
Foundations of Incremental Aspect Model-Checking∗†

Shriram Krishnamurthi‡

Brown University

Kathi Fisler§

WPI

May 27, 2006

Abstract

Programs are increasingly organized around features, which are encapsulated using aspects and other linguistic

mechanisms. Despite their growing popularity amongst developers, there is a dearth of techniques for computer-aided

verification of programs that employ these mechanisms. We present thetheoretical underpinnings for applying model-

checking to programs (expressed as state machines) written using thesemechanisms. The analysis is incremental,

examining only components that change rather than verifying the entire system every time one part of it changes.

Our technique assumes that the set of pointcut designators is known statically, but that the actual advice can vary. It

handles both static and dynamic pointcut designators. We present the algorithm, prove it sound, and address several

subtleties that arise, including cascading advice application and problems of circular reasoning.

Categories and Subject Descriptors:D.2.4 [Software Engineering]: Software/Program Verification; D.3.2 [Pro-

gramming Languages]: Language Classifications

General Terms: Algorithms, Languages, Verification

Keywords: incremental verification, modular verification, model-checking, aspect-oriented programming, feature-

oriented software

1 Introduction

There is growing consensus [5] that traditional software structures have notable abstraction weaknesses, and new

software composition techniques are evolving to address these criticisms. These new techniques help a developer

incrementally link segments of user-visible functionality (sometimes called “features” [16]) to programs. Writing

these identifiable increments in conventional programminglanguages is challenging because an increment may affect

parts of a program across traditional module boundaries: such increments are calledcrosscutting. This has led to a

growing body of work on developing new forms of program modularity that go by different names includingAHEAD,

mixin layers, etc. [6, 8, 9, 25, 29, 47, 51, 59]. Some techniques are purely static, effectively manipulating the program’s

∗Preliminary versions of this material appeared in conferencepublications [26, 41].
†This work is partially supported by NSF grants CCF-0447509,CCR-0132659 and CCR-0305834.
‡Computer Science Department, Brown University, Providence,RI, USA,sk@cs.brown.edu
§Department of Computer Science, WPI, Worcester, MA, USA,kfisler@cs.wpi.edu

1

source, while others have dynamic elements, offering the ability to reflect on the state of the program’s execution and

then to modify it.

Aspect-oriented programming (AOP) [39], especially as realized in the AspectJ language [38],is one of the most

popular forms of incremental program composition. Aspectssupport both static and dynamic linking specifications,

but their most distinctive techniques are arguably in the latter category. In particular, AspectJ provides a pattern

language that can predicate the execution of an aspect on thecurrent shape of a program’s stack. It can therefore

express a rich family of coherent, conceptual ideas that canbe difficult to encapsulate in more traditional notions of a

module.

With the popularity ofAOP burgeoning, software engineers should expect tool supportfor all stages of the software

cycle—including validation of behavioral properties. Thisis especially important because the expressive power that

aspects unleash also heightens the potential for errors. Specifically, a program may satisfy a behavioral property but

the application of an aspect to the program may now invalidate that property. The problem is especially insidious

because the application of one aspect may cause the application of another, and so on; the resulting property violations

can be quite subtle, making their identification daunting.

In this paper, we adaptCTL model checking [12] to verify aspect-oriented programs expressible as state machines.

Our technique is designed to identify situations where the application of an aspect to a program (which may already

be the result of aspect composition) may violate some desirable properties of the program and, also, of the resulting

composed system. Verifying whether a given program exhibits certain properties is a straightforward application of

model checking. In contrast, establishing that the application of an advice does not violate the properties is challenging.

A model checker traverses program paths, so to establish a property of the composition, it must traverse paths that lie

partly within the program and partly within the advice. However, demanding that the developer combine the advice

and program prior to each verification is onerous:

1. The advice may be authored at a different time or in a different place than the program, just as modules are

developed in spatial and temporal independence.

2. The advice may be edited repeatedly; verification time is proportional to the size of the system, so constantly

verifying the changing advice against a fixed program is inefficient.

We instead develop amodular technique that analyzes a program and a family of applicableaspects independently,

while caching just enough information to identify interactions between them.

Modularity has multiple interpretations. We assume a strict, black-box interpretation, whereby an aspect can

assume and return control only at well-defined interface states. A looser, white-box interpretation is that modularity

merely means avoiding repeated analysis over the program, but otherwise making information from all states of the

program available when analyzing aspects. By treating every pair of states as potential points for attaching advice, our

technique could simulate this looser notion, and thus support a much richer family of aspects [35].

To enable modular analysis, we require some information from the programmer specifying where an aspect will

apply, which enables our technique to cache some information about the program. Specifically, we depend on specifi-

cations called pointcut designators, which programmers already write. Changes to these specifications may invalidate

the cached information, forcing a fresh round of modular analyses. Therefore, we conceive this as anincremental

technique: analogous to incremental compilation, it triggers fresh verification when certain portions of the system

2

change, while trying to avoid having to verify the system as awhole. Because our technique supports static linking

specifications in addition to dynamic ones, it can just as easily be applied to many of the other attempts to improve

program modularity [8, 25, 47, 59].

Our result suggests a change to the design of aspect languages. Currently, an aspect in AspectJ requires the

co-specification of where an aspect will apply (the pointcutdesignator) and what it will perform at those points. The

formal model in this paper mirrors this tradition. In contrast, however, our verification technique exploits the separation

of these two concerns: knowing where the aspect will apply enables our algorithms to record information that can be

used to verify the actual injected behavior, which may only be known later (and may change repeatedly).1

To use the terminology of Filman and Friedman [24], our work values “quantification” over “obliviousness”. In this

respect, our work is not alone: there is growing interest in models that have partial specifications of aspectual behavior.

Kiczales and Mezini’s paper on modular reasoning proposes interfaces with lightweight aspect specifications [40].

Furthermore, the paper by Sullivan, et al. [61] strongly challenges the traditional belief that obliviousness is central

to aspect-orientation. Since the separation we introduce can aid other reasoning techniques, as well as tools such as

compilers, we believe it would be beneficial for future aspect language designs to cleave the definition of an aspect

asunder.

To apply finite-state model checking to infinite-state source programs we must impose some restrictions on the

kinds of systems we can analyze, and these are augmented by the nature of aspects. Our work therefore makes the

following assumptions:

• The model restricts the sharing of data between the program and advice. It permits advice to read the data of the

program, which is already sufficient to implement standard aspect examples such as tracing and logging. The

model does not, however, permit an aspect to modify a program’s data.

This begs the question of whether it is possible to have non-trivial aspects that do not modify the main program’s

data. To answer this question, we examined all the examples in the book by Laddad [43], which appears to be

the most comprehensive catalog of non-trivial aspect uses and encompasses many of the examples presented in

the research literature (such as adding transactional support, and a variation on implementing design patterns).

Our examination of the book revealed that virtually all of its examples fit the assumption we make: most of the

interesting advice reads the program’s data, but virtuallyno advice modifies it. The primary counter-example

we found was on pages 404–405: an overdraft rule that transfers money from one account into another. (Even

the variants of that rule presented in the same chapter (Chapter 12) do not have this property.) Therefore, there

are numerous interesting and non-trivial aspects that fit our model.

It is not impossible to verify programs when advice are permitted to modify the program’s data, but it does

require a different approach to verification (such as three-valued model checking). We discuss these approaches

briefly in section 8. That work is largely orthogonal to the approach we present here, but would need to be

augmented with some of the techniques discussed in this paper.

• The form of program model we describe here is not well-suitedto programs with heavily recursive control

structure. Heavily recursive programs tend to take this form because they are processing rich, recursive data.

1Our technique does not need the pointcut designators to be specified with the program: it only demands that the designators be supplied at the

time ofverifying the program. This is a subtle but important difference.

3

These are, however, the kinds of programs for which model-checking is itself often ill-suited, so our choice of

model does not impose a fresh restriction beyond that already placed by the use of model-checking.

• Although model checking is, in principle, both sound and complete, we can only ensure soundness. We discuss

this in the context of algorithm 5 in section 6.3.

We propose the following route to navigating this paper. Readers unfamiliar with aspects or model checking should

consult the background material in section 2. Those who wantan overview of the work can skim section 3 for the

formal models and then read section 4, which presents the main contribution through a running example, covering the

subtleties that arise. The details of how to approximate program stacks, which section 4 depends on, are in section 5.

Understanding the rest of the paper requires a more thoroughunderstanding of section 3. A more precise exposition of

the algorithms is in section 6. Finally, the stout of heart will want to study the proofs, which are in section 7. They will

be rewarded with a detailed description of how our algorithmproperly addresses the circular reasoning issues raised

in section 4.4.

2 Background

2.1 Aspect-Oriented Programming

This paper uses a simplified version ofAOP. Informally, our model has a notion ofadvising, or altering, a program’s

behavior. The locations where this alteration occurs are called thejoinpoints, and we say that the altered code has been

advised. Advice is a fragment of code that is executed either before,after or “around” the evaluation of the joinpoint.

(The example in section 4.1 makes these notions concrete.) An around advice is executed in place of the original

joinpoint, though the advice can execute aproceedcommand, which executes the code that would otherwise have been

elided. In this way, the programmer who usesAOP can directly simulate some of the power of metaprogramming [37].

The AspectJ implementation ofAOP provides a powerful language for describing when an advice should apply.

This language, ofpointcut designators(PCDs), can name either static or dynamic conditions under whichto advise the

program. StaticPCDs name static program attributes, while dynamicPCDs specify a run-time condition. The dynamic

PCD language of AspectJ permits patterns over the shape of the stack, so that programmers can, for instance, write a

PCD of the form “when procedurep is being invoked in the dynamic extent of procedureq” (i.e., a stack frame forq is

lower on the stack whenp becomes the procedure at the top of the stack).

2.2 Model Checking

Model checking is a popular automated verification technique used to establish properties of finite-state systems. A

model checker consumes a description of a system, usually given as a state machine (technically a Kripke structure),

and a specification of a property (in a temporal logic) that the system must obey. The state machine can be non-

deterministic. The model checker exhaustively explores the state machine to search for executions that could violate

the property. The result is either a counterexample showinghow the system could violate the property, or a statement

that the system respects the property.

Model checking algorithms exist for a variety of temporal logics for property specification. This work usesCTL

model checking [12]. The atoms ofCTL are propositions that label states.CTL permits combination of these atoms

4

using the standard propositional operators and connectives (negation, conjunction, implication, etc). Finally,CTL can

capturetemporalproperties. A statement of the form[φ U ψ] (whereφ andψ are bothCTL formulas) is true at a state

if φ is true now and in the future until a state whereψ is true (read theU as “until”). Because many paths leave a state,

CTL requires us to quantify this statement by whether we expect the property to hold in all possible future worlds or

only in some. TheCTL formulaA[φ U ψ] expects that onAll paths,φ will hold in every state until a state whereψ is

true (which must eventually occur), whileE[φ U ψ] requires that thereExists a path where this holds. Other temporal

operators express “in next states” (AX andEX), “in all future states” (AG andEG), and “in some future state” (AF

andEF).

The formal syntax and semantics ofCTL are as follows:

Definition 1 (CTL Syntax) The set ofCTL formulas contains propositions and the logical constantstrue and false,

and is closed under the following operators, whereφ andψ areCTL formulas:¬φ, φ∨ψ, φ∧ψ, AX(φ), EX(φ), AG(φ),

EG(φ), A[φ U ψ], andE[φ U ψ]. AF(φ) andEF(φ) abbreviateA[true U φ] andE[true U φ], respectively.

Definition 2 (CTL Semantics) A Kripke structureis a tuple〈S,R,L〉 whereS is a set of states,R ⊆ S × S is a

transition relation, andL is a function fromS to sets of atomic propositions that label states. Apath is a potentially

infinite sequence of statess0, s1, . . . such that for alli ≥ 0, (si, si+1) ∈ R. Given a Kripke structureM = 〈S,R,L〉,

states ∈ S, and aCTL formulaϕ, the formulaϕ is true ats (denotedM, s |= ϕ) under the following conditions:

• M, s |= p, wherep is an atomic proposition, iffp ∈ L(s)

• M, s |= ¬φ iff s 6|= φ

• M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ

• M, s |= φ ∧ ψ iff M, s |= φ andM, s |= ψ

• M, s |= EX(φ) iff for some states′ such that(s, s′) ∈ R, s′ |= φ.

• M, s |= AX(φ) iff for all statess′ such that(s, s′) ∈ R, s′ |= φ.

• M, s |= E[φ U ψ] iff M, s |= ψ or if there exists a paths0, s1, . . . , sk starting froms such thatM, sk |= ψ and

for all 0 ≤ i < k, si |= φ.

• M, s |= A[φ U ψ] iff M, s |= ψ or if every paths0, s1, . . . starting froms contains a statesk such that

M, sk |= ψ and for all0 ≤ i < k, M, si |= φ.

• M, s |= EG(φ) iff there exists an infinite paths = s0, s1, . . . such that for alli, M, si |= φ.

• M, s |= AG(φ) iff for every infinite paths = s0, s1, . . ., M, si |= φ for all i.

Model checkers usually implement theCTL semantics by traversing a formula bottom-up, labeling eachstate with

those subformulas that are true at that state. As a result, when the checker is done,each state is labeled with all the

sub-formulas of the property that are true of that state. We will exploit this important invariant in this paper. (For

readers who want to study the model checking algorithm, we recommend the expository presentation in the book by

Huth and Ryan [33, pages 222–230].)

The dependence of our technique on this invariant justifies why our work usesCTL rather thanLTL [64]. LTL is

a temporal logic in which formulas describepathsrather thanstates. A state-labeling approach is known to handle a

subset ofLTL (the deterministic subset defined by Maidl [48]), but in general the state-centric view is inconsistent with

the LTL semantics. It would be possible to create a modular aspect analysis usingLTL instead, but we do not explore

this problem in this paper.

5

3 Formal Models

3.1 Programs

We represent programs as Kripke structures (state machines). States correspond to statements and expressions in the

program, while transitions reflect the control flow between expressions. A set of propositional labels indicates the

information known at each state.

To more closely resemble the structure of source code, we start with state machines that capture individual func-

tions (with special states to designate function call and return locations), including a main function. Given a set of state

machines for functions, we then use a straightforward algorithm to produce a state machine for the entire program by

inlining copies of the function state machines between calland return states (up to a given inlining depth parameter).

It is important to note that this only requires the inlining process, not the program itself, to terminate. While this tech-

nique appears restrictive, it is the same one used by state-of-the-art tools such as FLAVERS [23] and Bandera [17],

which have been successfully employed in several software verification tasks.

In principle, our work does not rely on inlining as a construction technique. All we require are state machines

that follow astack disciplineof calls and returns (meaning that calls and returns are properly matched), and access to

the bodies of individual advisable code (to analyze when an advice proceeds). Tools such as FLAVERS and Bandera

consume program source and employ program analyses to generate state machines similar to those we need. We

therefore regard the use of inlining as orthogonal to our work.

The rest of this section presents these details formally. The definitions assume the existence of a setFN of function

names, including the namemain.

Definition 3 A state machineM is a tuple〈S, T, L, Ssrc, Ssink, Scall, Srtn, Tcr〉 where

• S is a set of states.

• T ⊆ S × S.

• L : S → 2AP for some set of atomic propositions AP, which are boolean encodings of program data.

• Ssrc ∈ S andSsink ∈ S such thatSsrc is a source andSsink is a sink when viewing〈S, T 〉 as a directed graph.

We call these thesourceandsink states ofM . (Intuitively, these are the entry and exit points of the program

fragment.)

• Scall ⊂ S andSrtn ⊂ S. We call the states in these setscall andreturn states, respectively.Scall andSrtn are

disjoint and are in a bijective relationship that is captured in Tcr ⊂ Scall × Srtn (Tcr is called thecall-return

relation). The states inScall carry the labelcall(f) (wheref is the function being called), and those inSrtn

are correspondingly labeledret(f). Intuitively, every state inScall denotes an invocation of a function, and the

correspondingSrtn state is where control returns when the function completes execution.

Preserving the projection of a state machine’s transitionsto those between call and return states (as recorded byTcr) is

important because the inlining construction will remove the edges between these states, but our verification technique

needs to determine which return states correspond to which call states.

6

Definition 4 A functionis a tuple〈name,M〉, wherename ∈ FN andM is a state machine.

Algorithm 1 (Constructing Programs from Source) Given a set of functions with distinct names, including one

namedmain, and a number indicating the inline-depth, generate aprogramby traversingmain. At each call-return

state pair, inline afresh copyof the state machine for the function labeling the call state. To inline a functionF between

statesc andr in M , add an edge fromc to the source stateSsrc of F ; and add an edge from the sink stateSsink of F

to r. Continue inlining recursively inF until the depth parameter is exceeded, at which point add an edge betweenc

andr.

3.2 Aspects

In a typical aspect language, a proceed statement is analogous to a procedure call to the elided code. To mimic the

structure of our function call-and-return states, we modelproceed statements with proceed-resume state pairs.

Definition 5 Adviceis a state machine with two additional components,Sproceed ⊂ S andSresume ⊂ S. These are

the proceed and resume states, respectively.Sproceed andSresume are in a bijective relationship, and are disjoint

from one another and fromScall andSrtn. Sproceed andSresume may be empty.

Pointcutsare sets of states at which advice can apply. Our model treatsonly function applications as joinpoints.

Our techniques extend naturally to richer sets of joinpoints as long as those joinpoints are represented in the finite-

state program model. The choice of joinpoint language couldtherefore affect the choice of model extraction algorithm.

Pointcuts are specified through a subset of regular expressions over function calls; these regular expressions describe

the shape of the stack at program states (as opposed to sequences of calls leading to states). This allows our language to

capture dynamic pointcuts analogous to those captured bycflow andwithin in AspectJ. The following definition

presents our regular expression language forPCDs. Section 6.1 describes the process of identifying the states that

match aPCD.

Definition 6 The following grammar specifies expressions that define pointcuts:

A pointcut atomis one of the following:

• call(f) for some function namef (other thanmain)

• !call(f) for some function namef (other thanmain)

• true

A pointcut elementis one of the following:

• a pointcut atom

• (e) wheree is a pointcut element

• e1 ∧ e2 wheree1 ande2 are pointcut elements

• e1 ∨ e2 wheree1 ande2 are pointcut elements

A pointcut designator(PCD) is one of the following:

• a pointcut element

7

• e∗ wheree is a pointcut element

• (d) whered is a pointcut designator

• d1; d2 whered1 andd2 are pointcut designators

• d1 | d2 whered1 andd2 are pointcut designators

• d1 & d2 whered1 andd2 are pointcut designators

Informally, a state satisfies aPCD if some stack trace leading up to the state is in the language of thePCD. The operators

have the usual semantics from propositional logic and regular expressions. The alphabet of these expressions are

atoms of the formcall(f) and!call(f) for some function namef , where!call(f) denotes a call to a function other than

f . Allowing both call and !call atoms enables the language to distinguish between top-level and nested invocations

(Kiczales [36] provides a good use-case for this). The∧ operator is only meaningful if at most one of its operands

is a call label, since one state can have a call to at most one function.Operators| and & represent disjunction and

conjunction, respectively. Concatenation (;) distributes across| and &, while| and & distribute across one another in

the usual way.

Our language is less expressive than full regular expressions by virtue of the restriction that Kleene-star operates

only on pointcut elements rather than fullPCDs. This restriction supports sound and complete identification of stack-

based joinpoints (barring functions that cannot terminate) using a technique described in Section 5.2. Section 5.1

presents a sound but incomplete approach to joinpoint identification that could handle full regular expressions. Build-

ing this restriction into the grammar results in separate definitions for pointcut elements andPCDs. To help distinguish

between these levels, we use different symbols for disjunction (∨ and|) and conjunction (∧ and &) across the levels.

Definition 7 An aspectis a tuple〈d, t, A〉, whered is aPCD, t is an advice type (before, after, or around), andA is

an advice.

Given a program and an aspect, applying advice at the aspect’s pointcut yields a new,composed, program. This

program is constructed according to the type of advice, which indicates where to insert the advice relative to the

pointcut (recall that we advise only function invocations). Figure 1 (left) illustrates the source and target states for

transitions to inserted advice based on the advice type, assuming aPCDmatched at the state labeledcall(f). Our model

inserts before and after advice within the scope of the advised function; this decision could be changed by moving the

Before1 and other labels to different positions relative to the call. We construct a composed program from a program

and aspect according to the advice type as described in the following algorithm. (The definition of a composed program

is necessary to provide a point of reference for demonstrating the soundness of our method in section 7.)

Algorithm 2 (Advising Programs) To advise a program with an aspect based on the type of advice:

If the advice type isbefore: for each state in the pointcut, replace the edge from the call state (Before1) to the source

state of the function with an edge to the source state of the advice; add an edge from the sink state of the advice

to the source state of the function (Before2), as shown in figure 1 (right).

If the advice type isafter: for each state in the pointcut, replace the edge from the terminal state of the function

(After1) to the return state for the call with an edge to the source state of the advice; add an edge from the sink

state of the advice to the return state for the call (After2).

8

ret(f)

call(f) Before2

After1
After2

Before1
Around1

Around2
ret(f)

Advice

call(f)

Figure 1: Where Advice Connects (left); Illustrating BeforeAdvice (right)

If the advice type isaround: replace the outgoing edge from the call state (Around1) with an edge to the source

state of the advice. Replace the incoming edge to the return state (Around2) with an edge from the sink state

of the advice. Between each pair ofproceed-resume states in the advice, insert a copy of the body of the

advised function. It is not necessary to remove any elided states because the algorithms in this paper depend on

reachability, which automatically ignores any such states.

4 The Verification Process, Informally

Given our model of programs and aspects, we can now describe the actual verification technique. To make the pre-

sentation more accessible, we first present our work in termsof a simple running example, before formalizing it in

section 6.

4.1 Scenario

Our running example illustrates aspects in the context of computer-based slideshow presentations. Consider preparing

a slideshow presentation on a research project. Ideally, parts of the talk should be reusable in different venues such as

a conference, a general computer science colloquium, or a seminar talk to colleagues in the same research area. The

project motivation, core techniques, and experimental results should be common to all of the talks, but the colloquium

version should review background material while the seminar version should cover deeper technical details. Different

seminar audiences may even need different combinations of background material. Users of modern slideshow tools

either copy and paste slides across the talks (which has obvious shortcomings when edits are required), or switch

between slideshows during the talk. An aspect-oriented organization provides a clean alternative.

Consider a talk on the work in this paper as an example; figure 2shows the talk outline in the form of a state ma-

chine (representing the control flow of the talk).2 To maintain the analogy to programs, we view talks as programs that

have cohesive sections that are invoked (akin to functions), as well as standalone slides (akin to program statements).

The talk’s background section contains slides on aspects, but no background slides on model checking. Figure 3 shows

two pieces of advice: one containing slides on the model checking algorithm, and one containing slides on the formal

2Although this example program contains no cycles, our formal model and algorithms fully support cycles.

9

Conclusions

ret(Impl)

call(Impl)

ret(Alg)

call(Alg)

ret(Bkgnd)

call(Bkgnd)

Introduction

Aspects

Figure 2: Sample Program

syntax and semantics ofCTL. Turning these into aspects requiresPCDs and advice types that identify where the addi-

tional slides would be appropriate. The model checking slides could be inserted at the end of the background section

(asafter advice); theCTL slides must precede the presentation of the model checking algorithm within the background

section (asbefore advice). The followingPCDs capture these two loci:3

P : true∗; call(Bkgnd)

Q: true∗; call(Bkgnd); true∗; call(MC)

Observe that the original talk enablesPCDP at thecall(Bkgnd) state. Furthermore, the programpartially enablesPCD

Q by callingBkgnd, leaving open the possibility that an advice might insert the model checking section and thereby

trigger thePCD.

We now turn our attention to properties. In the context of incrementally building up talks, we care that certain

material be presented in a particular order: for example, the section on implementing an algorithm should never come

before the algorithm description. The followingCTL formula captures this property:

A[!call(Impl) U call(Alg)]

4.2 Basic Algorithm

We begin by model checking the property on the program. If theproperty fails to hold, the designer should correct the

program before applying advice (recall that the goal in thiswork is to preserve program properties over applications

of advice; section 9 discusses properties that arise from aspects). Section 2.2 mentioned that the model checking

3In AspectJ, these would be written ascall(Bkgnd) andcall(MC) && cflow(call(Bkgnd)), respectively.

10

CTL syntax

Semantics

Shorthandscall(MC) Properties

Algorithmret(MC)

What’s MC?

Figure 3: Two Pieces of Advice

Conclusions

ret(Impl)

call(Impl)

ret(Alg)

call(Alg)

ret(Bkgnd)

call(Bkgnd)

Introduction

Aspects

call(Alg)
!call(Impl)

A[!call(Impl) U call(Alg)]

!call(Impl)
A[!call(Impl) U call(Alg)]

!call(Impl)
A[!call(Impl) U call(Alg)]

!call(Impl)
A[!call(Impl) U call(Alg)]

!call(Impl)
A[!call(Impl) U call(Alg)]

call(Impl)

!call(Impl)

!call(Impl)

!call(Impl)

Figure 4: Program Annotated withCTL Labels

algorithm labels each state of the program with those subformulas of the property that are true at that state. Figure 4

shows the program annotated with labels after checking the property. For each state at which advice might apply, these

labels form theinterfacefor verification at that state. The interface is effectivelya cache of the state of the verification

process at that program state.4

Interfaces need to be stored only for states to which advice might connect. Advice can connect to theBefore1,

Before2 and similar states from figure 1.PCDs identify theBefore1 states; the rest are computed fromBefore1 states.

Recall thatPCDs describe stacks: we therefore need to locate those states at which the program’s stack could match a

PCD. Several techniques could perform this analysis; we defer adiscussion of the tradeoffs and our specific technique

to section 5. Figure 5 shows our example program annotated with both model checking labels and stack contents (the

latter in bold). Thecall(Bkgnd) state matchesPCD P ; we must generate an interface at this state to use for verifying

the advice when it becomes available. The interface reflectsthe state of the model checking process. It includes the

labels on the states that lead to and return from the advice, but does not include information about the rest of the

4The interface is thus analogous to a closure that representsthe delayed substitutions in a programming language with first-class procedures.

11

Conclusions

ret(Impl)

call(Impl)

ret(Alg)

call(Alg)

ret(Bkgnd)

call(Bkgnd)

Introduction

Aspects

call(Alg)
!call(Impl)

A[!call(Impl) U call(Alg)]

!call(Impl)
A[!call(Impl) U call(Alg)]

!call(Impl)
A[!call(Impl) U call(Alg)]

!call(Impl)
A[!call(Impl) U call(Alg)]

!call(Impl)
A[!call(Impl) U call(Alg)]

call(Impl)

!call(Impl)

!call(Impl)

!call(Impl)

true*

true* ; call(Bkgnd)

true*

Figure 5: Program Annotated withCTL Labels and Stack Contents

program’s states.5

The heart of advice verification is as follows. Suppose the advice for the model checking slides (shown in figure 3)

is applied as after advice at the pointcut ofPCD P . Note that the advice in isolation does not satisfy the property

because the advice does not show theAlg slides, but that the advised program continues to do so. Our algorithm

extends the advice with statesin andout, seedsoutwith the labels ofAfter2 (in this case, the state labeledret(Bkgnd))

from the interface and seedsin with the propositions ofAfter1 from the interface; figure 6 shows the resulting state

machine. It then verifies that each label on theAfter1 state holds on thein state of the advice, assuming that the labels

for After2 hold on theout state (checking source labels against copied sink labels matches the backward propagation

inherent in theCTL model-checking algorithm [13]). If all of these checks pass, the program with advice will satisfy

the property. If a check fails, the advice may violate that property (if the property depended on the violated label); the

algorithm uses the location of the pointcut to report the potential violation of the program’s behavior at that locus and

by the corresponding aspect. Before advice is treated analogously using the statesBefore1 andBefore2 (as illustrated

in figure 1 (left)). Around advice is addressed in section 4.4.

Observe that the algorithm verifies the advice state machinewithout traversing the program’s state machine (though

it may need to traverse fragments of the program source referred to by the advice). Ideally, we would like to show that

this process is nevertheless sufficient: if this check succeeds, so would verifying the program with the advice explicitly

spliced in. Unfortunately, this is not (yet) true!

5While there is one interface for each state in the pointcut, inmost cases these interfaces will have logically related formulas (because in general,

the advice will tend to apply in similar circumstances). In principle, we could employ deductive reasoning over temporal logic to shrink the number

of distinct interfaces.

12

call(MC) Properties

Algorithmret(MC)

What’s MC?

in

out

Aspects

!call(Impl)
A[!call(Impl) U call(Alg)]

Figure 6: Advice Prepared for Verification

call(MC) Properties

Algorithmret(MC)

What’s MC?

in

out

true* ; call(Bkgnd)

true* ; call(Bkgnd) ; true* ; call(MC)

Figure 7: Detecting Joinpoints in Advice

4.3 Cascading Advice

To see the problem, recallPCD Q. The main program invokescall(Bkgnd); the applied advice invokescall(MC).

Therefore, the program and advicecombineto trigger thePCD. Indeed, an actualAOP implementation would detect

this condition. Our technique relies on having accurate interfaces for all states at which advice might apply; this means

that we must generate interfaces for states in the advice that trigger existingPCDs.

While it is clear we must compute the stacks that could exist ateach state in the advice (for the same reason we

did with the main program), it is easy to do this incorrectly.If we compute the stacks in the advice starting with the

empty stack, we would still fail to notice the enabling ofPCD Q. Instead, we need to initialize the stackswith their

contents at the point of applying the advice, which is information we must record in the interface. In this instance, the

stack at the entry to the advice contains a call toBkgnd. The annotated advice is shown in figure 7. It shows thatPCD

Q is satisfied by a combination of the main program and the first advice in the indicated state, resulting in a second

generated interface. If an advice associated withQ violates a property, our algorithm can report the violationin terms

of both aspects, resulting in a helpful diagnostic.

13

call(f)

AF(b)

AF(b)

AF(b)
b

AF(b)

AF(b)

b

ret(f)

call(f)

no b
AF(b)

b

ret(f)

Figure 8: How Around Advice can Violate Properties

call(f)

bb

b

ret(f)

call(f)

b

b

ret(f)

Figure 9: When Around Advice Violates Properties

4.4 Around Advice

Verifying around advice modularly is more subtle. Considerthe program in figure 8 (left), which shows labels ascribed

to states by model checking the formulaAF(b). (The dashed lines show control paths along which some states have

potentially been suppressed.) The program in figure 8 (right) results from applying an around advice withoutproceed

to the original program: as shown, around advice withoutproceed can bypass states from the original program. Our

verification process as described so far will copy theAF(b) label from thereturn state of the left figure to thereturn

state of the right figure and attempt to confirm theAF(b) label on thecall state. This check succeeds, even though the

call state on the right clearly violatesAF(b). To avoid this form ofcircular reasoning, we need to refine the verification

process when states can be bypassed (which by construction can only occur with around advice withoutproceed).

Understanding our refined algorithm requires some intuition about why the problem arises in the first place. Con-

sider the program in figure 9 (left). The original algorithm suffices for this program because theAF(b) label on the

return state does not depend on the occurrence ofb in the bypassed states. This suggests that the problem lies in the

location of theb: in figure 8 (left) the labels on thecall andreturn states rely on theb label on the same state, while in

figure 9 (left) different instances ofb justify thecall andreturn labels. The issue, however, is deeper than whethercall

andreturn depend on the sameb states. In the program in figure 9 (right), the instance ofb between thecall andreturn

helps justifyAF(b) on both thecall andreturn states, but the original algorithm suffices. The real issue is whether the

AF(b) label on thereturn state depends on theAF(b) label on thecall state: if it does, then because advice can elide

paths, the original technique may be unsound.

14

We could attempt to augment the model checker to track formula dependencies, but this would be overkill because

we generally don’t need dependency information on all subformulas. The original algorithm is only unsound when (1)

the sameAU or EU formula labels both acall state and its correspondingreturn (recall thatAF is a special case of

AU), (2) thereturn state label depends on thecall state label, and (3) the applied advice is around withoutproceed.6

Items 1 and 3 are easy to check. For item 2, we can write aCTL formula to check whether thereturn state label

depends on acall state label. For the labelAF(b) in our example, checkingA[!call(f) U b] at thereturn state returns

true when thereturn state label does not depend on acall state label. If thereturn state label does depend on acall

label, then the label is not copied to thereturn state during modular verification. This forces the advice tojustify the

label on thecall state, which the bypassed states must have done in the original program.

Now suppose we are verifying around advice that does invokeproceed. Say the advice advises an application

of functionf . The body off in the source program has already been traversed by the modelchecker at the point of

application of the advice. Since this is the same code that will execute at theproceed-resume states, it is tempting

to reuse this verification effort by adopting the labels already in the program, thereby avoiding re-verification of the

body off .

Reusing the labels on this copy off is, unfortunately, not necessarily sound. The fragment of the advice that

appears after resumption may invalidate some of the labels that are on the states off . (For instance, since we have

added a new path, a label of the formAF(φ) may no longer hold.) For this reason, we currently replace the proceed-

resume states with a copy off and repeat verification onf ’s body.

5 Approximating Program Stacks, Informally

Our technique relies on the ability to predict the contents of the stack at each state in the program. Our technique

is sound so long as the stack analysis locates all states at which the stack could match aPCD. If the stack analysis

over-approximates this set of states, our technique could report property violations that could not occur in practice.

We discuss two different techniques for computing the stack’s content.

5.1 Using Automata

One approach observes thatPCDs are regular expressions, and hence can be compiled to regular automata. (An

extended version of this is employed by Sereni and de Moor [56].) Taking the cross-product of a program and aPCD

automaton would identify states at which the program could satisfy thePCD. Two subtleties arise in building a regular

automaton for aPCD for this purpose. Consider thePCD true∗; call(f); call(g): as a standard regular expression, this

expectscall(g) to occur in the state immediately following the one satisfying call(f). Recall, however, thatPCDs

describe call stacks, not traces of all program states. As a result, the automaton needs to stutter until the next call state.

Furthermore, thePCD does not (by design) account forreturn states; acall(g) state that occurred after aret(f) state

should not satisfy the givenPCD. The compilation algorithm would need to address both concerns.

Even after addressing these concerns, the automaton-basedapproach suffers from two potential drawbacks. First,

this technique will overapproximate the set of identified states on most programs as it uses a regular automaton (for the

6The Until operators are the only ones that need this check because they are the only ones that depend oneventuallyreaching a state that satisfies

a formula in a variable number of steps.

15

PCD) to approximate a context-free language (the actual set of stacks). Second, it has the potential to be too expensive

on PCDs that use Kleene-star and disjunction operators. In the worst case, cross-product constructions grow the size

of one machine by a multiplicative factor in the other. If aPCD is just a concatenation ofcall statements, thePCD and

program transitions will align deterministically, resulting in no growth in the program state space. Growth occurs when

the PCD automaton is non-deterministic, as can happen with the Kleene-star and disjunction operators. However, we

might be able to generate fewer interfaces by being able to track when multiplePCDs are triggered simultaneously; this

requires constructing a cross-product of severalPCDs with the program. Experimental analysis would help determine

the extent to which these issues would be problematic in practice.

5.2 Using CTL

As an alternative (the one we formalize in this paper), we canexploit theCTL model-checker to track stack contents.

ThePCD labeledQ in section 4 resembles theCTL formulaEF(call(Bkgnd) ∧ EF(call(MC))). Can we use the model

checker to find those states that satisfy this formula, and hence thePCD? This approach would not properly identify

pointcut states because the formula would be true at states at thestart of a path that could reacha pointcut state, rather

than at the pointcut state itself—a reflection of the future-time nature ofCTL. Capturing the pointcut states requires a

way to look at the past from a given state and ask whether it reflects the correct sequence of calls in progress. (Past-time

CTL could handle this, but would either require a separate algorithm or incur an exponential blow-up on translation

into regularCTL [44].)

A different approach results in a cleaner algorithm and moreaccurate joinpoint identification. We can look at the

past as follows. First, wereverseeach of the edges in the program’s state machine. Second, we employ aCTL formula

that matches the stack’s contents in reverse. For thePCD Q, this formula would be

call(MC) ∧ EF(call(Bkgnd))

This formula should label exactly those states in the reversed machine with acall(MC) label and for which the stack

has a form that matches thePCD. It is crucial to note that this model-checking run cannot “fail”: failure to assign

a label to a state signifies only that the state is not a member of a pointcut. (That is, we are exploiting the model

checker’s traversal power to do something quite distinct from verification.)

In its current form, this proposal overapproximates the setof joinpoint states. Consider a program that contains

functionsf andh; the program invokesf andh in sequence, withf in turn also invokingh (as shown on the left in

figure 10). Assume we were matching this program against aPCDsimilar in shape toQ, namelycall(f)∧EF(call(h)).

This program should match thePCDonly once (the call toh within the dynamic extent off). The formula is, however,

true at two states of the reversed machine. The error here is afailure to handle return states. (Put otherwise, this

formula cannot distinguish between sequential and nested calls.) In this case, the formula needs to check thatf does

not return on the path from the invocation ofh to that off . While we could patch the formula to check for return states,

the resulting formula would be cumbersome and could still overapproximate the set of joinpoints, as CTL captures

only regular sets.

Our solution to this problem lies in constructing the reversed state machine differently. On a reverse path from a

given states, subpaths that traverse the program between areturn state and its correspondingcall explore states that

have been popped from the stack before control arrives ats. The traversal should therefore “bypass” matchingcall and

16

call(f)

call(h)

ret(h)

ret(f)

call(h)

ret(h)

call(f)

call(h)

ret(h)

ret(f)

call(h)

ret(h)

Figure 10: A Program and its Reverse-Bypass Version

return states and the paths betwixt, visiting onlycall states whose returns have not yet occurred. Bypassing states is

straightforward: any edge in the reverse graph that goes outfrom areturn state is redirected to point to the successors

(in the reversed graph) of the correspondingcall state. For instance, the graph on the right of figure 10 shows aversion

of the graph on the left with the edges reversed and calls bypassed. This construction effectively removes the called

function from the stack at the return state. Formulas checked against this state machine need not match calls with

returns because completed function invocations have been elided from the paths the model checker will traverse. This

addresses the mismatch between the context-free stack and the regularPCD, and provides exact joinpoint identification

(relative to the inlining depth and assuming that every function can terminate on some path).

Reversing the machine takes time linear in its size (the stack tracks the bypass states). The formula is linear in the

size of thePCD. The model checker takes time linear in the product of the sizes of the state machine and the formula.

Since the size of the formula can usually be bounded by a smallconstant (becausePCDs tend to be small, and the

corresponding formula as constructed in section 6.1 is linear in the size of thePCD), we can usually determine the

pointcut states in linear time. We note that the reverse-bypass construction could, if desired, be implemented easily

with symbolic representations [13]: reversing the edges corresponds to swapping the current- and next-state variables

(or their interpretation) in theBDD for the transition relation, projection identifies the edges to add and delete (for

bypassing), and actual addition and deletion are justBDD-or and -and, respectively.7

This CTL-based approach cannot be used if thePCD language is extended to all regular expressions because notall

regular expressions can be captured inCTL. Consider thePCD (true; call(f))∗ which checks whether every evencall

is a call tof . Wolper proved that the regular expression “p is true in every even state” is not expressible inLTL [67].

The proof that Wolper’s result extends to the subset ofCTL used here is beyond the scope of this work. Nonetheless,

Wolper’s result motivated the restriction of Kleene-starsin our PCD language to a useful subset that is expressible

within CTL.
7All of these operations are standard in the APIs forBDD packages.

17

6 The Verification Process, Formally

This section formalizes the intuitive description of our algorithm and its data structures. Specifically, we define how

to locate states that satisfyPCDs, define interfaces, and give the algorithms for generatinginterfaces, verifying advice,

and generating new interfaces from advice. Section 7 provesthe soundness of these details.

6.1 Locating Joinpoints

To locate joinpoints, our algorithm constructs the reverse-bypass version of a state machine, compilesPCDs to CTL

formulas, and uses the model checker to analyze the reversedmachine against the formulas.

Constructing a reverse-bypass version of a state machine requires two steps: reversing transitions, and bypassing

paths fromreturn states to their correspondingcall states (thus leaving only those paths that correspond to actual

stack traces). The following formal definition constructs the transition relation for the reverse-bypass machine from

the transition relation of the original machine and the relation Tcr that stores the correspondence betweencall and

return states for the original machine; the latter is used to locatethe target states for the bypassing transitions.

Algorithm 3 (The Reverse-Bypass Construction)Let M be a state machine with transition relationT and call-

return relationTcr. The reverse bypass ofM , denotedMRB, is the state machine with the same components asM

other thanT , which is replaced with transition relationTRB, defined as follows (recall thatSrtn andScall are the sets

of call andreturn states inM):

TRB = {(s2, s1) | s2 6∈ Srtn ∧ (s1, s2) ∈ T} ∪

{(sr, s) | sr ∈ Srtn ∧ ∃sc ∈ Scall | (sc, sr) ∈ Tcr ∧ (s, sc) ∈ T}

We now turn to compilingPCDs intoCTL formulas. This translation is cleaner if thePCDs are in a form where the

; operators are distributed over the| and & operators.

Definition 8 A PCD is in concatenation styleiff it does not contain the| and & operators. APCD in which the ;

operators are distributed over the| and & operators maximally (resulting in no| or & operator within a ; operator) is

in concatenation normal form(called simplyconcatenation formin the rest of this paper).

By these definitions, aPCD in concatenation normal form consists of a boolean expression (using| and &) over

concatenation-stylePCDs.

Given aPCD, our translation strategy reverses the order of concatenated terms, appends a “bottom of stack” marker,

converts to concatenation-normal form, then translates the resultingPCD into CTL. The bottom-of-stack marker pro-

vides a base case for the translation. Let◦ be the bottom-of-stack marker. Given aPCD d, d−1 denotes its reversal

(reversing the order of all concatenated terms, but making no changes to the terms themselves). The termd−1; ◦ de-

notes the reversal with the appended marker. LetPCD2CNF be a function that converts aPCD into concatenation normal

form. Given aPCD d, its correspondingCTL identifier is PCD2CTL(PCD2CNF(d−1; ◦)) wherePCD2CTL is shown in

figure 11. This algorithm assumes every call state has the label call, that the source state of themain function has the

labelscall andcall(main) and that the sink state of themain function has the labelreturn.

18

PCD2CTL(expr) =

caseexpr of

◦ = call(main)

a = a

e1 ∧ e2 = PCD2CTL(e1) ∧ PCD2CTL(e2)

e1 ∨ e2 = PCD2CTL(e1) ∨ PCD2CTL(e2)

e∗; p = (call ∧ E[(call → PCD2CTL(e)) U PCD2CTL(p)])

e; p = call ∧ PCD2CTL(e) ∧ EX(E[!call U PCD2CTL(p)])

(de) = (PCD2CTL(de))

d1 | d2 = PCD2CTL(d1) ∨ PCD2CTL(d2)

d1 & d2 = PCD2CTL(d1) ∧ PCD2CTL(d2)

wherea is a pointcut atom,e, e1 ande2 are pointcut elements,d1 andd2 are concatenation-formPCDs,de is aPCD or

pointcut element,p is a concatenation-stylePCD andexpr is a concatenation-formPCD with appended end-of-stack

marker. Appending the end-of-stack marker implies that no case is needed for a standalone pointcut element.

Figure 11: ThePCD2CTL Procedure

The translation fromPCDs intoCTL formulas is a bit more subtle than our intuitive example suggests because the

PCD is an expression overcall states while the formula must be an expression over states ingeneral. The use ofEU

rather thanEF in the compilation highlights this difference.

Definition 9 Let M be a state machine andd be a PCD. States in M is a joinpoint statefor d if MRB, s |=

PCD2CTL(d−1; ◦).

6.2 Generating Interfaces

The informal description of our algorithm motivated the information that an interface must cache to reconstruct the

state of the verification process and the shape of the stack for a particularPCD. At each joinpoint stateBefore1 that

satisfies thePCD, the labels on the statesBefore1, Before2, After1 andAfter2 as shown in figure 1 (left) capture the

state of the verification process (Around1 is the same asBefore1 andAround2 is After2). An additional set of formulas

(calledUcheck) contains labels onAfter2 that may be violated by around advice. The labels ascribed toBefore1 while

analyzing theCTL form of thePCD capture the shape of the stack. We do not need to store the stack shape at state

After1 because our stack discipline assumptions guarantee that the stack shape is the same atBefore1 andAfter1. We

could eliminate some of this information if we knew the advice type in advance; here, we present only the general

case.

Definition 10 A joinpoint interfaceis a tuple of the form〈d, ϕ, L1, L2, L3, L4, Ucheck, stacks〉 whered is aPCD, ϕ is

a CTL formula, and the remaining components are sets ofCTL formulas.

This definition of an interface does not include the actual state at which the interface is generated. Storing this state

would be useful for tasks such as counterexample generation. We refrain from doing so in this paper to reduce notation

and to focus on the heart of the algorithms and their correctness.

19

Joinpoint interfaces can be generated automatically from aprogram,PCD, and property using aCTL model checker

as follows:

Algorithm 4 (Generating Joinpoint Interfaces) Given a programP , a concatenation-formPCD d andCTL formula

ϕ, the set of all joinpoint interfaces is generated by the following steps:

1. Use aCTL model checker to verifyϕ againstP . Let lab be the function from states inP to the labels (CTL

formulas) that the model checker assigned to states.

2. Use aCTL model checker to analyzeϕd = PCD2CTL(d−1; ◦) againstPRB. Let labRB be the function from states

in P (same as the states inPRB) to the labels (CTL formulas) that the model checker assigned to states. LetJP

be the set of statess such thatϕd ∈ labRB(s).

3. For each joinpoint stateBefore1 in JP , create a joinpoint interface

〈d, ϕ, lab(Before1), lab(After1), lab(Before2), lab(After2), Ucheck, stacks〉

where

• Before2 is the state such that (Before1, Before2) is in T of P ,

• After2 is the state such that (Before1, After2) is in Tcr of P ,

• After1 is the state such that (After1, After2) is in T of P ,

• Ucheck is defined below, and

• stacksis labRB(Before1).

Ucheck is defined as follows. LetQ be a meta-variable representing either theA or E path quantifier, andf be

the function being called atBefore1. The setUcheck consists of all formulas of the formQ[φ U ψ] that are in

both lab(Before1) andlab(After2) and for which the propertyQ[(!call(f) ∧ φ) U ψ] fails to verify atAfter2 in

P .

6.3 Analyzing Advice

Joinpoint interfaces identify those properties that advice must satisfy in order to preserve desired program properties.

As aspects advise a verified program, two steps must occur. First, the aspects must be checked against the interfaces

(for whether they preserve properties). Second, interfaces must be generated for all new joinpoints that are triggered

by the combination of the program and the advice: this allowsfuture applications of advice to be checked against all

relevant joinpoints in the advised program. We present these two steps as separate algorithms, but note that in practice

they would operate in tandem: an aspects compiler generallychecks whether new advice triggers new joinpoints for

aspects that have already advised the program; if so, the aspects are advised at the new joinpoints [31]. To ensure

soundness, each application of advice requires the use of both of the following algorithms until no additional advising

is required.

We employ the following algorithm at every joinpoint interface that was generated for thePCD in the advice to be

applied:

20

Algorithm 5 (Advice Verification) Given an aspect〈d, t, A〉 to verify against a joinpoint interface

〈d, ϕ, lab(Before1), lab(After1), lab(Before2), lab(After2), Ucheck, stacks〉

(for the samePCD, d, as in the aspect):

1. (Prepare the aspect) Add new states calledin andout to A such thatin has an outgoing transition to the start

stateSsrc of A andout has an incoming transition from the terminal stateSsink of A. No other edges should

enter or leavein andout.

2. (Check the advice)

• If t = before, copy the labels inlab(Before2) to out, copy the propositions fromlab(Before1) to in, and

verify each label inlab(Before1) at in.

• If t = after, copy the labels inlab(After2) to out, copy the propositions fromlab(After1) to in, and verify

each label inlab(After1) at in.

• If t = around andA has noproceed states, copy the labels inlab(After2) − Ucheck to out. Copy the

propositions fromlab(Before1) to in and verify all formulas inlab(Before1) at in.

3. (Report result) If all checks succeed, report the advice as preserving the program’s properties; otherwise report

thatϕ may fail.

Note that a check failing does not guarantee that the advice violates a program property because the algorithm is not

complete. Intuitively, the incompleteness arises becausethe labels that we check against the advice are sufficient,

but not necessary, to preserve properties; disjuncts are a simple example of potentially unnecessary labels. A more

sophisticated analysis would be required to determine bothwhich labels are necessary and which labels could be

satisfied through alternate formulas.

Algorithm 6 (Generate Interfaces from Advice) Given an aspect〈d, t, A〉 and a joinpoint interface

〈d, ϕ, lab(Before1), lab(After1), lab(Before2), lab(After2), Ucheck, stacks〉

for which algorithm 5 has been run (so the model checker has ascribed labels to states in the advice), seedin in ARB

with the formulas fromstacks, then reuse steps 2 and 3 of algorithm 4, replacingP with A.

Using algorithm 6, the set of joinpoint interfaces for a program grows as advice is applied to the program. Each

aspect applied to the system must be analyzed against each ofthe interfaces corresponding to that aspect’sPCD.

7 Soundness

Our approach is sound if all properties declared true using the algorithms of section 6 would be true if verified against

the entire composed program. To prove this, we must show thatour technique locates all joinpoints, and that labels

ascribed to states in the modular algorithm would also be ascribed by model checking the entire composed program.

This section formally states and proves these correctness criteria. All these statements and proofs are stated relative to

the state machine model of the program, but the model may not precisely capture the original program due to inlining

and other approximations made during model generation.

21

7.1 Joinpoint Identification

Definition 11 A stackis a sequence of labels of the formcall(f) (wheref is a function name other thanmain). Given

a finite pathΠ through a state machine, thestack tracecorresponding toΠ, denotedstack(Π), is the stack obtained

by starting with an empty stack and traversingΠ from initial to final state, pushing eachcall(f) label (other than

call(main)) and popping at eachreturn label alongΠ (other than the sink state of the main function).

This definition excludesmain from the call stack because our proofs depend on identifyingstates that terminate paths

whose stack traces are in the languages defined byPCDs. ThePCD language treats the bottom of stack (represented by

call(main) as implicit (call(main) is not in thePCD language). The restriction against popping the finalreturn label

prevents a pop with no corresponding push.

Joinpoint identification is sound if it locates every state at which the program stack can satisfy aPCD. Soundness

allows the technique to over-approximate the set of joinpoints; ideally, the technique should only identify states that

satisfyPCDs. Under the assumptions of stack discipline and every function havingsometerminating path, ourCTL-

based technique satisfies both requirements. We prove each direction in a separate theorem.

The proof of soundness must show that every state that triggers aPCD (on a path that satisfies stack discipline)

satisfies theCTL identifier for thePCD in the reverse-bypass machine. TheCTL formulas for concatenation-style

PCDs are essentially chains of nestedEU operators, where eachEU expression detects a prefix of the desired stack

contents. Intuitively, eachcall state in the path that satisfies a prefix of a concatenation-style PCD should satisfy the

correspondingEU formula that detects that stack in the reversed program. This claim is the heart of the proof. Given

a concatenation-stylePCDand a path, we construct a function that stores which states satisfy prefixes of thePCDalong

the path; the proof will show that the same states satisfy theformulas for those prefixes. This function is formally

defined as follows:

Definition 12 Let Π be a path through a program andd be a concatenation-stylePCD such thatstack(Π) is in the

language ofd. Let dk denote the prefix ofd with k concatenated terms. Define thestack witness functionSW from

prefixes ofd to sets of states inΠ such thatSW (dk) is the set of allcall statess in Π for which the stack trace of

the prefix ofΠ up to and includings is in the language ofdk. For the empty prefixd0, defineSW (d0) to be the set

containing the initial state ofΠ (which is also labeled withcall by construction–our proofs depend on the invariant that

call labels every state in a set in the codomain ofSW). For a concatenation-formPCDD, we defineSW as described

for all maximal-length concatenation-stylePCDs withinD.

Example: Given PCD call(f); true∗; call(g) and a paths0, s1, s2, s3 wheres1 has labelcall(f), s2 has labelcall(g)

ands3 has labelcall(h), SW (call(f)) = {s1}, SW (call(f); true∗) = {s1, s2, s3} andSW (call(f); true∗; call(g)) =

{s2}.

Observation 1 Note that ifstack(Π) is in the language of concatenation-stylePCD d, thenSW must be non-empty

for all prefixes ofd. This is obvious for prefixes ending in non-starred atoms, aseach non-starred atom must appear

somewhere in the stack. For starred atoms, any state which satisfies the previous prefix will also satisfy the prefix

ending in a starred atom (because the starred atom appears zero times). Our soundness proof relies on this observation.

Given that our joinpoint identification method operates on the reverse-bypass version of the original program, our

soundness proof must show that the paths that witness stack traces (via the formulas) in the reverse-bypass version

22

reflect paths in the original program. The next lemma proves acondition for when a path between twocall states in

the reverse-bypass program also exists (in reverse direction) in the original program.

Lemma 1 Let s ands′ becall states in a programP such that there is a path froms to s′ that obeys stack discipline.

There is a path froms′ to s in PRB unless thereturn state corresponding tos occurs betweens ands′ on all paths in

P .

Proof: The transition relation in the reverse-bypass construction (algorithm 3) changes only transitions that would

otherwise start from areturn state. As a result, if there is a path with noreturn state betweens ands′, then there must

be a path inPRB from s′ to s. Assume that every path froms to s′ in P contains areturn state; letΠ be such a path.

Following the assumptions of the lemma statement, we assumethat none of thereturn states onΠ is for the same

function as thecall at s. The reverse-bypass construction removes paths from eachreturn to its correspondingcall.

For s to become unreachable froms′ in PRB via bypassing,s would have to have occurred between corresponding

call and return states. Sinces is itself acall state, stack discipline would require that thereturn state fors also

occur between the states that resulted in the bypass. This violates the assumptions of the lemma, so the lemma holds.

¤

We now present the theorems that joinpoint identification issound and complete using ourCTL-based approach.

The main theorems prove soundness and completeness for concatenation-stylePCDs. The following lemma argues

that these theorems extend to concatenation-formPCDs (which in turn cover allPCDs).

Lemma 2 (Concatenation-Style Suffices)Let D be a concatenation-formPCD and letd1, . . . , dk be the maximal-

length concatenation-stylePCDs withinD. An algorithm for identifying joinpoints that is sound (resp. complete) for

all di’s is also sound (resp. complete) forD.

Proof: By definition, a concatenation-formPCD is a boolean logic expression over concatenation-stylePCDs. The

boolean operators inPCDs have their standard semantics, so the lemma follows from the soundness and completeness

of propositional boolean logic.

Theorem 1 (Joinpoint Identification Sound) Lets be a state in programP , d be a concatenation-stylePCD, andϕd

bePCD2CTL(d−1; ◦). If there exists a pathΠ in P from the initial state tos such thatstack(Π) is in the language ofd

andΠ follows stack discipline thenPRB, s |= ϕd.

Proof: Let Π be a path inP such thatstack(Π) is in the language ofd. Let SW be the stack witness function forΠ

andd (definition 12). We claim that for all prefixesd′ of d and all statess′ ∈ SW (d′), PRB, s′ |= PCD2CTL(d′−1; ◦).

The desired result is a corollary of this claim. We prove the claim by induction on the length of the prefix. Letdi

denote the prefix of lengthi andϕdi
denotePCD2CTL(d−1

i ; ◦). In the base case, the prefix (d0) contains no atoms

from d; it therefore contains only the end of stack marker◦. By definition,SW (d0) contains only the start state ofP .

PCD2CTL(◦) is the formulacall(main), which labels only the initial state, so the base case holds.

For the inductive case, assume that the claim holds for all prefixes up throughdk−1. We must prove that it holds

for dk. Let s′ be a state inSW (dk). By thePCD grammar,dk (which is concatenation-style) has one of two forms:

• If dk = dk−1; e, thenϕdk
is call ∧ PCD2CTL(e) ∧ EX(E[!call U PCD2CTL(d−1

k−1; ◦)]). By the definition ofSW ,

s′ satisfiescall; it must also satisfyPCD2CTL(e) because the prefix ofΠ ending ats′ includess′ and the stack

23

trace ofΠ is in the language ofdk. The EX(. . .) portion of the formula is satisfied by finding a states′′ in

SW (dk−1) such that there is a path froms′ to s′′ in PRB with no call states betweens′′ ands′. Let s′′ be the

state inSW (dk−1) closest tos′ on Π; by the definition ofSW , states′ must be the first state afters′′ on Π

to satisfydk. Therefore, anycall states betweens′′ ands′ in Π must have been popped from the stack by a

matchingreturn state. The reverse-bypass construction elides thesecall states, so we only need to show that

PRB contains a path froms′ to s′′. Since thecall ats′′ is on the stack ats′, thereturn state corresponding tos′′

must occur afters′; lemma 1 therefore guarantees that there is a path froms′′ to s′.

• If dk = dk−1; e
∗, thenϕdk

is (call ∧ E[(call → PCD2CTL(e)) U PCD2CTL(d−1
k−1; ◦)]). If s′ is in SW (dk−1),

thens′ satisfiesϕdk−1
(= PCD2CTL(d−1

k−1; ◦)) by the inductive hypothesis. By the semantics ofEU and the fact

that every state in a set in the codomain ofSW has acall label,s′ satisfiesϕdk−1
so the theorem holds. Assume

s′ is not inSW (dk−1). The difference between this case and the one for the other form of dk is that, in this

case,SW (dk) could have multiple elements (due to the * one). Using a similar argument as in the previous

case, we can build a path from the element ofSW (dk) that is closest to the initial state inΠ that satisfiesϕdk
.

We can complete the proof for the remaining states inSW (dk) inductively, again using a similar argument as

in the previous case to construct the path between them. The theorem therefore holds.

¤

Theorem 2 (Joinpoint Identification Accurate) Lets be a state in programP , d be a concatenation-stylePCD, and

ϕd bePCD2CTL(d−1; ◦). If PRB, s |= ϕd and all functions terminate along some path, then there exists a pathΠ in P

from the initial state tos such thatstack(Π) is in the language ofd andΠ follows stack discipline.

Proof: Let s be a state such thatPRB, s |= ϕd. By the form ofϕd (nestedEUs), satisfyingϕd requires the existence

of a path froms to s0 along which the subformulas ofϕd are satisfied; call this pathΠRB. Reversing the direction of

the transitions inΠRB yields a pathΠfwd from s0 to s; note that while the transitions inΠfwd are in the same direction

as transitions inP , Πfwd is not itself a path inP (due to the states that were bypassed during the construction of PRB).

In order to prove the existence of a pathΠ as required in the theorem, we will first prove that the stack trace ofΠfwd

is in the language ofd, then we will constructΠ from Πfwd in a manner that preserves the stack trace fromΠfwd.

Computing the stack trace ofΠfwd accurately requires us to first remove allreturn labels from the states inΠfwd.

The reverse-bypass construction guarantees that nocall state that matches areturn state inΠfwd can itself lie inΠfwd.

Removing thereturn labels prevents the stack trace computation from popping non-existent calls, while retaining all

un-returned calls. Removing these labels would not have affected the truth ofϕd onΠRB, as that formula never refers

to areturn label.

Let di be the prefix ofd containingi concatenated terms. We claim that for all prefixesdi of d, if ϕdi
labelss′ in

ΠRB, then the stack trace of the prefix ofΠfwd up to and includings′ is in the language ofdi. Our desired result that

the stack trace ofΠfwd is in the language ofd is a corollary of this claim. We prove the claim inductively on i. In the

base case,i is zero:d0 is empty andϕd0
is call(main), which is true only at the start state ofP . The start state has the

empty stack trace (since stack traces ignore thecall(main) label by definition), which is in the language of the empty

prefix, so the base case holds.

For the inductive case, assume the claim holds for prefixes upto and includingdk−1. We must prove it holds for

dk. Let s′ be a state inΠRB such thatϕdk
is true ats′. Unlessdk is the empty prefix,PCD2CTL(d−1

k ; ◦) requires some

24

states′′ in ΠRB to satisfyPCD2CTL(d−1
k−1; ◦). By the inductive hypothesis, the stack trace up tos′′ is in the language

of dk−1. ThePCD dk has one of two forms:

• If dk = dk−1; e, thenPCD2CTL(d−1
k ; ◦) requires that there be nocall state betweens′ ands′′ (by virtue of the

expressionE[!call U . . .]); this portion of the path therefore cannot push any calls onto the stack. In addition,

it cannot pop any calls becauseΠfwd has no return labels by construction. The stack trace at state s′ therefore

appends thecall ats′ onto the stack trace ats′′, resulting in a stack which is in the language ofdk.

• If dk = dk−1; e
∗, then the argument depends on whethers′ satisfiesPCD2CTL(d−1

k−1; ◦). If it does, thens′ = s′′

and by the inductive hypothesis the stack trace onΠfwd up tos′ satisfiesdk−1. The same stack trace must satisfy

dk by interpreting the * as zero occurrences, so the claim holds. If it does not,s′′ is different froms′ and the

argument is similar to that in the non-starred case, except all of the call labels pushed on the stack satisfye; the

resulting stack is in the language ofdk since the * can match all of the occurrences.

Having established that the stack trace ofΠfwd is in the language ofd, we now need to construct a pathΠ in P

with the same stack trace asΠfwd. First, restore thereturn labels on the states inΠfwd. Next, undo the bypass step

of the reverse-bypass algorithm: for everyreturn statesr in Πfwd replace the transition from its predecessors1 (in

Πfwd) to sr with a path froms1 to sr in P that has matchingcall andreturn states. (Such a path must exist because

we assumed that every function has some path along which it terminates andP has matchingcall andreturn states by

construction.) The matching states imply that the added states cannot change the stack traces at states inΠ that were

in Πfwd so the theorem holds.

¤

Theorem 3 (Identifying Joinpoints in Aspects) Letsa be a state inA and letd be aPCD. ARB, sa |= PCD2CTL(d−1; ◦)

(from algorithm 6) iff(P ·A)RB, sa |= PCD2CTL(d−1; ◦).

Proof: Theorems 1 and 2 establish that theCTL formulas forPCDs accurately reflect the stack contents. Algorithm 6

ascribes these stack labels to the initial state of an aspect. The stack discipline assumption implies that an aspect can-

not affect the advised program’s stack. The correlation between the formulas and the stacks therefore extends into the

aspects by a repetition of the argument in the preceding theorems with a change only to the base case (to initialize the

stacks with the contents fromP , rather than the empty stack).

7.2 Modular Verification

In the following theorem statements, letP be a program,A be advice to be applied toP , andP ·A be the composed

program (constructed using algorithm 2).

Theorem 4 (Program Labels Accurate) Letϕ be aCTL formula. For all statess in bothP andP ·A, (P ·A), s |= ϕ if

P, s |= ϕ and the advice verification algorithm reports that all labels are preserved. For all statess in A, (P ·A), s |= ϕ

if A, s |= ϕ during the advice verification algorithm.

Proof: We assume without loss of generality that allCTL formulas are given in negation normal form (meaning that

all negation operators are pushed inward so that only propositions are negated). The proof is by induction on the

25

structure ofϕ. In the base case,ϕ is a positive or negative atomic proposition. Since advising programs does not alter

propositional values in either programs or aspects, the theorem holds in the base case.

For the inductive case, assume that the theorem holds for allformulas of size up to and includingk. By theCTL

semantics, the labels on states inA depend on the propositions inA and the labels assumed on stateout in A, which

are copied from the corresponding state inP . If the theorem holds for formulas of sizek + 1 on states inP , then it

must hold for formulas of sizek + 1 in A by the semantics of model checking. We therefore only need toargue the

inductive case for states inP (using the inductive assumption on states from bothP andA).

Let ϕ be a formula of sizek + 1 that labels states in P . We must prove thatϕ labelss in P ·A; the proof depends

onϕ’s outermost operator.

• If ϕ is of the formφ∧ψ, then bothφ andψ must labels in P by theCTL semantics and must labels in P ·A by

the inductive assumption.ϕ must therefore labels in P ·A by theCTL semantics.

• If ϕ is of the formφ ∨ ψ, then one ofφ andψ must labels in P by theCTL semantics and must labels in P ·A

by the inductive assumption.ϕ must therefore labels in P ·A by theCTL semantics.

• If ϕ is of the formAX(φ) or EX(φ) the argument depends on whethers is a joinpoint state. If it is not, then

all of its successors must also lie inP . By the inductive hypothesis, all those successors withφ as a label inP

must haveφ as a label inP ·A, soϕ must also be true ats in P ·A. If s is a joinpoint state, then by construction

its only successor inP ·A is the start state ofA; this means that there is no distinction betweenAX andEX at

s. Since the advice verification algorithm reported thatA preservesϕ by assumption, the start state ofA must

satisfyφ. This label must carry over toP ·A by the inductive assumption, soϕ must labels in P ·A.

• If ϕ is of the formA[φ U ψ] then the argument depends on whethers is a joinpoint state. We first prove that the

theorem holds for the joinpoint states, then use that to prove that it holds for all other states.

Assumes is a joinpoint state. Ifs satisfiesψ, the theorem holds due to the inductive hypothesis and theCTL

semantics (which dictates that a state that satisfiesψ satisfies a formula of the formA[· · · U ψ]). By the CTL

semantics, ifs does not satisfyψ, then it must satisfyφ and every path leavings must eventually reach a state

that satisfies (or “discharges”)ψ.

The argument depends on the location of the states that dischargeψ. Let WP (for “witnesses inP ”) be the

minimal set of states closest to states in P that satisfyψ and that theCTL semantics uses to justifyϕ. Let sa→p

be the state inP to which the instance ofA inserted ats returns toP . The proof must consider how applyingA

alters the paths toWP under each advice type.

If the advice type isbefore or after, then all states inWP , and all states leading up to states inWP from s in

P , lie in bothP andP ·A by construction. By the inductive hypothesis,P andP ·A agree on whetherφ andψ

label each such state, soϕ must be a valid label onsa→p. The preservation check onA would only confirmϕ

on A if every path satisfiedϕ under the assumption ofϕ on sa→p (even if this assumption was not necessary,

due toA satisfyingϕ) so the result holds in this case.

If the advice type isaround and the advice does not invokeproceed, then states inWP may have been

removed. If all paths froms in A satisfiedϕ without relying on aϕ label onsa→p, thenϕ is clearly true ats in

P ·A and this case is complete. Assume thatA contains a path froms (in) to sa→p (out) that does not contain a

26

state satisfyingψ. Since the advice verification algorithm reports thatϕ is true, the model checker needed label

ϕ onsa→p to proveϕ at in. The proof therefore reduces to showing thatϕ was an accurate label onout in P ·A.

The aspect verification algorithm only copiesAU labels fromsa→p to out that do not lie inUcheck. From the

definition ofUcheck (in Algorithm 4), if ϕ is not inUcheck then the formulaA[(!call(f) ∧ φ) U ψ] must be true

from sa→p. This formula requires thatψ was discharged before reaching a state labeledcall(f): in other words,

no path that witnessesϕ required any states that could be elided by applying around advice at a call tof . This

means that all states needed to establishϕ from sa→p are in bothP andP ·A; by the inductive hypothesis, their

φ andψ labels fromP are valid inP ·A. Theϕ label onsa→p is therefore accurate inP ·A, so this case holds.

If the advice type isaround and the advice does invokeproceed, no states are elided, but the labelϕ on sa→p

in P could still be invalid inP ·A if (1) that label depended onϕ labelings and some state inserted by the advice

violatesφ, or if (2) A contains a cycle that does not satisfyψ. The advice verification algorithm only copiesAU

labels fromUcheck to out that could be satisfied froms without the same label onsa→p; this restriction breaks

any potential circular dependency betweensa→p ands with regard toϕ labels. The inductive case therefore

holds whens is a joinpoint state.

If s is not a joinpoint state, then either each path froms in P dischargesψ before reaching a joinpoint, orϕ

must have labeled the joinpoint. On paths that dischargeψ before reaching a joinpoint, all states involved in

satisfyingϕ lie in P and have the sameφ andψ labels inP ·A by the inductive hypothesis; all of these states

must be inP ·A because to be elided they would have to be on a path froms that includes a joinpoint.ϕ must

therefore labels in P ·A. On paths that dischargeψ after reaching a joinpoint,ϕ must label the joinpoint by the

CTL semantics. We have already established thatϕ must label the joinpoint inP ·A. The states betweens and

the joinpoint lie in bothP andP ·A, and preserve theirφ andψ labels inP ·A by the inductive assumption. The

inductive case therefore holds ats.

• The argument forE[φ U ψ] is analogous to that forAU.

• If ϕ is of the formAG(ψ) or EG(ψ), the result holds because all states inP andP ·A agree on theψ labels

by the inductive hypothesis, and all states inA are checked againstϕ by the aspect verification algorithm. The

aspect check relies on theϕ labels on the return state from the aspect for this check, butthose labels cannot be

inaccurate without some state inA failing to satisfyψ (since advising adds no new states other than those inA).

The inductive case therefore holds in this case.

¤

8 Related Work

There are many efforts to define formal semantics for aspects, such as the denotational model of Wand, Kiczales and

Dutchyn [66]. Some of these have been accompanied by proposals on employing the semantics for verification. For

instance, Andrews [4] uses process algebras to offer a foundation forAOP. That work is based on the earlier formulation

of aspects [39] in terms of arbitrary “weavers”. The work emphasizes proofs of the correctness of program weaving,

using program equivalence to establish the correctness of aparticular weaver.

27

The notion of compiling thePCDs to automata and matching these against the stack is due to Masuhara et al. [50].

This idea is refined by Sereni and de Moor [56]. They provide a language ofPCD primitives (which we used as the

basis for ours), and present a static analysis based on this.The analysis determines, for each call site, the shapes of

the stacks possible at that site, and presents a pre-computation on a fixed set ofPCDs that can reduce the work of the

analysis. Their work does not, however, discuss verification (though it is a natural application) and, in particular, does

not provide a methodology for, or discuss the subtleties of,modular verification in this context. Adaptive programming

systems like Demeter [47] also rely on compiling regular specifications into automata to guide the traversal process.

While we have not formally investigated the application of our techniques to Demeter, we believe such an application

should indeed be possible.

Some researchers have considered aspect verification but inthe context of analyzing the program after composition.

Deng, et al. [19] use aspects to specify concurrency properties, then synthesize code with appropriate safety protocols

and verify the result. Nelson, et al. [54] use both model checkers and model-builders to verify woven programs. Both

Ubayashi and Tamai [63] and Denaro and Monga [18] employ model checkers to verify Java programs. These papers

do not, however, describe a modular verification methodology or address the accompanying subtleties such as advice

triggering fresh advice.

There is a growing body of work on techniques to study interference between aspects, such as those of Störzer and

Krinke [60] and Kniesel [personal comm.]. These approachesare essentially orthogonal to our work in that they do

not consume a user-specified property but rather analyze aspects for a fixed characteristic (like traditional type systems

do). These efforts are therefore complementary to the work proposed here, but could potentially strengthen our work.

In a series of papers (e.g., [22]), Douence, et al. also studythis problem through a formalism forAOP based on

events. This has the benefit of lifting aspects to a more semantic level, which they use to define two notions of

independence of an aspect, depending on whether or not it canbe impacted by a particular program. (This is related

to work on interface generation under parallel composition[27, 42].) The event-based definition shifts the work to

a fundamentally parallel setting, however, which is difficult to compare with ours. While they provide proof rules

for reasoning about programs, they do not specify the implementation status and whether the tools would run in as

automated a fashion as a model checker.

Devereux [21] maps programs and aspects to concurrent systems. This leads to a fundamentally different style of

reasoning, since our composition is sequential while his isparallel. His approach supports a rich family of aspect-like

mechanisms, and may also be able to exploit results on generating environment models under parallel composition [27,

42]. However, it is unclear what price this model extracts inreturn for its power, especially given that languages like

AspectJ use sequential composition. His formalization needs alternating-time logic, for which tool support does not

appear to be as mature as forCTL or LTL .

Aldrich [1] presents a formal model of aspects, describes a type system for them, and proves an abstraction theorem

enabling modular reasoning. While useful, this approach does not address verifying behavioral properties of programs.

Its more major drawback is that it fails to tackle any of the invasive, dynamic features of aspects that make them both

interesting and controversial. As such, therefore, the work is really about a slightly extended, but fairly traditional,

module system, and it is unclear to what extent the aspects found in practice fall under his rubric.

Mousavi, et al. [53] discuss a new tool-suite for embedded systems. This suite is designed to exploit aspects in

the design phase. While they discuss the desire to support verification at this level, it is not yet clear that they provide

concrete support for it. Regimbal, et al. [55] discuss the use of aspects in hardware specification, concretely in a

28

system-on-a-chip packet filter using the e [sic] language, which includes an aspect-like advice mechanism. They also

discuss the advantages of reusing verification in this setting. However, they do not appear to provide a formal frame-

work for actually performing such reasoning. Tesanovic, etal. [62] perform timing analysis of real-time programs

using the worst-case execution time framework. Their work,however, offers only a very simple model of pointcuts,

and does not identify pointcuts in advice.

Xu, et al. [68] propose reducing aspect verification to priorwork on reasoning about implicit invocation systems. In

particular, they suggest using work that employs model- rather than proof-theoretic techniques. It is, however, unclear

how their work addresses several issues that we do. They do not discuss around advice, which is arguably the most

interesting kind, since it elides paths through a previously verified program, potentially rendering the result of prior

verification invalid. At a more abstract level, it is unclearwhat the consequences of their reduction would be: whether

verification works in a way that is meaningful to aspects, whether they can identify pointcuts induced by advice, what

the formal properties about implicit invocation verification mean in the context of aspects, how to translate results of

verification into a form meaningful toAOP developers, and so on.

Sihman and Katz employ “superimpositions”, which are aspect-like notations parameterized to be more reusable.

Their work helps users of Bandera model-checking [57] avoidthe practical problem of annotating the program differ-

ently for each aspect’s properties by employing superimpositions to weave in the annotations specific to each aspect.

Their focus is on properties of aspects that programs might violate, and their interfaces target verifying the preservation

of such properties. These interfaces, however, appear to bewritten entirely manually. Their methodology also covers

preserving properties of the base program by aspects, but not through separate analysis of program and aspects as in

our work. They do discuss the possibility of verifying the aspect independently in the context of a dummy program,

and observe that this is an open-system verification problem, but do not offer a prescription for the generation of these

dummy programs.

In another paper [58], Sihman and Katz present a sophisticated discussion of exactly what it means to verify

advice and program. They also classify types of advice basedon whether or not they alter control- and data-flow

in the program. The work presented in this paper directly addresses what they dub “spectative” aspects. Related

work [10, 46] can, however, extend our result to much broadersets of aspects. We therefore believe their work can

help classify our result and point to useful directions for extending it.

More recently, Katz [35] gives a classification of aspects and shows implications for extending properties true of

the base program to systems including aspects from various categories. For spectative aspects, the most restrictive

category, the verification presented here is usually redundant once the aspect has been identified as falling in that cate-

gory. For more general categories, however, that work does not demonstrate the implications for extending properties,

especially for liveness; thus, the technique presented in this paper can prove many properties not treated there.

Modular verification is an old problem, often referred to as “assume-guarantee reasoning” [34, 52]. Most assume-

guarantee techniques for model checking, following the lead of Clarke, et al [15], assume that modules compose in

parallel, whereas aspects compose sequentially. Some research [3, 14, 45, 49] has considered modular verification

with sequential control flow. Laster and Grumberg decomposeprograms into sequential fragments and verify the

fragments incrementally from the end of the program to the initial state; each verification increment assumes properties

already proven of later segments [45]. For verifying beforeand after advice, our approach resembles theirs. Our work

goes much farther, however, to handle around advice (which can bypass states), cycles between multiple program

fragments (which their decomposition rules out by construction), and the identification and maintenance of joinpoints.

29

Furthermore, a substantial philosophical difference exists between our work and theirs regarding the motivation for

modular reasoning. They decompose a complete program into fragments to make model checking tractable, while we

use modular reasoning to support a modular design methodology. Laster and Grumberg leave open the question of how

to choose a decomposition; the works by Alur and Yannakakis [3] and Clarke and Heinle [14] use hierarchical state

machines and StateCharts, respectively, to provide this decomposition. The design-driven motivation for our work

forces us to handle partial (or open) programs, and thus to articulate interfaces between modules. These other works

treat logical dependencies between fragments as an internal algorithmic detail. Masson, et al. [49] avoid the problem

of articulating interfaces by decomposing systems around much stronger requirements, namely that all modules satisfy

the property; we believe this requirement is not realistic in practice, as our example shows.

Several projects for software verification are loosely based on the same idea: apply predicate abstraction to the

program source, verify, and use the counterexample to refinethe abstraction [7, 11, 30, 32]. They differ in their details

of how they generate and refine the abstractions. Other toolseither translate to a model checker’s input [17], conduct

path exploration [28, 65], or generate verification conditions for theorem proving [20]. None of these approaches,

however, tackle the complex modularities described in thisproposal.

Alur, et al. [2] present a temporal logic that includes call and return statements for capturing properties of pushdown

systems. While their logic would capturePCDs without the need for the bypass construction we use to identify

pointcuts, their work does not address modular verification, and their use of pushdown systems makes it difficult to

reuse existing verification tools.

Kicazles and Mezini [40] present a case study in modular aspect reasoning. Their example illustrates that reasoning

about a single aspect must take into account the context of the aspect’s application in the rest of the system, analogous

to the interfaces generated in prior work by Blundell, et al.[10]. As such, we can view their work as parallel to that

presented here, except done by informal reasoning through aspecific example.

Fisler and Krishnamurthi [26] present a model for verifyingproduct-line systems where each module encapsulates

a feature. That work addresses the possibility of concurrency within each module. However, composition there occurs

only at fixed points in the source, thus ignoring dynamic joinpoints. Li, et al. [46] and Blundell, et al. [10] extend these

results to address open-system problems that also apply to aspects, respectively using three-valued model-checking

and a two-phase technique based on constraint generation and solving. These works present approaches that would

enable verification in a context where the advice was permitted to modify the data of the base program. They do not,

however, address the important and interesting cases of dynamic composition and cascading aspects.

9 Conclusion and Future Work

There is a folklore belief that aspects inhibit any form of “modular” verification. This paper demonstrates that these

claims are exaggerated. Aspects do admit modular, incremental verification in the presence of an appropriate form of

lightweight specification that delimits their effect (justas type signatures and public/private designators enable separate

type-checking). In our work, thePCDs play the role of these specifications. Indeed, our work makes an implicit case

for separating the definition ofPCDs from that of the actual advice.

Our technique generates interfaces at each state where advice can apply, storing enough information to enable

separate verification of the advice. These interfaces caterspecifically to the property under analysis, and may not be

useful for unrelated properties. While the resulting technique is less general than one that utilizes interfaces constructed

30

manually by the developer, it has the benefit of being entirely automated. We call this processproperty-driven interface

generation.

Relative to fixedPCDs, our technique is sound, and addresses subtleties introduced by around advice and the

triggering of advice by other advice. The technique handlesdynamicPCDs and, by virtue of supporting staticPCDs,

can also apply to other methods for modularizing crosscutting code [6, 8, 9, 25, 29, 47, 51, 59].

Our goal is to port these ideas to more scalable verification frameworks, especially exploiting known techniques [17,

23] for generating state machines from source. In addition,tackling Java source requires expanding thePCD language,

and also handling more language features. We can already model some, such as static variables, by slightly altering

the way we inline procedures; others, such as concurrency, will probably require techniques similar to ones we have

developed in prior work [26].

Independent of the language, our technique must extend along several dimensions:

• We would like to exploit knowledge about thePCDs and properties to drive the model generation process.

• Once an advice completes, it restores the stack to the same state it had before invocation. Invoking advice can

therefore have no impact on the pointcuts of either static ordynamicPCDs. In a system like AspectJ, which

has a richerPCD language, this claim is no longer true. For instance, the useof if in a PCD makes it possible

to write complex predicates that can, for instance, detect mutations performed by advice. A simpler example

would use thewithin pointcut.

In such cases, a tool would need to perform a value-flow analysis to determine when an advice can cause

a joinpoint to enter a pointcut, conservatively over-estimate to preserve soundness, and use the body of the

advice to determine whether or not to perform verification ata joinpoint. The model we present here remains

applicable—only the set of states for which we generate interfaces changes—though a weak analysis would

generate interfaces and suggest verification at unreasonably many states.

• Applying advice can remove states from pointcuts. For instance, section 4.4 considered the case of advice that

does not invokeproceed; in that instance, pointcut elements in the fragment being advised will no longer exe-

cute. Or suppose the advice terminates program execution; then the rest of the program is no longer reachable.

While it is sound to verify advice application at these statesanyway, it can certainly lead to predictions of errors

that do not occur on execution (since the program does not visit those states).

This problem is not serious. Any advice can affect pointcutsif it terminates program execution in some or all

paths, but this is easy to detect and address (indeed, this often indicates an error in the advice). In the absence

of this, before and after advice are not problematic. The only remaining case is when no path through an around

advice invokesproceed (which is easy to detect by reachability). In this instance,we need not verify joinpoints

in the advised code. The set of such joinpoints can be recorded in the interface.

• When an around aspect does invokeproceed, the aspect itself often performs operations orthogonal tothose

being advised. For instance, the aspect might increment anddecrement counters, or perform other such generic

operations that have no effect on the program’s properties.In such cases, the set of labels will not be affected

by the advice state machine, which means the existing labelson the advised procedure can be reused safely. We

believe that flow analyses can help identify cases when we canreuse the existing labels.

31

• The technique presented in this paper is designed to establish thepreservationof program properties by aspects.

In fact, aspects often introduce new invariants about programs. We can partially simulate this by verifying the

negationof the property on the program; verifying that the advice then violatesthe (negated) property indicates

that the property holds in at least some cases. (This violation of the property does not automatically guarantee

that the original property holds, because our technique is not complete.) Because it is impossible to anticipate

such properties, however, we need a better approach.

• Our technique assumes that state modified by aspects does notaffect control flow in the remainder of the pro-

gram. In general, this assumption is too restrictive. Our prior work presents two different techniques [10, 46]

that use different analyses for addressing such systems, but does not account for all the subtleties of aspects

(though we believe these are largely orthogonal). One key observation in that prior work is that it may be more

useful to view the problem as one of constraint generation rather than as one of model checking, as the latter

ultimately aims to give definitive answers. We intend to adapt those results to the aspect context.

Acknowledgments

We are grateful to Gregor Kiczales for valuable discussionsthat changed the perspective of this paper. We thank

Shmuel Katz for lengthy discussions about the relationshipbetween this work and his. We also appreciate the careful

reading and useful comments of Christopher Dutchyn. We thank the anonymous reviewers for their numerous com-

ments, which helped improve the presentation. In particular, Reviewer 2 helped us find and fix an error in theorem 2.

We thank Michael Greenberg for prototyping a variant of these algorithms, and Matt Hoosier and Matthew Dwyer for

their help with the details.

References

[1] Aldrich, J. Open modules: Modular reasoning in aspect-oriented programming. InFoundations of Aspect-

Oriented Languages, pages 7–18, March 2004.

[2] Alur, R., K. Etassami and P. Madhusudan. A temporal logicof nested calls and returns. InConference on Tools

and Algorithms for the Construction and Analysis of Systems, pages 467–481, 2004.

[3] Alur, R. and M. Yannakakis. Model checking of hierarchical state machines. InSymposium on the Foundations

of Software Engineering, pages 175–188, 1998.

[4] Andrews, J. H. Process-algebraic foundations of aspect-oriented programming. InReflection, pages 187–209,

September 2001.

[5] Aspect oriented programming (article series).Communications of the ACM, 44(10), October 2001.

[6] Aßmann, U.Invasive Software Composition. Springer-Verlag, 2003.

[7] Ball, T. and S. K. Rajamani. The SLAM project: Debugging system software via static analysis. InACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 1–3, January 2002.

32

[8] Batory, D. Feature-oriented programming and the AHEAD tool suite. InInternational Conference on Software

Engineering, pages 702–703, 2004.

[9] Batory, D. and S. O’Malley. The design and implementation of hierarchical software systems with reusable

components.ACM Transactions on Software Engineering and Methodology, 1(4):355–398, October 1992.

[10] Blundell, C., K. Fisler, S. Krishnamurthi and P. Van Hentenryck. Parameterized interfaces for open system

verification of product lines. InIEEE International Symposium on Automated Software Engineering, pages 258–

267, September 2004.

[11] Chaki, S., E. Clarke, A. Groce, S. Jha and H. Veith. Modular verification of software components in C.IEEE

Transactions on Software Engineering, 30(6):388–402, June 2004.

[12] Clarke, E., E. Emerson and A. Sistla. Automatic verification of finite-state concurrent systems using temporal

logic specifications.ACM Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

[13] Clarke, E., O. Grumberg and D. Peled.Model Checking. MIT Press, 2000.

[14] Clarke, E. M. and W. Heinle. Modular translation of Statecharts to SMV. Technical Report CMU-CS-00-XXX,

Carnegie Mellon University School of Computer Science, August 2000.

[15] Clarke, E. M., D. E. Long and K. L. McMillan. Compositional model checking. InIEEE Symposium on Logic

in Computer Science, pages 353–362, 1989.

[16] Clements, P. and L. Northrop.Software Product Lines: Practices and Patterns. Addison-Wesley, 2002.

[17] Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby and H. Zheng. Bandera : Extracting

finite-state models from java source code. InInternational Conference on Software Engineering, pages 439–448.

IEEE Press, 2000.

[18] Denaro, G. and M. Monga. An experience on verification ofaspect properties. InInternational Workshop on

Principles of Software Evolution, pages 184–188, September 2001.

[19] Deng, X., M. B. Dwyer, J. Hatcliff and M. Mizuno. Invariant-based specification, synthesis, and verification of

synchronization in concurrent programs. InInternational Conference on Software Engineering, pages 442–452,

2002.

[20] Detlefs, D. L., K. R. M. Leino, G. Nelson and J. B. Saxe. Extended static checking. Research Report 159,

Compaq Systems Research Center, December 1998.

[21] Devereux, B. Compositional reasoning about aspects using alternating-time logic. InFoundations of Aspect-

Oriented Languages, March 2003.

[22] Douence, R., P. Fradet and M. Südholt. A framework for the detection and resolution of aspect interactions. In

International Conference on Generative Programming and Component Engineering, pages 173–188, October

2002.

33

[23] Dwyer, M. B. and L. A. Clarke. Flow analysis for verifying specifications of concurrent and distributed software.

Technical Report UM-CS-1999-052, University of Massachusetts, Computer Science Department, August 1999.

[24] Filman, R. and D. P. Friedman. Aspect-oriented programming is quantification and obliviousness. InWorkshop

on Advanced Separation of Concerns, October 2000.

[25] Findler, R. B. and M. Flatt. Modular object-oriented programming with units and mixins. InACM SIGPLAN

International Conference on Functional Programming, pages 94–104, 1998.

[26] Fisler, K. and S. Krishnamurthi. Modular verification of collaboration-based software designs. InJoint European

Software Engineering Conference and ACM SIGSOFT Symposiumon the Foundations of Software Engineering,

pages 152–163, September 2001.

[27] Giannakopoulou, D., C. Pasareanu and H. Barringer. Assumption generation for software component verification.

In IEEE International Conference on Automated Software Engineering, pages 3–12, 2002.

[28] Godefroid, P. Model checking for programming languages using VeriSoft. InACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 174–186, January 1997.

[29] Harrison, W. and H. Ossher. Subject-oriented programming: a critique of pure objects. InACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages & Applications, pages 411–428, 1993.

[30] Henzinger, T. A., R. Jhala, R. Majumdar and G. Sutre. Software verification with Blast. InSPIN Workshop

on Software Model Checking, number 2648 in Springer Lecture Notes in Computer Science,pages 235–239.

Springer-Verlag, 2003.

[31] Hilsdale, E. and J. Hugunin. Advice weaving in AspectJ.In International Conference on Aspect-Oriented

Software Development, pages 26–35, 2004.

[32] Holzmann, G. and M. H. Smith. Software model checking - extracting verification models from source code.

Software Testing, Verification, and Reliability, 11(2):65–79, June 2001.

[33] Huth, M. and M. Ryan.Logic in Computer Science. Cambridge University Press, second edition, 2004.

[34] Jones, C. B. Tentative steps toward a development method for interfering programs.ACM Transactions on

Programming Languages and Systems, 5(4):596–619, 1983.

[35] Katz, S. Aspect categories and classes of temporal properties.Transactions on Aspect-Oriented Software Devel-

opment, 1:106–134, 2006. Published asLecture Notes in Computer Sciencenumber 3380.

[36] Kiczales, G. The more the merrier.Software Development, October 2004.

http://www.sdmagazine.com/documents/s=8993/sdm0410g/.

[37] Kiczales, G., J. des Rivières and D. G. Bobrow.The Art of the Metaobject Protocol. MIT Press, 1991.

[38] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. Griswold. An overview of AspectJ. In

European Conference on Object-Oriented Programming, pages 327–353, 2001.

34

[39] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier and J. Irwin. Aspect-oriented

programming. InEuropean Conference on Object-Oriented Programming, pages 220–242, June 1997.

[40] Kiczales, G. and M. Mezini. Aspect-oriented programming and modular reasoning. InInternational Conference

on Software Engineering, pages 49–58, 2005.

[41] Krishnamurthi, S., K. Fisler and M. Greenberg. Verifying aspect advice modularly. InACM SIGSOFT Interna-

tional Symposium on the Foundations of Software Engineering, pages 137–146, November 2004.

[42] Kupferman, O., M. Vardi and P. Wolper. Module checking.In International Conference on Computer-Aided

Verification, number 1102 in Lecture Notes in Computer Science, pages 75–86. Springer-Verlag, 1998.

[43] Laddad, R.AspectJ in Action. Manning Publications Co., 2003.

[44] Laroussinie, F., N. Markey and P. Schnoebelen. Temporal logic with forgettable past. InIEEE Symposium on

Logic in Computer Science, pages 383–392, 2002.

[45] Laster, K. and O. Grumberg. Modular model checking of software. InConference on Tools and Algorithms for

the Construction and Analysis of Systems, pages 20–35, 1998.

[46] Li, H. C., S. Krishnamurthi and K. Fisler. Modular verification of open features through three-valued model

checking.Automated Software Engineering Journal, 12(3):349–382, July 2005.

[47] Lieberherr, K. J.Adaptive Object-Oriented Programming. PWS Publishing, Boston, MA, USA, 1996.

[48] Maidl, M. The common fragment of CTL and LTL. InSymposium on Foundations of Computer Science, pages

643–652, 2000.

[49] Masson, P.-A., H. Mountassir and J. Julliand. Modular verification for a class of PLTL properties. InIntegrated

Formal Methods, pages 398–419, November 2000.

[50] Masuhara, H., G. Kiczales and C. Dutchyn. A compilationand optimization model for aspect-oriented programs.

In Compiler Construction, pages 46–60, 2003.

[51] Mezini, M. and K. Lieberherr. Adaptive plug-and-play components for evolutionary software development. In

ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages & Applications, pages 97–

116, October 1998.

[52] Misra, J. and M. Chandy. Proofs of networks of processes. IEEE Transactions on Software Engineering,

7(4):417–426, 1981.

[53] Mousavi, M., G. Russello, M. Chaudron, M. Reniers, T. Basten, A. Corsaro, S. Shukla, R. Gupta and D. C.

Schmidt. Using Aspect-GAMMA in design and verification of embedded systems. InInternational Workshop

on High Level Design Validation and Test, pages 69–75, October 2002.

[54] Nelson, T., D. D. Cowan and P. S. C. Alencar. Supporting formal verification of crosscutting concerns. In

Reflection, pages 153–169, 2001.

35

[55] Regimbal, S., J.-F. Lemire, Y. Savaria, G. Bois, E. M. Aboulhamid and A. Baron. Aspect partitioning for

hardware verification reuse. InWorkshop on System-on-Chip for Real-Time Applications, pages 183–192, 2002.

[56] Sereni, D. and O. de Moor. Static analysis of aspects. InInternational Conference on Aspect-Oriented Software

Development, pages 30–39, March 2003.

[57] Sihman, M. and S. Katz. Model checking applications of aspects and superimpositions. InFoundations of

Aspect-Oriented Languages, pages 51–60, March 2003.

[58] Sihman, M. and S. Katz. Superimpositions and aspect-oriented programming.The Computer Journal, 46(5):529–

541, September 2003.

[59] Smaragdakis, Y. and D. Batory. Implementing layered designs and mixin layers. InEuropean Conference on

Object-Oriented Programming, pages 550–570, July 1998.

[60] Störzer, M. and J. Krinke. Interference analysis for AspectJ.In Foundations of Aspect-Oriented Languages,

pages 35–44, 2003.

[61] Sullivan, K., W. G. Griswold, Y. Song, Y. Cai, M. Shonle,N. Tewari and H. Rajan. Information hiding interfaces

for aspect-oriented design. InJoint European Software Engineering Conference and ACM SIGSOFT Symposium

on the Foundations of Software Engineering, pages 166–175, September 2005.

[62] Tesanovic, A., J. Hansson, D. Nyström, C. Norstr̈om and P. Uhlin. Aspect-level WCET analyzer. InInternational

Workshop on Worst-Case Execution Time Analysis, July 2003.

[63] Ubayashi, N. and T. Tamai. Aspect oriented programmingwith model checking. InInternational Conference on

Aspect-Oriented Software Development, April 2002.

[64] Vardi, M. Y. and P. Wolper. Reasoning about infinite computations. Information and Computation, 115(1),

November 1994.

[65] Visser, W., K. Havelund, G. Brat and S. Park. Model checking programs. InIEEE International Symposium on

Automated Software Engineering, pages 3–12, September 2000.

[66] Wand, M., G. Kiczales and C. Dutchyn. A semantics for advice and dynamic join points in aspect-oriented

programming.ACM Transactions on Programming Languages and Systems, 26(5):890–910, 2004.

[67] Wolper, P. Temporal logic can be more expressive.Information and Control, 56(1–2):72–99, 1983.

[68] Xu, J., H. Rajan and K. Sullivan. Aspect reasoning by reduction to implicit invocation. InFoundations of

Aspect-Oriented Languages, pages 31–36, March 2004.

36

