), Douence, et al. also dhidyproblem through a formalism fevor based on
events. This has the benefit of lifting aspects to a more sigenkavel, which they use to define two notions of
independence of an aspect, depending on whether or not hecampacted by a particular program. (This is related
to work on interface generation under parallel composiff 42].) The event-based definition shifts the work to
a fundamentally parallel setting, however, which is diffido compare with ours. While they provide proof rules
for reasoning about programs, they do not specify the imptaation status and whether the tools would run in as
automated a fashion as a model checker.

Devereux [21] maps programs and aspects to concurrennsysiiéhis leads to a fundamentally different style of
reasoning, since our composition is sequential while higrsillel. His approach supports a rich family of aspeat-lik
mechanisms, and may also be able to exploit results on gergeeavironment models under parallel composition [27,
42]. However, it is unclear what price this model extractseiturn for its power, especially given that languages like
AspectJ use sequential composition. His formalizatiordaesternating-time logic, for which tool support does not
appear to be as mature as forL or LTL.

Aldrich [1] presents a formal model of aspects, describgpa system for them, and proves an abstraction theorem
enabling modular reasoning. While useful, this approacls doeaddress verifying behavioral properties of programs.
Its more major drawback is that it fails to tackle any of theasive, dynamic features of aspects that make them both
interesting and controversial. As such, therefore, thekvimreally about a slightly extended, but fairly traditibna
module system, and it is unclear to what extent the aspewtslfm practice fall under his rubric.

Mousavi, et al. [53] discuss a new tool-suite for embeddestesys. This suite is designed to exploit aspects in
the design phase. While they discuss the desire to suppditagon at this level, it is not yet clear that they provide
concrete support for it. Regimbal, et al. [55] discuss the ofsaspects in hardware specification, concretely in a

28

system-on-a-chip packet filter using the e [sic] languadeckvincludes an aspect-like advice mechanism. They also
discuss the advantages of reusing verification in thisregttiowever, they do not appear to provide a formal frame-
work for actually performing such reasoning. Tesanovicale{62] perform timing analysis of real-time programs
using the worst-case execution time framework. Their whdwever, offers only a very simple model of pointcuts,
and does not identify pointcuts in advice.

Xu, et al. [68] propose reducing aspect verification to priork on reasoning about implicit invocation systems. In
particular, they suggest using work that employs modehenathan proof-theoretic techniques. It is, however, wacle
how their work addresses several issues that we do. Theytddistuss around advice, which is arguably the most
interesting kind, since it elides paths through a previpuskified program, potentially rendering the result of prio
verification invalid. At a more abstract level, it is uncleanat the consequences of their reduction would be: whether
verification works in a way that is meaningful to aspects, teethey can identify pointcuts induced by advice, what
the formal properties about implicit invocation verifiaatimean in the context of aspects, how to translate results of
verification into a form meaningful taop developers, and so on.

Sihman and Katz employ “superimpositions”, which are asfike notations parameterized to be more reusable.
Their work helps users of Bandera model-checking [57] atloédpractical problem of annotating the program differ-
ently for each aspect’s properties by employing superintipos to weave in the annotations specific to each aspect.
Their focus is on properties of aspects that programs mighdte, and their interfaces target verifying the presgova
of such properties. These interfaces, however, appearwgitien entirely manually. Their methodology also covers
preserving properties of the base program by aspects, btiimmugh separate analysis of program and aspects as in
our work. They do discuss the possibility of verifying thepast independently in the context of a dummy program,
and observe that this is an open-system verification prolbedo not offer a prescription for the generation of these
dummy programs.

In another paper [58], Sihman and Katz present a sophisticdiscussion of exactly what it means to verify
advice and program. They also classify types of advice basedhether or not they alter control- and data-flow
in the program. The work presented in this paper directlyreskbs what they dub “spectative” aspects. Related
work [10, 46] can, however, extend our result to much broaets of aspects. We therefore believe their work can
help classify our result and point to useful directions feading it.

More recently, Katz [35] gives a classification of aspects simows implications for extending properties true of
the base program to systems including aspects from variaiegiaries. For spectative aspects, the most restrictive
category, the verification presented here is usually redoiohce the aspect has been identified as falling in that cate
gory. For more general categories, however, that work doedemonstrate the implications for extending properties,
especially for liveness; thus, the technique presentetismpiaper can prove many properties not treated there.

Modular verification is an old problem, often referred to assume-guarantee reasoning” [34, 52]. Most assume-
guarantee techniques for model checking, following thd leaClarke, et al [15], assume that modules compose in
parallel, whereas aspects compose sequentially. Somarchs8, 14, 45, 49] has considered modular verification
with sequential control flow. Laster and Grumberg decompgmsgrams into sequential fragments and verify the
fragments incrementally from the end of the program to tit@irstate; each verification increment assumes propertie
already proven of later segments [45]. For verifying befamd after advice, our approach resembles theirs. Our work
goes much farther, however, to handle around advice (whachbypass states), cycles between multiple program
fragments (which their decomposition rules out by consiong, and the identification and maintenance of joinpoints

29

Furthermore, a substantial philosophical differenceteXigtween our work and theirs regarding the motivation for
modular reasoning. They decompose a complete programragonts to make model checking tractable, while we
use modular reasoning to support a modular design methgyldlaster and Grumberg leave open the question of how
to choose a decomposition; the works by Alur and Yannak&}{isuid Clarke and Heinle [14] use hierarchical state
machines and StateCharts, respectively, to provide thisrdposition. The design-driven motivation for our work
forces us to handle partial (or open) programs, and thugitubate interfaces between modules. These other works
treat logical dependencies between fragments as an ihtdgmaithmic detail. Masson, et al. [49] avoid the problem
of articulating interfaces by decomposing systems aroumchnstronger requirements, namely that all modules satisfy
the property; we believe this requirement is not realistipriactice, as our example shows.

Several projects for software verification are loosely dawe the same idea: apply predicate abstraction to the
program source, verify, and use the counterexample to riffenabstraction [7, 11, 30, 32]. They differ in their details
of how they generate and refine the abstractions. Other éithlsr translate to a model checker’s input [17], conduct
path exploration [28, 65], or generate verification comuais for theorem proving [20]. None of these approaches,
however, tackle the complex modularities described inghigosal.

Alur, et al. [2] present a temporal logic that includes calil aeturn statements for capturing properties of pushdown
systems. While their logic would capturecDs without the need for the bypass construction we use toifgient
pointcuts, their work does not address modular verificatéord their use of pushdown systems makes it difficult to
reuse existing verification tools.

Kicazles and Mezini [40] present a case study in modular@spasoning. Their example illustrates that reasoning
about a single aspect must take into account the contexeafdpect’s application in the rest of the system, analogous
to the interfaces generated in prior work by Blundell, e{HD]. As such, we can view their work as parallel to that
presented here, except done by informal reasoning throggkecific example.

Fisler and Krishnamurthi [26] present a model for verifyprgduct-line systems where each module encapsulates
a feature. That work addresses the possibility of concayrarithin each module. However, composition there occurs
only at fixed points in the source, thus ignoring dynamicpaoimts. Li, et al. [46] and Blundell, et al. [10] extend these
results to address open-system problems that also appkptres, respectively using three-valued model-checking
and a two-phase technique based on constraint generatibsofring. These works present approaches that would
enable verification in a context where the advice was pegthith modify the data of the base program. They do not,
however, address the important and interesting cases ahtigrcomposition and cascading aspects.

9 Conclusion and Future Work

There is a folklore belief that aspects inhibit any form ofddular” verification. This paper demonstrates that these
claims are exaggerated. Aspects do admit modular, incrednegrification in the presence of an appropriate form of
lightweight specification that delimits their effect (jast type sighatures and public/private designators enapieate
type-checking). In our work, thecbs play the role of these specifications. Indeed, our work imakeimplicit case
for separating the definition afcps from that of the actual advice.

Our technique generates interfaces at each state whereeachm apply, storing enough information to enable
separate verification of the advice. These interfaces sptifically to the property under analysis, and may not be
useful for unrelated properties. While the resulting teghniis less general than one that utilizes interfaces aartstt

30

manually by the developer, it has the benefit of being eptaatomated. We call this procgs®perty-driven interface
generation

Relative to fixedpcDs, our technique is sound, and addresses subtleties iogddoy around advice and the
triggering of advice by other advice. The technique handigsmmicPcDs and, by virtue of supporting staticDs,
can also apply to other methods for modularizing crossayttode [6, 8, 9, 25, 29, 47, 51, 59].

Our goal is to port these ideas to more scalable verificatemméworks, especially exploiting known techniques [17,
23] for generating state machines from source. In additamkling Java source requires expandingris® language,
and also handling more language features. We can alreadglrsoche, such as static variables, by slightly altering
the way we inline procedures; others, such as concurrenlttypnabably require techniques similar to ones we have
developed in prior work [26].

Independent of the language, our technique must extend alreral dimensions:

e We would like to exploit knowledge about tikeDs and properties to drive the model generation process.

e Once an advice completes, it restores the stack to the sateetdtad before invocation. Invoking advice can
therefore have no impact on the pointcuts of either statidymramicpcDs. In a system like AspectJ, which
has a richepcD language, this claim is no longer true. For instance, theofisé in a PCcD makes it possible
to write complex predicates that can, for instance, detegttions performed by advice. A simpler example
would use theni t hi n pointcut.

In such cases, a tool would need to perform a value-flow aisatpsdetermine when an advice can cause
a joinpoint to enter a pointcut, conservatively over-estiento preserve soundness, and use the body of the
advice to determine whether or not to perform verificatioa @inpoint. The model we present here remains
applicable—only the set of states for which we generate fates changes—though a weak analysis would
generate interfaces and suggest verification at unrealyomainy states.

e Applying advice can remove states from pointcuts. For mstasection 4.4 considered the case of advice that
does not invokeroceed; in that instance, pointcut elements in the fragment bethgsad will no longer exe-
cute. Or suppose the advice terminates program executien;the rest of the program is no longer reachable.
While it is sound to verify advice application at these stat@gvay, it can certainly lead to predictions of errors
that do not occur on execution (since the program does nibthise states).

This problem is not serious. Any advice can affect pointduitsterminates program execution in some or all
paths, but this is easy to detect and address (indeed, this iofdicates an error in the advice). In the absence
of this, before and after advice are not problematic. Thg methaining case is when no path through an around
advice invokeproceed (which is easy to detect by reachability). In this instarvee need not verify joinpoints

in the advised code. The set of such joinpoints can be redandfe interface.

e When an around aspect does invgikeceed, the aspect itself often performs operations orthogonéhose
being advised. For instance, the aspect might incrementaciement counters, or perform other such generic
operations that have no effect on the program’s propertiesuch cases, the set of labels will not be affected
by the advice state machine, which means the existing lalpetlse advised procedure can be reused safely. We
believe that flow analyses can help identify cases when weatgse the existing labels.

31

e The technique presented in this paper is designed to estahipreservatiorof program properties by aspects.
In fact, aspects often introduce new invariants about mogr We can partially simulate this by verifying the
negationof the property on the program; verifying that the advicenthielatesthe (negated) property indicates
that the property holds in at least some cases. (This violaif the property does not automatically guarantee
that the original property holds, because our techniquetsomplete.) Because it is impossible to anticipate
such properties, however, we need a better approach.

e Our technique assumes that state modified by aspects doeffewitcontrol flow in the remainder of the pro-
gram. In general, this assumption is too restrictive. Oiorprork presents two different techniques [10, 46]
that use different analyses for addressing such systemslioas not account for all the subtleties of aspects
(though we believe these are largely orthogonal). One kegmfation in that prior work is that it may be more
useful to view the problem as one of constraint generatitirerahan as one of model checking, as the latter
ultimately aims to give definitive answers. We intend to adhpse results to the aspect context.

Acknowledgments

We are grateful to Gregor Kiczales for valuable discussiias changed the perspective of this paper. We thank
Shmuel Katz for lengthy discussions about the relationbbigveen this work and his. We also appreciate the careful
reading and useful comments of Christopher Dutchyn. Wekthiag anonymous reviewers for their numerous com-
ments, which helped improve the presentation. In partic®aviewer 2 helped us find and fix an error in theorem 2.
We thank Michael Greenberg for prototyping a variant of éhalgorithms, and Matt Hoosier and Matthew Dwyer for
their help with the details.

References

[1] Aldrich, J. Open modules: Modular reasoning in aspe@sded programming. Ifroundations of Aspect-
Oriented Language$ages 7—18, March 2004.

[2] Alur, R., K. Etassami and P. Madhusudan. A temporal lafinested calls and returns. @onference on Tools
and Algorithms for the Construction and Analysis of Systeages 467—481, 2004.

[3] Alur, R. and M. Yannakakis. Model checking of hierardiistate machines. I8ymposium on the Foundations
of Software Engineeringpages 175188, 1998.

[4] Andrews, J. H. Process-algebraic foundations of aspaented programming. IReflection pages 187-209,
September 2001.

[5] Aspect oriented programming (article serie€pmmunications of the ACM4(10), October 2001.
[6] ABmann, U.Invasive Software CompositioBpringer-Verlag, 2003.

[7] Ball, T. and S. K. Rajamani. The SLAM project: Debuggingstem software via static analysis. ACM
SIGPLAN-SIGACT Symposium on Principles of Programmingyuagespages 1-3, January 2002.

32

[8] Batory, D. Feature-oriented programming and the AHEADI suite. Ininternational Conference on Software
Engineering pages 702-703, 2004.

[9] Batory, D. and S. O’Malley. The design and implementataf hierarchical software systems with reusable
componentsACM Transactions on Software Engineering and Methodqgla¢d):355-398, October 1992.

[10] Blundell, C., K. Fisler, S. Krishnamurthi and P. Van Hemryck. Parameterized interfaces for open system
verification of product lines. IfEEE International Symposium on Automated Software Emging pages 258—
267, September 2004.

[11] Chaki, S., E. Clarke, A. Groce, S. Jha and H. Veith. Madwierification of software components in (EEE
Transactions on Software Engineerji89(6):388—402, June 2004.

[12] Clarke, E., E. Emerson and A. Sistla. Automatic vertiima of finite-state concurrent systems using temporal
logic specificationsACM Transactions on Programming Languages and Syst@(®x244—-263, 1986.

[13] Clarke, E., O. Grumberg and D. Pelddodel CheckingMIT Press, 2000.

[14] Clarke, E. M. and W. Heinle. Modular translation of &tetarts to SMV. Technical Report CMU-CS-00-XXX,
Carnegie Mellon University School of Computer Science, #at@000.

[15] Clarke, E. M., D. E. Long and K. L. McMillan. Compositiahmodel checking. INREEE Symposium on Logic
in Computer Scien¢gages 353-362, 1989.

[16] Clements, P. and L. Northrofgoftware Product Lines: Practices and Patterdsldison-Wesley, 2002.

[17] Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach, CPasareanu, Robby and H. Zheng. Bandera : Extracting
finite-state models from java source codelriternational Conference on Software Engineeripgges 439-448.
IEEE Press, 2000.

[18] Denaro, G. and M. Monga. An experience on verificatiormshect properties. Imternational Workshop on
Principles of Software Evolutigpages 184—188, September 2001.

[19] Deng, X., M. B. Dwyer, J. Hatcliff and M. Mizuno. Invari&based specification, synthesis, and verification of
synchronization in concurrent programs.liternational Conference on Software Engineeripgges 442—-452,
2002.

[20] Detlefs, D. L., K. R. M. Leino, G. Nelson and J. B. Saxe. téhded static checking. Research Report 159,
Compag Systems Research Center, December 1998.

[21] Devereux, B. Compositional reasoning about aspedtgyuaternating-time logic. Ifoundations of Aspect-
Oriented LanguagesMarch 2003.

[22] Douence, R., P. Fradet and Mia@holt. A framework for the detection and resolution of aspeteractions. In
International Conference on Generative Programming ananfonent Engineeringpages 173-188, October
2002.

33

[23] Dwyer, M. B. and L. A. Clarke. Flow analysis for verifygrspecifications of concurrent and distributed software.
Technical Report UM-CS-1999-052, University of Massaehiss Computer Science Department, August 1999.

[24] Filman, R. and D. P. Friedman. Aspect-oriented programng is quantification and obliviousness. Workshop
on Advanced Separation of Concer@stober 2000.

[25] Findler, R. B. and M. Flatt. Modular object-orientecogramming with units and mixins. IACM SIGPLAN
International Conference on Functional Programmipgges 94-104, 1998.

[26] Fisler, K. and S. Krishnamurthi. Modular verificatiohamllaboration-based software designsJaint European
Software Engineering Conference and ACM SIGSOFT Sympasiuthe Foundations of Software Engineering
pages 152-163, September 2001.

[27] Giannakopoulou, D., C. Pasareanu and H. Barringemugsion generation for software component verification.
In IEEE International Conference on Automated Software Eggyiimg pages 3—12, 2002.

[28] Godefroid, P. Model checking for programming languagsing VeriSoft. IPACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languagpages 174-186, January 1997.

[29] Harrison, W. and H. Ossher. Subject-oriented programgma critique of pure objects. IACM SIGPLAN
Conference on Object-Oriented Programming Systems, Laagesu& Applicationspages 411-428, 1993.

[30] Henzinger, T. A., R. Jhala, R. Majumdar and G. Sutre. t&afe verification with Blast. Ir'SPIN Workshop
on Software Model Checkinglumber 2648 in Springer Lecture Notes in Computer Sciepages 235—239.
Springer-Verlag, 2003.

[31] Hilsdale, E. and J. Hugunin. Advice weaving in Aspectd. International Conference on Aspect-Oriented
Software Developmenpages 26—35, 2004.

[32] Holzmann, G. and M. H. Smith. Software model checkingtracting verification models from source code.
Software Testing, Verification, and Reliabilityl(2):65—79, June 2001.

[33] Huth, M. and M. RyanLogic in Computer Scienc&€ambridge University Press, second edition, 2004.

[34] Jones, C. B. Tentative steps toward a development rdefihrointerfering programs.ACM Transactions on
Programming Languages and Syste#i(gl):596—619, 1983.

[35] Katz, S. Aspect categories and classes of temporakpties. Transactions on Aspect-Oriented Software Devel-
opment1:106-134, 2006. Published lascture Notes in Computer Scienugmber 3380.

[36] Kiczales, G. The more the merriédoftware DevelopmenDctober 2004.
http://ww. sdmagazi ne. com docunent s/ s=8993/ sdn0410g/ .

[37] Kiczales, G., J. des Rigres and D. G. Bobrovithe Art of the Metaobject ProtocoMIT Press, 1991.

[38] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, JinPand W. Griswold. An overview of AspectJ. In
European Conference on Object-Oriented Programmpages 327-353, 2001.

34

[39] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. dpés, J.-M. Loingtier and J. Irwin. Aspect-oriented
programming. IrEuropean Conference on Object-Oriented Programmpages 220-242, June 1997.

[40] Kiczales, G. and M. Mezini. Aspect-oriented programgiand modular reasoning. International Conference
on Software Engineeringages 49-58, 2005.

[41] Krishnamurthi, S., K. Fisler and M. Greenberg. Verifgiaspect advice modularly. RCM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engingepages 137-146, November 2004.

[42] Kupferman, O., M. Vardi and P. Wolper. Module checkinign. International Conference on Computer-Aided
Verification number 1102 in Lecture Notes in Computer Science, page67Bpringer-Verlag, 1998.

[43] Laddad, R.AspectJ in ActionManning Publications Co., 2003.

[44] Laroussinie, F., N. Markey and P. Schnoebelen. Tenpogéc with forgettable past. IhlEEE Symposium on
Logic in Computer Sciengpages 383-392, 2002.

[45] Laster, K. and O. Grumberg. Modular model checking dfwgare. InConference on Tools and Algorithms for
the Construction and Analysis of Systepages 20-35, 1998.

[46] Li, H. C., S. Krishnamurthi and K. Fisler. Modular vedéition of open features through three-valued model
checking.Automated Software Engineering Journb2(3):349-382, July 2005.

[47] Lieberherr, K. JAdaptive Object-Oriented ProgramminBWS Publishing, Boston, MA, USA, 1996.

[48] Maidl, M. The common fragment of CTL and LTL. Bymposium on Foundations of Computer Scigpages
643-652, 2000.

[49] Masson, P.-A., H. Mountassir and J. Julliand. Modularification for a class of PLTL properties. Integrated
Formal Methodspages 398-419, November 2000.

[50] Masuhara, H., G. Kiczales and C. Dutchyn. A compilatma optimization model for aspect-oriented programs.
In Compiler Constructionpages 46—60, 2003.

[51] Mezini, M. and K. Lieberherr. Adaptive plug-and-plagraponents for evolutionary software development. In
ACM SIGPLAN Conference on Object-Oriented Programminge®ys, Languages & Applicationpages 97—
116, October 1998.

[52] Misra, J. and M. Chandy. Proofs of networks of process#sEE Transactions on Software Engineering
7(4):417-426, 1981.

[53] Mousavi, M., G. Russello, M. Chaudron, M. Reniers, Tstm, A. Corsaro, S. Shukla, R. Gupta and D. C.
Schmidt. Using Aspect-GAMMA in design and verification of leealded systems. limternational Workshop
on High Level Design Validation and Tepages 6975, October 2002.

[54] Nelson, T., D. D. Cowan and P. S. C. Alencar. Supportiognial verification of crosscutting concerns. In
Reflectionpages 153-169, 2001.

35

[55] Regimbal, S., J.-F. Lemire, Y. Savaria, G. Bois, E. M.olthamid and A. Baron. Aspect partitioning for
hardware verification reuse. Workshop on System-on-Chip for Real-Time Applicatipages 183-192, 2002.

[56] Sereni, D. and O. de Moor. Static analysis of aspectftbrnational Conference on Aspect-Oriented Software
Developmentpages 30-39, March 2003.

[57] Sihman, M. and S. Katz. Model checking applications sppects and superimpositions. Foundations of
Aspect-Oriented Languaggzages 51-60, March 2003.

[58] Sihman, M. and S. Katz. Superimpositions and aspeetited programminglhe Computer Journa#t6(5):529—
541, September 2003.

[59] Smaragdakis, Y. and D. Batory. Implementing layeredigies and mixin layers. |European Conference on
Object-Oriented Programmingages 550-570, July 1998.

[60] Strzer, M. and J. Krinke. Interference analysis for Aspedtd Foundations of Aspect-Oriented Languages
pages 35-44, 2003.

[61] Sullivan, K., W. G. Griswold, Y. Song, Y. Cai, M. Shonld, Tewari and H. Rajan. Information hiding interfaces
for aspect-oriented design. Joint European Software Engineering Conference and ACMSSIET Symposium
on the Foundations of Software Engineeripgages 166—175, September 2005.

[62] Tesanovic, A., J. Hansson, D. Ny&itn, C. Norstom and P. Uhlin. Aspect-level WCET analyzer.liternational
Workshop on Worst-Case Execution Time Analykily 2003.

[63] Ubayashi, N. and T. Tamai. Aspect oriented programmait model checking. Innternational Conference on
Aspect-Oriented Software Developmekyril 2002.

[64] Vardi, M. Y. and P. Wolper. Reasoning about infinite cargtions. Information and Computatiqni15(1),
November 1994.

[65] Visser, W., K. Havelund, G. Brat and S. Park. Model chieglprograms. IMEEE International Symposium on
Automated Software Engineerimmages 3—-12, September 2000.

[66] Wand, M., G. Kiczales and C. Dutchyn. A semantics foriaévand dynamic join points in aspect-oriented
programming. ACM Transactions on Programming Languages and Syst2é(¢s):890-910, 2004.

[67] Wolper, P. Temporal logic can be more expressiméormation and Contrgl56(1-2):72—99, 1983.

[68] Xu, J., H. Rajan and K. Sullivan. Aspect reasoning byuetbn to implicit invocation. InFoundations of
Aspect-Oriented Languaggsages 31-36, March 2004.

36

