
From Macros to Reusable Generative

Programming�

Shriram Krishnamurthi�� Matthias Felleisen�� and Bruce F� Duba�

� Department of Computer Science
Rice University

Houston� TX ����������� USA
� Department of Computer Science

Seattle University
Seattle� WA ������		
�� USA

Abstract� Generative programming is widely used both to develop new
programming languages and to extend existing ones with domain�speci�c
sub�languages� This paper describes McMicMac� a framework for gener�
ative programming� McMicMac uses tree�transforming macros as lan�
guage speci�cations� and enhances them with inherited and synthesized
attributes� The enhanced transformers can describe general compila�
tion tasks� Families of these speci�cations are grouped into mixin�like
collections called vocabularies� Programmers can de�ne new languages
by composing these vocabularies� We have implemented McMicMac for
Scheme and used it to build several systems� including the DrScheme
programming environment� The principles of McMicMac carry over to
other languages and environments�

� Introduction

Generative programming is an old and good idea�write programs to write your
programs for you� This idea has been applied widely� from compilation to creating
domain�speci�c languages to the mass�production of components� It is gaining
increasing prominence due to its potential economic impact� because it can both
reduce manual labor and increase the e�ciency and correctness of programs�

In this paper� we describe a general framework for generative programming
in Scheme ���	� Concretely� we describe McMicMac� a framework developed at
Rice University� McMicMac supports the production of extensible language com�
ponents� A programmer can generate new languages by composing language
components� Because the components are parameterized over the base language�
McMicMac programmers can reuse the same language�de�ning components to
build many di
erent languages� The system thus greatly simpli�es the design and
implementation of domain�speci�c languages as extensions of base languages�

Our system plays a crucial role in the construction of a large programming
environment� DrScheme ���	� Conversely� the process of building DrScheme has

� This work is partially supported by NSF grants CCR��
����
� CDA����
�
�� and
CCR��������� and a Texas ATP grant�



helped us debug and re�ne the design of our system� McMicMac has also been
used to build tools for languages other than Scheme� Starting with a type�checker
and compiler for a parenthetical version of Java� it has been used to create lan�
guage extensions representing design patterns ���	 and other speci�cations ���	�

The rest of this paper is organized as follows� Section � provides an ex�
tended example that illustrates some of the kinds of abstractions that genera�
tive programmingmakes possible� Section � describes the structure ofMcMicMac

through a series of examples� and section 
 re�nes this discussion� Section � sum�
marizes the deployment of McMicMac� Section � discusses related e
orts� and
section � o
ers concluding remarks and suggests directions for future work�

� An Illustrative Example

Suppose a programmer wanted to distribute a library that creates and executes
�nite�state automata� The library of types and procedures �or classes with meth�
ods� should hide the actual representation used for the automata� because there
are at least two di
erent automata representations� data structures and exe�
cutable values� Data structures are useful for manipulating automata as data�
e�g�� for minimizing automata� They can also be run via an interpreter� though
this can be ine�cient� If the automata are being created solely for execution�
then it is typically much more e�cient to translate them directly into code� such
as functions or labeled statements�

Hence� the library should o
er programmers a way to specify in�line automata
in a representation�independent� yet intuitive� manner� This would allow clients
to write expressions such as that shown in �gure �� The example uses a new
construct� automaton� to de�ne an automaton that� starting in ��state� checks
whether a stream of �s and �s begins with � and then alternates strictly between
the two values�

The speci�cation in �gure � might translate into the Scheme code shown in
�gure �� It represents automata as procedures that consume an input stream�
The states are nested� mutually�recursive procedures� Each procedure represents
one state�s transition relation� All unexpected inputs generate an exception�
unexpected�input�exn� so the empty transition relation represents an error state�
If the automaton attempts to inspect past the end of a �nite input stream�
a di
erent exception is raised� which a client can handle to observe successful
completion� Because programming languages like Scheme optimize calls in tail
position to jumps or �goto�s� the state transitions in the example are quick and
accumulate no evaluation context �colloquially� �stack space�� ��	�

Unfortunately� the library programmer cannot de�ne automaton� because it
is not a procedure� The sub�terms of automaton are not expressions in Scheme�
as procedure arguments must be� rather they are terms in a distinct� domain�
speci�c language� Furthermore� automaton is a binding construct �as clari�ed
by �gure ��� which cannot be de�ned procedurally� Therefore� automaton can�
not be de�ned in most traditional programming languages�



�automaton ��state

���state ��� �� error�state�
�� �� ��state��

���state ��� �� ��state�
�� �� error�state���

�error�state���

Fig� �� An Automaton Description

�lambda �input�stream�
�letrec

����state �lambda ��
�case �next�token input�stream�
���� �error�state��
���� ���state��
�else �raise �make�object unexpected�input�exn������

���state �lambda ��
�case �next�token input�stream�
���� ���state��
���� �error�state��
�else �raise �make�object unexpected�input�exn������

�error�state �lambda ��
�case �next�token input�stream�
�else �raise �make�object unexpected�input�exn�������

���state���

Fig� �� Compiled Automaton Representation

The automaton library might contain other operations of this form� For in�
stance� the library may provide a means for interleaving the execution of two
automata� This would enable the client programmer to write

�run�alternating �M� stream�� � �M� stream�� ��

which runs automaton M� on stream stream�� and M� on stream�� in strict
alternation� In this case� even though both sub�terms of run�alternating are
legal Scheme expressions� Scheme�s call�by�value evaluation order would �rst run
M� on stream�� until termination�which may never occur�before it begins to
run M� � Thus run�alternating also cannot be a procedure in a call�by�value
language�

Both constructs illustrate useful and important abstractions that help pro�
grammers write software e
ectively� These abstractions are not procedural� how�
ever� Instead they de�ne notations that are not part of the language�s syntax�
In other cases� they require behavior that is di
erent from what the language�s
semantics speci�es� More generally� automaton and run�alternating are both
linguistic abstractions� i�e�� they create a little language within a larger language



�de�ne�macro �automaton ���
�automaton start�state

�state�name �input �� new�state� � � � � � � � �
�� �syntax

�lambda �input�stream�
�letrec ��state�name

�lambda ��
�case �remove�token input�stream�
��input� �new�state�� � � �
�else �raise �make�object unexpected�input�exn������ � � � �

�start�state�����

Fig� �� Automaton Macro

to accomplish some specialized task� Generative programming frameworks must
support such language construction�

� The McMicMac Framework

McMicMac is a framework for creating languages such as that for automata�
We explain McMicMac through a series of examples re�ecting increasingly com�
plex protocols� The examples are intentionally simplistic in �avor� but they cor�
respond to some of the non�trivial uses we have encountered while building
DrScheme�

��� Macros

Examples like automaton and run�alternating are expressible as McMic�

Mac macros� The macros of McMicMac are descendants of those in Lisp and
Scheme ������	� They transform tree�shaped data� rather than manipulating
�at data like the string�processing macros in the C pre�processor ���	� In short�
macros implement a simple form of extensible parsing�

A parser is conceptually a table of rules that map syntactic shapes to code�
When the input matches a shape� called a trigger� the parser looks up the trig�
ger�s transformation rule� called the elaborator� and uses it to produce abstract
syntax� The parsing table is traditionally �xed� thus limiting the input language
a parser can recognize� Macro de�nitions add rules to a parser�s table� Unlike
traditional parse rules� though� macro rules do not directly generate abstract
syntax� Instead� they generate terms in the source language� The parser then
re�analyzes the generated term and continues this process until it obtains a
canonical form�

In McMicMac� the programmer de�nes triggers using a pattern�matching no�
tation originally due to Kohlbecker and Wand ��
	� When an input term matches



�de�ne�macro �automaton ���
�automaton start�state

�state�name �input �� new�state� � � � � � � � �
�� �syntax

�make�automaton�rep start�state
�list �make�state�rep state�name

�make�transition�rep input new�state� � � � �
� � � ����

Fig� �� Alternate Automaton Macro

a trigger� the matcher generates a pattern environment that maps pattern vari�
ables to the corresponding source terms in the input� It then invokes the elabo�
rator to generate a source term� This term can be parameterized over sub�terms
in the input� The elaborator extracts these input sub�terms from the pattern
environment�

Figure � presents a concrete example� the macro for the automaton con�
struct of section �� The keyword de�ne�macro is followed by a set of literals
�here� automaton and ��� that may appear in the input� The literals are fol�
lowed by the trigger� All symbols in the trigger that do not appear in the literal
set are pattern variables� A pattern followed by ellipses �� � � � matches zero or
more instances of the pattern� It binds each pattern variable to the sequence
of sub�terms that correspond to the pattern variable�s position in the matching
instances� Ellipses can be nested arbitrarily deep�

The macro de�nition speci�es an elaborator following the �� keyword� The
elaborator uses syntax to construct a new source term� The syntax form con�
sumes a template and converts the template into a term in the source language
by replacing all pattern variables with their bindings from the �implicit� pattern
environment� Thus� in the output term� start�state� state�name� input and new�

state are replaced with the corresponding source text in the input expression�
while all other names are inserted literally��

Macros of this sort have traditionally been put to four main uses�

� to create new binding constructs� The procedural translation of automaton
turns the state�names into binding and bound occurrences of variables�

� to mask the creation of a data�structure� Figure 
 shows an alternate imple�
mentation of automaton that represents automata as data structures�

� to represent structural program properties� such as uses of design patterns�

� to a
ect the order of evaluation� For instance� run�alternating requires
delayed evaluation in a call�by�value language� The macro can wrap the
expressions in procedures that are invoked to control stepping�

� We have elided from our speci�cation many McMicMac features that are useful in
practice� e�g�� the macro writer can specify guards on the structure of sub�terms�



�de�ne�micro �if� �� for if�s
�if test then else� �� �lambda ��

�make�if�ir
��dispatch �syntax test���
��dispatch �syntax then���
��dispatch �syntax else������

Fig� �� A Micro Speci�cation

As the automaton example illustrates� a single macro can serve several of
these purposes simultaneously� This is especially likely to happen in the case of
data languages� whose constructs are supposed to mask their representation of
the data from the client programmer� since the same source can be used to gener�
ate either representation� Figure 
 presents an alternate compiled representation
for automata� instead of creating procedures� it generates a data structure�

Di
erent applications can choose alternate expansions �using the mechanism
described in section ���� without any intervention from the user who speci�es
the automata� Linguistic extensions are especially important in this context�
because they are often the only way to mask these concrete representations� In
most languages� for instance� it is impossible to de�ne a construct that elaborates
into a procedure� This makes it extremely di�cult� if not impossible� to write
the automaton abstraction through any other means�

��� Beyond Conventional Macros

Though conventional macros can describe many interesting linguistic abstrac�
tions� they are not powerful enough for many other generative�programming
tasks� McMicMac therefore generalizes macros in several ways� These general�
ized macros propagate information about the program to guide elaboration�

From Expansion to Parsing Parsers have the type scheme

source �� ir

where source is the type of source expressions and ir that of the intermediate
representation� In many cases� McMicMac programmers writing language exten�
sions need the power to generate terms of type ir directly�McMicMac thus allows
programmers to create such elaborators� called micros�

In principle� micros have the type

source �� ir �

in contrast to macros� which denote source�to�source rewriting functions�

source �� source �



�de�ne�micro �if� �� for if�s
�if test then else� �� �lambda �env�

�make�if�ir
��dispatch �syntax test�� env�
��dispatch �syntax then�� env�
��dispatch �syntax else�� env����

�de�ne�micro �lambda� �� for lambda�s
�lambda vars body� �� �lambda �env�

�make�lambda�ir vars

��dispatch �syntax body�� �append vars env�����

Fig� �� Micros with Attributes

In practice� the parsing process described in section ��� has two parts� the elabo�
rators that create ir and the dispatcher that does pattern matching and invokes
an elaborator� The dispatcher� called dispatch� has type

source �� micro �

i�e�� given a source term� it returns the corresponding micro� Micros are elabo�
rators represented as procedures of no arguments that create ir� whose type we
denote as

�� �� ir �

�The reason for this seemingly needless level of indirection will become clear
in the following sections�� The output of micros� unlike that of macros� is not
automatically expanded again� If it were automatically expanded� this could
result in a type con�ict� Therefore� a micro must invoke dispatch to reduce
source terms to ir�

Figure � shows the micro de�nition for a simple conditional construct� Like
de�ne�macro� de�ne�micro is followed by a list of literals and a trigger pat�
tern� To the right of the �� keyword is the speci�cation of the micro�s elaborator�
a procedure of no arguments� The elaborator uses make�if�ir to construct the ir
representation of if expressions� The invocation

��dispatch �syntax test���

extracts the source term corresponding to test from the pattern environment�
uses dispatch to obtain the corresponding micro� which is a procedure of no
arguments� and invokes the micro to generate the ir value for test �

Attributes Suppose a programmer wants a simple value inspection facility�
Speci�cally� the expression �dump� should print the names and values of all
the variables bound in the lexical scope� Provided we have access to the names
of all the variables in that lexical context� the transformation associated with



�dump� is quite straightforward� McMicMac allows programmers to make this
contextual information explicit by associating attributes with the dispatcher�
Thus a programmer can declare the type of a micro to be

env �� ir

where env is the type of the lexical environment� The micro can inspect this
environment to determine the names of the bound variables�

This type generalizes to
attr � � � �� ir

to indicate that there can be several attributes� Every micro must accept all the
attributes� and must propagate them to micro dispatches on sub�terms� Figure �
presents the de�nition for lambda �which a
ects the set of lexical variables
listed in env� and a revised de�nition of if �which doesn�t��

To use McMicMac� an application must invoke dispatch on the source pro�
gram while supplying appropriate values for all the attributes� The result of
invoking dispatch is an ir value� which the program can use for subsequent
processing� Some applications use the same type for the source and ir� i�e�� they
only exploit attributes� not the ability to transform representations�

Threaded Attributes One possible ir to choose may be the set of values
in the language� In that case� the �parser� may convert programs to their ��
nal answers� i�e�� it may really be an interpreter� We expect McMicMac to deal
with such transformations too� They are useful for prototyping small embedded
domain�speci�c languages� or for optimizing code�generators� Attributes can rep�
resent various aspects of the language�s evaluation� In �gure �� for example� the
environment maintains only a list of names bound in each context� but in an
interpreter� the environment could map names to locations or values�

Non�trivial languages� though� have two kinds of attributes� Some attributes�
e�g�� environments� are functional� meaning they do not represent computational
e
ects� Other attributes� however� are threaded� They are a
ected in the pro�
cessing of sub�terms� and their order of propagation from the processing of one
sub�term to another matters� A canonical example of such an attribute is the
store� If the same store were passed to all sub�terms� then side�e
ects in the
evaluation of one would not be visible in the other� Micros therefore return the
updated values of threaded attributes along with the ir� Thus the type of a
micro in the interpreter implementation can be

env � store �� ir� store

or� in general� micros can have a type with the shape

funattr � � � � threadattr � � � �� ir� threadattr � � � �

Once again� it is the micro programmer�s responsibility to invoke McMicMac�
provide arguments for the attributes� accept the �nal ir value and the values of
the threaded attributes� and process them�



�de�ne�micro �set	� �� for set��s
�set	 var val� �� �lambda �env store�

�let
values ��val�value val�store�
��dispatch val� env store��

�values �� the value�
�void�value�
�� the new store�
�extend store var val�value�����

�de�ne�micro �� �� for function applications�no literals
�fun arg� �� �lambda �env store�

�let
values ��fun�value fun�store�
��dispatch fun� env store��

�let
values ��arg�value arg�store�
��dispatch arg� env fun�store��

�� functions must return value�store pairs
�fun�value arg�value arg�store�����

Fig� �� Threaded Attributes

We illustrate this new form of micro with two de�nitions in �gure � that im�
plement a stateful language in a purely functional manner using the store�passing
style technique from denotational semantics� �set� is Scheme�s assignment state�
ment�� The code uses Scheme�s multiple�value facility to return the actual value
and the potentially modi�ed store�

��� Modular Speci�cations

We have thusfar discussed the kinds of transformations that programmers can
express� In this section� we discuss how programmers can group these transfor�
mations into reusable units�

Vocabularies Most programming languages consist of several sub�languages�
those of expressions� statements� types� argument lists� data� and so on� The pro�
grammer must therefore specify which sub�language a micro extends� McMicMac

provides vocabularies for this purpose� A vocabulary is a grouping of related mi�
cros� All micros in a vocabulary must satisfy the same type signature� Figure �
illustrates the revised declarations from earlier examples� Each micro declares
membership in a vocabulary just before specifying its literal set�

The sum of declarations in a vocabulary speci�es the syntax and the elab�
oration rules of a language� Put di
erently� a vocabulary describes the syntax
table that is used by dispatch� and must therefore be a parameter to dispatch�
We update the type of dispatch from section ��� to re�ect this�

source� vocab �� micro �



�de�ne scheme�exprs
�make�vocabulary��

�de�ne�micro scheme�exprs �set	�
�set	 var val� ��
�lambda �this�vocab env store�
� � ���

�de�ne�micro scheme�exprs ��
�fun arg� ��
�lambda �this�vocab env store�
� � ���

�de�ne automata
�make�vocabulary��

�de�ne�micro automata

�automaton ���
�automaton � � �� ��
�lambda �this�vocab� � � ���

�de�ne�micro automata

�run
alternating�
�run
alternating � � �� ��
�lambda �this�vocab� � � ���

Fig� �� Vocabulary Speci�cations

�de�ne compiler �make�vocabulary��
�de�ne�micro compiler �let�
�let ��var val� � � � � body� ��
� � ��

�de�ne�micro compiler �letrec�
�letrec ��var val� � � � � body� ��
� � ��

�de�ne compiler�language
�extend�vocabulary scheme�exprs

compiler��

�de�ne analysis
�make�vocabulary��

�de�ne�micro analysis �let� � � ��
�de�ne�micro analysis �letrec� � � ��

�de�ne analysis�language
�extend�vocabulary scheme�exprs

analysis��

Fig� 
� Tool�Dependent Expansions

The change in the type of dispatch forces us to update the programming
pattern for micros� Each recursive call to dispatchmust pass along a vocabulary�
which the invoked micro must accept�

As we describe below� however� a micro may not always know which vocabu�
lary it is in� Micros therefore take the vocabulary from which they were selected
as an argument�in �gure �� each micro accepts a vocabulary� this�vocab� as its
�rst argument�which they use to process sub�terms in the same language� alter�
natively� they can choose a di
erent vocabulary for sub�terms in other languages�
For instance� a function declaration may have some sub�terms in the expression
language and others in the language of types� Micros therefore have the type
scheme

vocab � funattr � � � � threadattr � � � �� ir� threadattr � � � �

Composing Vocabularies McMicMac actually allows programmers to build
vocabularies by extending and composing them� Thus programmers can divide



a language into sets of related features� and compose these features to build a
processor for the complete language� A programmer can also create an extension
vocabulary that overrides some de�nitions in a base vocabulary with tool�speci�c
constraints� This explains why a micro may not know which vocabulary it is in�
after all� the non�overridden micros of the base are also in the new� composite
vocabulary� This scenario is analogous to instance variables in an object�oriented
language that reside both in a class and in its extensions�

With vocabularies� we can generate programs in various interesting ways�

� While traditional transformation techniques are limited in where they can
be applied�macros and templates are usually restricted to the expression or
statement languages�theMcMicMac programmer can write transformations
for any sub�language� For instance� we have used it to de�ne abbreviations
over types and to extend the language of procedural parameters�

� In realistic programming environments� di
erent program�processing tools
often have di
ering views of the underlying language� For example� a com�
piler might translate the binding construct let �which creates non�recursive
local bindings� into a local function application while treating letrec �which
introduces mutually�referential local bindings� as a primitive� In contrast� a
polymorphic type inference engine might treat let as a core form� while it
will transform letrec into a more primitive term� These distinctions are easy
to express through vocabularies� as shown in �gure �� The function extend�

vocabulary extends the language of its �rst argument with the triggers and
elaborators of the second� overriding clashes in favor of the second�

� Some languages allow programmers to write lexically�scoped macros ���	�
This is easy to de�ne in McMicMac� The micro for a lexical macro construct
creates a temporary vocabulary� populates it with the local macro� and ex�
tends the current language with the new macro� Because these are local� not
global� changes� the language extension disappears when the body has been
parsed� so terms outside this lexical context are una
ected�

� A programmer can use vocabularies to organize several traversals over the
program� Typically� earlier passes synthesize information for later passes� For
example� a programmer may want to add �rst�class closures to an object�
oriented language like Java ���� The translator that implements this trans�
formation would need ��� to determine the free variables of the closure�s
body� ��� to create a class to represent the closure and move its de�nition to
the top�level� as required in many languages� and� ��� to rewrite the creation
and uses of the closure�
A series of vocabularies solves this problem elegantly� The �rst maintains the
lexical environment while traversing code ��gure ��� when it encounters an
instance of the closure construct� it traverses the body with a vocabulary that
computes the set of free variables� This list of free variables is the ir of this
vocabulary� It can then generate the class de�nition� A threaded attribute
accumulates top�level de�nitions created in internal contexts and propagates
them outward� Finally� another vocabulary rewrites the creation and use
expressions� Determining uses can be done either from type information or
through a dynamic check� depending on the target language�



� If a larger language is constructed by composing smaller language layers�
programmers can de�ne restricted versions of the larger language by leaving
out some layers� We have found this ability especially useful in the DrScheme
programming environment ���	� which presents the Scheme programming
language as a sequence of increasingly complex sub�languages� This hides
the complexity of the complete language from the student� in particular� it
�ags terms that are errors in the linguistic subset but that might be legal�
though often not what the student expected�in the full language� This
provides much better feedback than an environment for just the complete
language would provide� and considerably improves the learning experience�

� Extensibility and Validation

To implement a system like McMicMac in other languages� programmers must
resolve the tension between extensibility and validation�

Extensibility There are two main sources of extensibility in McMicMac� both
related to vocabularies�
� Vocabularies resemble classes with inheritance� since they have variable
parent vocabularies� they are essentially mixins� which enhance reuse by
allowing the same class�extensions to be applied to multiple classes�

� The pattern of passing the vocabulary as an argument accomplishes the
e
ect of the this keyword found in many object�oriented languages� It
ensures that micros can be reused without having to know about all
future extensions� Using this style� programmers can also experiment
with interesting language extensions� such as the lexical macros described
in section ����

Validation Information is communicated through the attributes� the threaded
attributes are fundamentally denotational� or monadic ������	� in nature�
The problems associated with composing vocabularies are thus the same as
those with composing arbitrary programming languages�

There are some e
orts to design sound type systems for mixins ���	� but these are
still preliminary� �Name resolution is currently done in the spirit of Bracha ��	
rather than that of Flatt� et al� ���	� The latter will become essential when
programmers try to integrate independently developed vocabularies�� There are
unfortunately few type systems that type mixins in their own right and also sup�
port the traditional functional types that have been used to represent monadic
information� Some of issues that arise from the interplay of types and extensi�
bility are discussed in greater detail by Krishnamurthi� et al� ���	�

We have purposely restricted our attention to Scheme� which has no native
static type discipline� While the lack of a type system has obvious disadvantages�
it has also had its bene�ts� Because there are no candidate type systems that
cleanly capture all the properties of interest� restricting ourselves to any one
type system would have complicated the design of McMicMac� We were instead
interested in �rst studying the programs that generative programmers write� and
can now focus on constructing a type system that supports such programs�



� Implementation Experience

Over the past �ve years� we have implemented several generations of McMicMac�
The current implementation consists of over ������ lines of Scheme� It includes
a �standard system�� which consists of parsing vocabularies for di
erent parts
of Rice�s version ��
	 of the Scheme programming language� including the func�
tional core� side�e
ecting features� modules and signatures� and the class system�
The implementation is e�cient enough for daily use as the core of a widely�used
programming environment� DrScheme ���	� and as a pre�processor by various
tools including a stepper� static debugger ���	 and compiler� We have also ex�
ploited McMicMac�s attributes to build processors for typed languages� notably
for a parenthesized representation of ClassicJava ���	�

Our implementation provides source�object correlation ���	 and transforma�
tion tracking ���	� which is extremely useful for interactive programming envi�
ronments� It eliminates most of the feedback comprehension problems present
in traditional macro and template systems� All the tools in DrScheme use this
information to provide source�level feedback to the user� This also greatly fa�
cilitates linguistic prototyping for features that can be translated� sometimes
quite elaborately� into existing ones� The translation ensures that we can reuse
existing tools such as the static debugger� and the source correlation hides the
complexity of the translation from the user�

� Related Work

The ideas behind generative programming have a long history� Macros appear to
have originally been proposed by McIlroy ���	� and a symposium in ���� ��	 con�
solidated progress on extensible languages� Macros have also had a long history
of use in various versions of Lisp� and are incorporated into Common Lisp ���	�
Scheme ���	 and others�

C�� has recently added support for a limited form of generative program�
ming called templates� These are intimately connected with the type system
of the language� and are thus useful for describing type�based transformations�
They have been especially successful at generating families of related compo�
nents ��	�

The Scheme programming language has o
ered some of the most innovative
macro systems� Kohlbecker and others ������	 introduced both pattern�based
rewriting and hygiene for macros� Dybvig� et al� ��	 describe a macro system
that o
ers some of the �exibility of micros� but without the structure� Dybvig�
et al� ���	 present the �rst source�correlating macro system� Taha and Sheard ��
	
have designed a macro�like system for ML that lets programmers nest metapro�
gramming annotations to arbitrary depth� and ensures that the resulting gener�
ated code is type�correct� We achieve a similar e
ect using the static debugger
MrSpidey ���	 in conjunction with source�correlation�

McMicMac is also related to parser generators such as Yacc ���	� Several re�
searchers have extended these works to adaptable grammars ��	� Some of the



most recent work has been done by Cardelli et al� �
	� which shows how similar
systems can be constructed for non�parenthesized syntaxes� While this system
can be used to restrict and extend syntax� it o
ers no support for organizing elab�
orator speci�cations analogous to McMicMac�s attributes� and does not present
languages as modular layers�

Our extensibility protocol is based on mixins� which are a programming pat�
tern used in Common Lisp ���	� and were �rst formalized by Bracha ��	� The
use of mixins in McMicMac lead to a formalized model of mixins for a Java�
like language ���	� Our protocol is closely related to that of Smaragdakis and
Batory ���	� which is a successor to the model of Batory and O�Malley ��	� The
work most similar toMcMicMac appears to be Batory� et al��s JTS ��	� JTS shares
many common characteristics� including the presentation of languages as layers�
The emphases of the two systems appear to be slightly di
erent� JTS is con�
cerned primarily with the construction of component systems� while McMicMac

concentrates on the programming forms that simplify speci�cations�
Some researchers have proposed using languages like Haskell ���	 and ML ���	

for embedding domain�speci�c languages� employing higher�order functions� the
language�s ability to de�ne new in�x operators� and �in Haskell�s case� laziness
to de�ne new notations ������	� These features are� however� not enough to con�
struct abstractions like automaton ��gure ��� Kamin and Hyatt ���	 describe
the problem of lifting existing operators to deal with domain�speci�c constraints�
this can also be addressed by generative programming� Finally� Kamin and Hy�
att�s language re�ects a common problem when language extensions cannot de�
�ne new binding forms� Even though ML already has lexical environments� they
must create their own methods and conventions for managing these� thereby
inhibiting reuse�

� Conclusions and Future Work

We have described McMicMac� a generative programming system for Scheme�
McMicMac extends traditional macro�based generative programming techniques
in several ways� First� it lets programmers attach attributes to speci�cations�
which provides a way to propagate information during elaboration� and to guide
elaboration itself� Second� it provides a structuring construct called vocabularies�
Vocabularies are analogous to mixins in object�oriented languages� and permit
programmers to de�ne language fragments as components that can be com�
posed� We have used McMicMac to build several tools� including the widely�used
DrScheme programming environment ���	�

There are two main areas for future work� First�McMicMac is concerned with
generative programming in general� and is independent of any notion of com�
ponents� It has been used in the absence of components� within components�
and to generate components� Because linguistic abstractions are di
erent from
traditional� procedural abstractions� the integration of components with gener�
ative programming can lead to unexpected consequences that should be studied
carefully�



Second� the McMicMac programming style is akin to that of Visitors ���	�
Some McMicMac speci�cations could bene�t from more abstract speci�cations
such as adaptive programming ���	� The traditional presentation of adaptive
programming� however� does not integrate smoothly with the typed style of
speci�cation in McMicMac�

Acknowledgements

We thank Robby Findler� Cormac Flanagan and Matthew Flatt for their feed�
back on McMicMac� We also thank the referees for their comments�

References

�� Batory� D�� B� Lofaso and Y� Smaragdakis� JTS� Tools for implementing domain�
speci�c languages� In International Conference on Software Reuse� June �����

�� Batory� D� and S� O�Malley� The design and implementation of hierarchical software
systems with reusable components� ACM Transactions on Software Engineering

and Methodology� ��	��
���
��� October �����

� Bracha� G� The Programming Language Jigsaw� Mixins� Modularity and Multiple

Inheritance� PhD thesis� University of Utah� March �����
	� Cardelli� L�� F� Matthes and M� Abadi� Extensible syntax with lexical scoping�

Research Report ���� Digital SRC� ���	�
�� Christensen� C� and C� J� Shaw� editors� Proceedings of the Extensible Languages

Symposium� Association for Computing Machinery� ��
�� Appeared as SIGPLAN
Notices� 	������
�� August ��
��


� Christiansen� H� A survey of adaptable grammars� ACM SIGPLAN Notices�
�������
��		� November �����

�� Clinger� W� D� Proper tail recursion and space e�ciency� In ACM SIGPLAN

Conference on Programming Language Design and Implementation� pages ��	�����
June �����

�� Czarnecki� K� and U� Eisenecker� Generative Programming� Methods� Techniques�

and Applications� Addison�Wesley� �����
�� Dybvig� R� K�� D� P� Friedman and C� T� Haynes� Expansion�passing style� A

general macro mechanism� Lisp and Symbolic Computation� ������
���� January
�����

��� Dybvig� R� K�� R� Hieb and C� Bruggeman� Syntactic abstraction in Scheme� Lisp
and Symbolic Computation� ��	������
�
� December ���
�

��� Fairbairn� J� Making form follow function� An exercise in functional programming
style� Software�Practice and Experience� ���
��
���
�
� June �����

��� Findler� R� B�� C� Flanagan� M� Flatt� S� Krishnamurthi and M� Felleisen�
DrScheme� A pedagogic programming environment for Scheme� In International

Symposium on Programming Languages� Implementations� Logics� and Programs�
number ���� in Lecture Notes in Computer Science� pages 

��
��� �����

�
� Flanagan� C�� M� Flatt� S� Krishnamurthi� S� Weirich and M� Felleisen� Catch�
ing bugs in the web of program invariants� In ACM SIGPLAN Conference on

Programming Language Design and Implementation� pages �
�
�� May ���
�
�	� Flatt� M� PLT MzScheme� Language manual� Technical Report TR������� Rice

University� �����



��� Flatt� M�� S� Krishnamurthi and M� Felleisen� Classes and mixins� In ACM

SIGPLAN�SIGACT Symposium on Principles of Programming Languages� pages
������
� January �����

�
� Gamma� E�� R� Helm� R� Johnson and J� Vlissides� Design Patterns� Elements of

Reusable Object�Oriented Software� Addison�Wesley Personal Computing Series�
Addison�Wesley� Reading� MA� �����

��� Hudak� P� Modular domain speci�c languages and tools� In International Confer�

ence on Software Reuse� �����
��� Hudak� P�� S� Peyton Jones and P� Wadler� Report on the programming language

Haskell� a non�strict� purely functional language� ACM SIGPLAN Notices� ������
May ����� Version ����

��� Johnson� S� C� YACC � yet another compiler compiler� Computing Science
Technical Report 
�� AT�T Bell Laboratories� Murray Hill� NJ� USA� �����

��� Kamin� S� and D� Hyatt� A special�purpose language for picture�drawing� In
USENIX Conference on Domain�Speci�c Languages� �����

��� Kelsey� R�� W� Clinger and J� Rees� Revised� report on the algorithmic language
Scheme� ACM SIGPLAN Notices� 

���� October �����

��� Kernighan� B� W� and D� M� Ritchie� The C Programming Language� Prentice�Hall�
�����

�
� Kohlbecker� E� E�� D� P� Friedman� M� Felleisen and B� F� Duba� Hygienic macro
expansion� In ACM Symposium on Lisp and Functional Programming� pages ����
�
�� ���
�

�	� Kohlbecker� E� E� and M� Wand� Macros�by�example� Deriving syntactic trans�
formations from their speci�cations� In ACM SIGPLAN�SIGACT Symposium on

Principles of Programming Languages� pages ����	� �����
��� Kohlbecker Jr� E� E� Syntactic Extensions in the Programming Language Lisp�

PhD thesis� Indiana University� August ���
�
�
� Krishnamurthi� S�� Y��D� Erlich and M� Felleisen� Expressing structural properties

as language constructs� In European Symposium on Programming� pages ��������
March �����

��� Krishnamurthi� S�� M� Felleisen and D� P� Friedman� Synthesizing object�oriented
and functional design to promote re�use� In European Conference on Object�

Oriented Programming� pages �����
� July �����
��� Lieberherr� K� J� Adaptive Object�Oriented Programming� PWS Publishing�

Boston� MA� USA� ���
�
��� McIlroy� M� D� Macro instruction extensions of compiler languages� Communica�

tions of the ACM� 
�	����	����� ��
��

�� Milner� R�� M� Tofte and R� Harper� The De�nition of Standard ML� MIT Press�

Cambridge� MA� �����

�� Moggi� E� An abstract view of programming languages� Technical Report ECS�

LFCS������
� Laboratory for Foundations of Computer Science� University of Ed�
inburgh� Edinburgh� Scotland� �����


�� Smaragdakis� Y� and D� Batory� Implementing layered designs and mixin layers� In
European Conference on Object�Oriented Programming� pages �������� July �����



� Steele� G� L�� Jr�� editor� Common Lisp� the Language� Digital Press� Bedford�
MA� second edition� �����


	� Taha� W� and T� Sheard� Multi�stage programming with explicit annotations� In
ACM SIGPLAN Symposium on Partial Evaluation and Semantics�Based Program

Manipulation� pages ��
����� �����

�� Wadler� P� The essence of functional programming� In ACM SIGPLAN�SIGACT

Symposium on Principles of Programming Languages� pages ���	� January �����


