From Macros to Reusable Generative
Programming*

Shriram Krishnamurthi!, Matthias Felleisen', and Bruce F. Duba?

! Department of Computer Science
Rice University
Houston, TX 77005-1892, USA
2 Department of Computer Science
Seattle University
Seattle, WA 98122-4460, USA

Abstract. Generative programming is widely used both to develop new
programming languages and to extend existing ones with domain-specific
sub-languages. This paper describes McMicMac, a framework for gener-
ative programming. McMicMac uses tree-transforming macros as lan-
guage specifications, and enhances them with inherited and synthesized
attributes. The enhanced transformers can describe general compila-
tion tasks. Families of these specifications are grouped into mixin-like
collections called vocabularies. Programmers can define new languages
by composing these vocabularies. We have implemented McMicMac for
Scheme and used it to build several systems, including the DrScheme
programming environment. The principles of McMicMac carry over to
other languages and environments.

1 Introduction

Generative programming is an old and good idea—write programs to write your
programs for you. This idea has been applied widely, from compilation to creating
domain-specific languages to the mass-production of components. It is gaining
increasing prominence due to its potential economic impact, because it can both
reduce manual labor and increase the efficiency and correctness of programs.
In this paper, we describe a general framework for generative programming
in Scheme [21]. Concretely, we describe McMicMac, a framework developed at
Rice University. McMicMac supports the production of extensible language com-
ponents. A programmer can generate new languages by composing language
components. Because the components are parameterized over the base language,
McMicMac programmers can reuse the same language-defining components to
build many different languages. The system thus greatly simplifies the design and
implementation of domain-specific languages as extensions of base languages.
Our system plays a crucial role in the construction of a large programming
environment, DrScheme [12]. Conversely, the process of building DrScheme has

* This work is partially supported by NSF grants CCR-9619756, CDA-9713032, and
CCR-9708957, and a Texas ATP grant.

helped us debug and refine the design of our system. McMicMac has also been
used to build tools for languages other than Scheme. Starting with a type-checker
and compiler for a parenthetical version of Java, it has been used to create lan-
guage extensions representing design patterns [16] and other specifications [26].
The rest of this paper i1s organized as follows. Section 2 provides an ex-
tended example that illustrates some of the kinds of abstractions that genera-
tive programming makes possible. Section 3 describes the structure of McMicMac
through a series of examples, and section 4 refines this discussion. Section 5 sum-
marizes the deployment of McMicMac. Section 6 discusses related efforts, and
section 7 offers concluding remarks and suggests directions for future work.

2 An Illustrative Example

Suppose a programmer wanted to distribute a library that creates and executes
finite-state automata. The library of types and procedures (or classes with meth-
ods) should hide the actual representation used for the automata, because there
are at least two different automata representations: data structures and exe-
cutable values. Data structures are useful for manipulating automata as data,
e.g., for minimizing automata. They can also be run via an interpreter, though
this can be inefficient. If the automata are being created solely for execution,
then 1t 1s typically much more efficient to translate them directly into code, such
as functions or labeled statements.

Hence, the library should offer programmers a way to specify in-line automata
in a representation-independent, yet intuitive, manner. This would allow clients
to write expressions such as that shown in figure 1. The example uses a new
construct, automaton, to define an automaton that, starting in 7-state, checks
whether a stream of 0s and 1s begins with 0 and then alternates strictly between
the two values.

The specification in figure 1 might translate into the Scheme code shown in
figure 2. It represents automata as procedures that consume an input stream.
The states are nested, mutually-recursive procedures. Each procedure represents
one state’s transition relation. All unexpected inputs generate an exception,
unexpected-input-exn, so the empty transition relation represents an error state.
If the automaton attempts to inspect past the end of a finite input stream,
a different exception is raised, which a client can handle to observe successful
completion. Because programming languages like Scheme optimize calls in tail
position to jumps or “goto”s, the state transitions in the example are quick and
accumulate no evaluation context (colloquially, “stack space”) [7].

Unfortunately, the library programmer cannot define automaton, because it
is not a procedure. The sub-terms of automaton are not expressions in Scheme,
as procedure arguments must be; rather they are terms in a distinct, domain-
specific language. Furthermore, automaton is a binding construct (as clarified
by figure 2), which cannot be defined procedurally. Therefore, automaton can-
not be defined in most traditional programming languages.

(automaton I1-state
(0-state ((0 — error-state)
(1 — 1-state))
(1-state ((0 — O-state)
(1 — error-state)))
(error-state)))

Fig. 1. An Automaton Description

(lambda (input-stream)
(letrec
((0-state (lambda ()
(case (nest-token input-stream)
((0) (error-state))
((1) (1-state))
(((else E])['aise (make-object unexpected-input-ezn))))))
1-state (lambda
(case (nest-token input-stream)
((0) (0-state))
((1) (error-state))
(else (raise (make-object unezpected-input-exn))))))
(error-state (lambda ()
(case (nest-token input-stream)
(else (raise (make-object unezpected-input-exn)))))))
(1-state)))

Fig. 2. Compiled Automaton Representation

The automaton library might contain other operations of this form. For in-
stance, the library may provide a means for interleaving the execution of two
automata. This would enable the client programmer to write

(run/alternating (M1 stream-1) (M2 stream-2))

which runs automaton M1 on stream stream-1 and M2 on stream-2 in strict
alternation. In this case, even though both sub-terms of run/alternating are
legal Scheme expressions, Scheme’s call-by-value evaluation order would first run
M1 on stream-1 until termination—which may never occur—before it begins to
run M2. Thus run/alternating also cannot be a procedure in a call-by-value
language.

Both constructs illustrate useful and important abstractions that help pro-
grammers write software effectively. These abstractions are not procedural, how-
ever. Instead they define notations that are not part of the language’s syntax.
In other cases, they require behavior that is different from what the language’s
semantics specifies. More generally, automaton and run/alternating are both
linguistic abstractions, i.e., they create a little language within a larger language

(define-macro (automaton —)
(automaton start-state
(state-name (input — new-state) ...) ...)
— (syntax
(lambda (input-stream)
(letrec ((state-name
(lambda ()
(case (remove-token input-stream)
((input) (new-state)) . ..
(else (raise (make-object unezpected-input-ezn)))))) ...)
(start-state)))))

Fig. 3. Automaton Macro

to accomplish some specialized task. Generative programming frameworks must
support such language construction.

3 The McMicMac Framework

McMicMac is a framework for creating languages such as that for automata.
We explain McMicMac through a series of examples reflecting increasingly com-
plex protocols. The examples are intentionally simplistic in flavor, but they cor-
respond to some of the non-trivial uses we have encountered while building
DrScheme.

3.1 Macros

Examples like automaton and run/alternating are expressible as McMic-
Mac macros. The macros of McMicMac are descendants of those in Lisp and
Scheme [21,33]. They transform tree-shaped data, rather than manipulating
flat data like the string-processing macros in the C pre-processor [22]. In short,
macros implement a simple form of extensible parsing.

A parser 1s conceptually a table of rules that map syntactic shapes to code.
When the input matches a shape, called a trigger, the parser looks up the trig-
ger’s transformation rule, called the elaborator, and uses it to produce abstract
syntax. The parsing table is traditionally fixed, thus limiting the input language
a parser can recognize. Macro definitions add rules to a parser’s table. Unlike
traditional parse rules, though, macro rules do not directly generate abstract
syntax. Instead, they generate terms in the source language. The parser then
re-analyzes the generated term and continues this process until it obtains a
canonical form.

In McMicMac, the programmer defines triggers using a pattern-matching no-
tation originally due to Kohlbecker and Wand [24]. When an input term matches

(define-macro (automaton —)
(automaton start-state
(state-name (input — new-state) ...) ...)
— (syntax
(make-automaton-rep start-state
(list (make-state-rep state-name
(make-transition-rep input new-state) ...)

~)))

Fig. 4. Alternate Automaton Macro

a trigger, the matcher generates a pattern environment that maps pattern vari-
ables to the corresponding source terms in the input. It then invokes the elabo-
rator to generate a source term. This term can be parameterized over sub-terms
in the input. The elaborator extracts these input sub-terms from the pattern
environment.

Figure 3 presents a concrete example: the macro for the automaton con-
struct of section 2. The keyword define-macro is followed by a set of literals
(here, automaton and —) that may appear in the input. The literals are fol-
lowed by the trigger. All symbols in the trigger that do not appear in the literal
set are pattern variables. A pattern followed by ellipses (...) matches zero or
more instances of the pattern. It binds each pattern variable to the sequence
of sub-terms that correspond to the pattern variable’s position in the matching
instances. Ellipses can be nested arbitrarily deep.

The macro definition specifies an elaborator following the = keyword. The
elaborator uses syntax to construct a new source term. The syntax form con-
sumes a template and converts the template into a term in the source language
by replacing all pattern variables with their bindings from the (implicit) pattern
environment. Thus, in the output term, start-state, state-name, input and new-
state are replaced with the corresponding source text in the input expression,
while all other names are inserted literally.!

Macros of this sort have traditionally been put to four main uses:

— to create new binding constructs. The procedural translation of automaton
turns the state-names into binding and bound occurrences of variables.

— to mask the creation of a data-structure. Figure 4 shows an alternate imple-
mentation of automaton that represents automata as data structures.

— to represent structural program properties, such as uses of design patterns.

— to affect the order of evaluation. For instance, run/alternating requires
delayed evaluation in a call-by-value language. The macro can wrap the
expressions in procedures that are invoked to control stepping.

! We have elided from our specification many McMicMac features that are useful in
practice; e.g., the macro writer can specify guards on the structure of sub-terms.

(define-micro (if) ;; for if’s
(if test then else) = (lambda ()
(make-if-IR
((dispatch (syntax test)))
((dispatch (syntax then)))
((dispatch (syntax else))))))

Fig.5. A Micro Specification

As the automaton example illustrates, a single macro can serve several of
these purposes simultaneously. This is especially likely to happen in the case of
data languages, whose constructs are supposed to mask their representation of
the data from the client programmer, since the same source can be used to gener-
ate either representation. Figure 4 presents an alternate compiled representation
for automata: instead of creating procedures, it generates a data structure.

Different applications can choose alternate expansions (using the mechanism
described in section 3.3) without any intervention from the user who specifies
the automata. Linguistic extensions are especially important in this context,
because they are often the only way to mask these concrete representations. In
most languages, for instance, it is impossible to define a construct that elaborates
into a procedure. This makes it extremely difficult, if not impossible, to write
the automaton abstraction through any other means.

3.2 Beyond Conventional Macros

Though conventional macros can describe many interesting linguistic abstrac-
tions, they are not powerful enough for many other generative-programming
tasks. McMicMac therefore generalizes macros in several ways. These general-
ized macros propagate information about the program to guide elaboration.

From Expansion to Parsing Parsers have the type scheme

source — IR

where source 1s the type of source expressions and IR that of the intermediate
representation. In many cases, McMicMac programmers writing language exten-
sions need the power to generate terms of type IR directly. McMicMac thus allows
programmers to create such elaborators, called micros.

In principle, micros have the type

source — IR |
in contrast to macros, which denote source-to-source rewriting functions:

source — source .

(define-micro (if) ;; for if’s
(if test then else) = (lambda (env)
(make-if-IR
((dispatch (syntax test)) env)
((dispatch (syntax then)) env)
((dispatch (syntax else)) env))))

(define-micro (lambda) ;; for lambda’s
(lambda vars body) = (lambda (env)
(make-lambda-1R vars
((dispatch (syntax body)) (append vars env)))))

Fig.6. Micros with Attributes

In practice, the parsing process described in section 3.1 has two parts: the elabo-
rators that create IR and the dispatcher that does pattern matching and invokes
an elaborator. The dispatcher, called dispatch, has type

source — Micro

l.e., given a source term, 1t returns the corresponding micro. Micros are elabo-
rators represented as procedures of no arguments that create IR, whose type we
denote as

() —IRr.

(The reason for this seemingly needless level of indirection will become clear
in the following sections.) The output of micros, unlike that of macros, is not
automatically expanded again. If it were automatically expanded, this could
result in a type conflict. Therefore, a micro must invoke dispatch to reduce
source terms to IR.

Figure 5 shows the micro definition for a simple conditional construct. Like
define-macro, define-micro is followed by a list of literals and a trigger pat-
tern. To the right of the = keyword is the specification of the micro’s elaborator,
a procedure of no arguments. The elaborator uses make-if-IR to construct the IR
representation of if expressions. The invocation

((dispatch (syntax test)))

extracts the source term corresponding to test from the pattern environment,
uses dispatch to obtain the corresponding micro, which i1s a procedure of no
arguments, and invokes the micro to generate the IR value for test.

Attributes Suppose a programmer wants a simple value inspection facility.
Specifically, the expression (dump) should print the names and values of all
the variables bound in the lexical scope. Provided we have access to the names
of all the variables in that lexical context, the transformation associated with

(dump) is quite straightforward. McMicMac allows programmers to make this
contextual information explicit by associating attributes with the dispatcher.
Thus a programmer can declare the type of a micro to be

env —r IR

where enwv is the type of the lexical environment. The micro can inspect this
environment to determine the names of the bound variables.
This type generalizes to
attr--- — IR

to indicate that there can be several attributes. Every micro must accept all the
attributes, and must propagate them to micro dispatches on sub-terms. Figure 6
presents the definition for lambda (which affects the set of lexical variables
listed in env) and a revised definition of if (which doesn’t).

To use McMicMac, an application must invoke dispatch on the source pro-
gram while supplying appropriate values for all the attributes. The result of
invoking dispatch is an IR value, which the program can use for subsequent
processing. Some applications use the same type for the source and IR, i.e., they
only exploit attributes, not the ability to transform representations.

Threaded Attributes One possible TR to choose may be the set of values
in the language. In that case, the “parser” may convert programs to their fi-
nal answers; 1.e., it may really be an interpreter. We expect McMicMac to deal
with such transformations too. They are useful for prototyping small embedded
domain-specific languages, or for optimizing code-generators. Attributes can rep-
resent various aspects of the language’s evaluation. In figure 6, for example, the
environment maintains only a list of names bound in each context, but in an
interpreter, the environment could map names to locations or values.

Non-trivial languages, though, have two kinds of attributes. Some attributes,
e.g., environments, are functional, meaning they do not represent computational
effects. Other attributes, however, are threaded. They are affected in the pro-
cessing of sub-terms, and their order of propagation from the processing of one
sub-term to another matters. A canonical example of such an attribute is the
store. If the same store were passed to all sub-terms, then side-effects in the
evaluation of one would not be visible in the other. Micros therefore return the
updated values of threaded attributes along with the IR. Thus the type of a
micro in the interpreter implementation can be

env X store — IR X store
or, in general, micros can have a type with the shape
funattr - - - x threadattr - - - — IR X threadattr- - - .

Once again, it is the micro programmer’s responsibility to invoke McMicMac,
provide arguments for the attributes, accept the final IR value and the values of
the threaded attributes, and process them.

(define-micro (set!) ;; for set!’s
(set! var val) = (lambda (env store)
(let/values ((val-value val-store)
((dispatch val) env store))
(values ;; the value:
(void-value)
;; the new store:
(extend store var val-value)))))

(define-micro () ;; for function applications—no literals
(fun arg) = (lambda (env store)
(let/values ((fun-value fun-store)
((dispatch fun) env store))
(let/values ((arg-value arg-store)
((dispatch arg) env fun-store))
;; functions must return value/store pairs
(fun-value arg-value arg-store)))))

Fig. 7. Threaded Attributes

We illustrate this new form of micro with two definitions in figure 7 that im-
plement a stateful language in a purely functional manner using the store-passing
style technique from denotational semantics. (set! is Scheme’s assignment state-
ment.) The code uses Scheme’s multiple-value facility to return the actual value
and the potentially modified store.

3.3 Modular Specifications

We have thusfar discussed the kinds of transformations that programmers can
express. In this section, we discuss how programmers can group these transfor-
mations into reusable units.

Vocabularies Most programming languages consist of several sub-languages:
those of expressions, statements, types, argument lists, data, and so on. The pro-
grammer must therefore specify which sub-language a micro extends. McMicMac
provides vocabularies for this purpose. A vocabulary is a grouping of related mi-
cros. All micros in a vocabulary must satisfy the same type signature. Figure 8
illustrates the revised declarations from earlier examples. Each micro declares
membership in a vocabulary just before specifying its literal set.

The sum of declarations in a vocabulary specifies the syntax and the elab-
oration rules of a language. Put differently, a vocabulary describes the syntax
table that is used by dispatch, and must therefore be a parameter to dispatch.
We update the type of dispatch from section 3.2 to reflect this:

source X vocab — micro .

(define scheme-exprs (define automata
(make-vocabulary)) (make-vocabulary))
(define-micro scheme-ezprs (set!) (define-micro automata
(set! var val) = (automaton —)
(lambda (this-vocab env store) (automaton - -.) =
)] (lambda (this-vocab) - - -))
(define-micro scheme-exprs () (define-micro automata
(fun arg) = (run/alternating)
(lambda (this-vocab env store) (run/alternating - -) =
) (lambda (this-vocab) - - -))

Fig. 8. Vocabulary Specifications

(define compiler (make-vocabulary)) (define analysis
(define-micro compiler (let) (make-vocabulary))
(let ((var val) ...) body) = (define-micro analysis (let) ---)
<o) (define-micro analysis (letrec) ---)
(define-micro compiler (letrec)
(letrec ((var val) ...) body) = (define analysis-language
e (extend-vocabulary scheme-exprs

analysis))
(define compiler-language
(extend-vocabulary scheme-exprs
compiler))

Fig. 9. Tool-Dependent Expansions

The change in the type of dispatch forces us to update the programming
pattern for micros. Each recursive call to dispatch must pass along a vocabulary,
which the invoked micro must accept.

As we describe below, however, a micro may not always know which vocabu-
lary it is in. Micros therefore take the vocabulary from which they were selected
as an argument—in figure 8, each micro accepts a vocabulary, this-vocab, as its
first argument—which they use to process sub-terms in the same language; alter-
natively, they can choose a different vocabulary for sub-terms in other languages.
For instance, a function declaration may have some sub-terms in the expression
language and others in the language of types. Micros therefore have the type
scheme

vocab x funatir .- x threadattr--- — IR X threadattr- - .

Composing Vocabularies McMicMac actually allows programmers to build
vocabularies by extending and composing them. Thus programmers can divide

a language into sets of related features, and compose these features to build a
processor for the complete language. A programmer can also create an extension
vocabulary that overrides some definitions in a base vocabulary with tool-specific
constraints. This explains why a micro may not know which vocabulary it is in;
after all, the non-overridden micros of the base are also in the new, composite
vocabulary. This scenario is analogous to instance variables in an object-oriented
language that reside both in a class and in its extensions.
With vocabularies, we can generate programs in various interesting ways:

— While traditional transformation techniques are limited in where they can
be applied—macros and templates are usually restricted to the expression or
statement languages—the McMicMac programmer can write transformations
for any sub-language. For instance, we have used it to define abbreviations
over types and to extend the language of procedural parameters.

— In realistic programming environments, different program-processing tools
often have differing views of the underlying language. For example, a com-
piler might translate the binding construct let (which creates non-recursive
local bindings) into a local function application while treating letrec (which
introduces mutually-referential local bindings) as a primitive. In contrast, a
polymorphic type inference engine might treat let as a core form, while it
will transform letrec into a more primitive term. These distinctions are easy
to express through vocabularies, as shown in figure 9. The function extend-
vocabulary extends the language of its first argument with the triggers and
elaborators of the second, overriding clashes in favor of the second.

— Some languages allow programmers to write lexically-scoped macros [21].
This is easy to define in McMicMac. The micro for a lexical macro construct
creates a temporary vocabulary, populates it with the local macro, and ex-
tends the current language with the new macro. Because these are local, not
global, changes, the language extension disappears when the body has been
parsed, so terms outside this lexical context are unaffected.

— A programmer can use vocabularies to organize several traversals over the

program. Typically, earlier passes synthesize information for later passes. For
example, a programmer may want to add first-class closures to an object-
oriented language like Java 1.0. The translator that implements this trans-
formation would need (1) to determine the free variables of the closure’s
body; (2) to create a class to represent the closure and move its definition to
the top-level, as required in many languages; and, (3) to rewrite the creation
and uses of the closure.
A series of vocabularies solves this problem elegantly. The first maintains the
lexical environment while traversing code (figure 6); when it encounters an
instance of the closure construct, it traverses the body with a vocabulary that
computes the set of free variables. This list of free variables is the IR of this
vocabulary. It can then generate the class definition. A threaded attribute
accumulates top-level definitions created in internal contexts and propagates
them outward. Finally, another vocabulary rewrites the creation and use
expressions. Determining uses can be done either from type information or
through a dynamic check, depending on the target language.

— If a larger language is constructed by composing smaller language layers,
programmers can define restricted versions of the larger language by leaving
out some layers. We have found this ability especially useful in the DrScheme
programming environment [12], which presents the Scheme programming
language as a sequence of increasingly complex sub-languages. This hides
the complexity of the complete language from the student; in particular, it
flags terms that are errors in the linguistic subset but that might be legal—
though often not what the student expected—in the full language. This
provides much better feedback than an environment for just the complete
language would provide, and considerably improves the learning experience.

4 Extensibility and Validation

To implement a system like McMicMac in other languages, programmers must
resolve the tension between extensibility and validation:

Extensibility There are two main sources of extensibility in McMicMac, both
related to vocabularies:

— Vocabularies resemble classes with inheritance; since they have variable
parent vocabularies, they are essentially mixins, which enhance reuse by
allowing the same class-extensions to be applied to multiple classes.

— The pattern of passing the vocabulary as an argument accomplishes the
effect of the this keyword found in many object-oriented languages. It
ensures that micros can be reused without having to know about all
future extensions. Using this style, programmers can also experiment
with interesting language extensions, such as the lexical macros described
in section 3.3.

Validation Information is communicated through the attributes; the threaded
attributes are fundamentally denotational, or monadic [31,35], in nature.
The problems associated with composing vocabularies are thus the same as
those with composing arbitrary programming languages.

There are some efforts to design sound type systems for mixins [15], but these are
still preliminary. (Name resolution is currently done in the spirit of Bracha [3]
rather than that of Flatt, et al. [15]. The latter will become essential when
programmers try to integrate independently developed vocabularies.) There are
unfortunately few type systems that type mixins in their own right and also sup-
port the traditional functional types that have been used to represent monadic
information. Some of issues that arise from the interplay of types and extensi-
bility are discussed in greater detail by Krishnamurthi, et al. [27].

We have purposely restricted our attention to Scheme, which has no native
static type discipline. While the lack of a type system has obvious disadvantages,
it has also had its benefits. Because there are no candidate type systems that
cleanly capture all the properties of interest, restricting ourselves to any one
type system would have complicated the design of McMicMac. We were instead
interested in first studying the programs that generative programmers write, and
can now focus on constructing a type system that supports such programs.

5 Implementation Experience

Over the past five years, we have implemented several generations of McMicMac.
The current implementation consists of over 10,000 lines of Scheme. It includes
a “standard system”, which consists of parsing vocabularies for different parts
of Rice’s version [14] of the Scheme programming language, including the func-
tional core, side-effecting features, modules and signatures, and the class system.
The implementation 1s efficient enough for daily use as the core of a widely-used
programming environment, DrScheme [12], and as a pre-processor by various
tools including a stepper, static debugger [13] and compiler. We have also ex-
ploited McMicMac’s attributes to build processors for typed languages, notably
for a parenthesized representation of CrassicJava [15].

Our implementation provides source-object correlation [10] and transforma-
tion tracking [26], which is extremely useful for interactive programming envi-
ronments. It eliminates most of the feedback comprehension problems present
in traditional macro and template systems. All the tools in DrScheme use this
information to provide source-level feedback to the user. This also greatly fa-
cilitates linguistic prototyping for features that can be translated, sometimes
quite elaborately, into existing ones. The translation ensures that we can reuse
existing tools such as the static debugger, and the source correlation hides the
complexity of the translation from the user.

6 Related Work

The ideas behind generative programming have a long history. Macros appear to
have originally been proposed by Mcllroy [29], and a symposium in 1969 [5] con-
solidated progress on extensible languages. Macros have also had a long history
of use in various versions of Lisp, and are incorporated into Common Lisp [33],
Scheme [21] and others.

C++ has recently added support for a limited form of generative program-
ming called templates. These are intimately connected with the type system
of the language, and are thus useful for describing type-based transformations.
They have been especially successful at generating families of related compo-
nents [8].

The Scheme programming language has offered some of the most innovative
macro systems. Kohlbecker and others [23-25] introduced both pattern-based
rewriting and hygiene for macros. Dybvig, et al. [9] describe a macro system
that offers some of the flexibility of micros, but without the structure. Dybvig,
et al. [10] present the first source-correlating macro system. Taha and Sheard [34]
have designed a macro-like system for ML that lets programmers nest metapro-
gramming annotations to arbitrary depth, and ensures that the resulting gener-
ated code is type-correct. We achieve a similar effect using the static debugger
MrSpidey [13] in conjunction with source-correlation.

McMicMac is also related to parser generators such as Yacc [19]. Several re-
searchers have extended these works to adaptable grammars [6]. Some of the

most recent work has been done by Cardelli et al. [4], which shows how similar
systems can be constructed for non-parenthesized syntaxes. While this system
can be used to restrict and extend syntax, it offers no support for organizing elab-
orator specifications analogous to McMicMac’s attributes, and does not present
languages as modular layers.

Our extensibility protocol is based on mixins, which are a programming pat-
tern used in Common Lisp [33], and were first formalized by Bracha [3]. The
use of mixins in McMicMac lead to a formalized model of mixins for a Java-
like language [15]. Our protocol is closely related to that of Smaragdakis and
Batory [32], which is a successor to the model of Batory and O’Malley [2]. The
work most similar to McMicMac appears to be Batory, et al.’s JTS [1]. JTS shares
many common characteristics, including the presentation of languages as layers.
The emphases of the two systems appear to be slightly different. JTS is con-
cerned primarily with the construction of component systems, while McMicMac
concentrates on the programming forms that simplify specifications.

Some researchers have proposed using languages like Haskell [18] and ML [30]
for embedding domain-specific languages, employing higher-order functions, the
language’s ability to define new infix operators, and (in Haskell’s case) laziness
to define new notations [11,17]. These features are, however, not enough to con-
struct abstractions like automaton (figure 1). Kamin and Hyatt [20] describe
the problem of lifting existing operators to deal with domain-specific constraints;
this can also be addressed by generative programming. Finally, Kamin and Hy-
att’s language reflects a common problem when language extensions cannot de-
fine new binding forms. Even though ML already has lexical environments, they
must create their own methods and conventions for managing these, thereby
inhibiting reuse.

7 Conclusions and Future Work

We have described McMicMac, a generative programming system for Scheme.
McMicMac extends traditional macro-based generative programming techniques
in several ways. First, it lets programmers attach attributes to specifications,
which provides a way to propagate information during elaboration, and to guide
elaboration itself. Second, i1t provides a structuring construct called vocabularies.
Vocabularies are analogous to mixins in object-oriented languages, and permit
programmers to define language fragments as components that can be com-
posed. We have used McMicMac to build several tools, including the widely-used
DrScheme programming environment [12].

There are two main areas for future work. First, McMicMac is concerned with
generative programming in general, and is independent of any notion of com-
ponents. It has been used in the absence of components, within components,
and to generate components. Because linguistic abstractions are different from
traditional, procedural abstractions, the integration of components with gener-
ative programming can lead to unexpected consequences that should be studied
carefully.

Second, the McMicMac programming style is akin to that of Visitors [16].

Some McMicMac specifications could benefit from more abstract specifications
such as adaptive programming [28]. The traditional presentation of adaptive
programming, however, does not integrate smoothly with the typed style of
specification in McMicMac.

Acknowledgements

We thank Robby Findler, Cormac Flanagan and Matthew Flatt for their feed-
back on McMicMac. We also thank the referees for their comments.

References

10.

11.

12.

13.

14.

Batory, D., B. Lofaso and Y. Smaragdakis. JTS: Tools for implementing domain-
specific languages. In International Conference on Software Reuse, June 1998.

. Batory, D. and S. O’Malley. The design and implementation of hierarchical software

systems with reusable components. ACM Transactions on Software Fngineering
and Methodology, 1(4):355-398, October 1992.

Bracha, G. The Programming Language Jigsaw: Mizins, Modularity and Multiple
Inheritance. PhD thesis, University of Utah, March 1992.

. Cardelli, L., F. Matthes and M. Abadi. Extensible syntax with lexical scoping.

Research Report 121, Digital SRC, 1994.

Christensen, C. and C. J. Shaw, editors. Proceedings of the Extensible Languages
Symposium. Association for Computing Machinery, 1969. Appeared as SIGPLAN
Notices, 4(8):1-62, August 1969.

. Christiansen, H. A survey of adaptable grammars. ACM SIGPLAN Notices,

25(11):35-44, November 1990.

Clinger, W. D. Proper tail recursion and space efficiency. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 174-185,
June 1998.

Czarnecki, K. and U. Eisenecker. Generative Programming: Methods, Techniques,
and Applications. Addison-Wesley, 1999.

Dybvig, R. K., D. P. Friedman and C. T. Haynes. Expansion-passing style: A
general macro mechanism. Lisp and Symbolic Computation, 1(1):53-75, January
1988.

Dybvig, R. K., R. Hieb and C. Bruggeman. Syntactic abstraction in Scheme. Lisp
and Symbolic Computation, 5(4):295-326, December 1993.

Fairbairn, J. Making form follow function: An exercise in functional programming
style. Software—Practice and Experience, 17(6):379-386, June 1987.

Findler, R. B., C. Flanagan, M. Flatt, S. Krishnamurthi and M. Felleisen.
DrScheme: A pedagogic programming environment for Scheme. In International
Symposium on Programming Languages: Implementations, Logics, and Programs,
number 1292 in Lecture Notes in Computer Science, pages 369-388, 1997.
Flanagan, C., M. Flatt, S. Krishnamurthi, S. Weirich and M. Felleisen. Catch-
ing bugs in the web of program invariants. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 23-32, May 1996.
Flatt, M. PLT MzScheme: Language manual. Technical Report TR97-280, Rice
University, 1997.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Flatt, M., S. Krishnamurthi and M. Felleisen. Classes and mixins. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
171-183, January 1998.

Gamma, E., R. Helm, R. Johnson and J. Vlissides. Design Patterns: Flements of
Reusable Object-Oriented Software. Addison-Wesley Personal Computing Series.
Addison-Wesley, Reading, MA, 1995.

Hudak, P. Modular domain specific languages and tools. In International Confer-
ence on Software Reuse, 1998.

Hudak, P., S. Peyton Jones and P. Wadler. Report on the programming language
Haskell: a non-strict, purely functional language. ACM SIGPLAN Notices, 27(5),
May 1992. Version 1.2.

Johnson, S. C. YACC — yet another compiler compiler. Computing Science
Technical Report 32, AT&T Bell Laboratories, Murray Hill, NJ, USA, 1975.
Kamin, S. and D. Hyatt. A special-purpose language for picture-drawing. In
USENIX Conference on Domain-Specific Languages, 1997.

Kelsey, R., W. Clinger and J. Rees. Revised® report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(9), October 1998.

Kernighan, B. W. and D. M. Ritchie. The C Programming Language. Prentice-Hall,
1988.

Kohlbecker, E. E.; D. P. Friedman, M. Felleisen and B. F. Duba. Hygienic macro
expansion. In ACM Symposium on Lisp and Functional Programming, pages 151—
161, 1986.

Kohlbecker, E. E. and M. Wand. Macros-by-example: Deriving syntactic trans-
formations from their specifications. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 77-84, 1987.

Kohlbecker Jr, E. E. Syntactic Extensions in the Programming Language Lisp.
PhD thesis, Indiana University, August 1986.

Krishnamurthi, S., Y.-D. Erlich and M. Felleisen. Expressing structural properties
as language constructs. In Furopean Symposium on Programming, pages 258-272,
March 1999.

Krishnamurthi, S., M. Felleisen and D. P. Friedman. Synthesizing object-oriented
and functional design to promote re-use. In Furopean Conference on Object-
Oriented Programming, pages 91-113, July 1998.

Lieberherr, K. J. Adaptive Object-Oriented Programming. PWS Publishing,
Boston, MA, USA, 1996.

Mcllroy, M. D. Macro instruction extensions of compiler languages. Communica-
tions of the ACM, 3(4):214-220, 1960.

Milner, R., M. Tofte and R. Harper. The Definition of Standard ML. MIT Press,
Cambridge, MA, 1990.

Moggi, E. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, Laboratory for Foundations of Computer Science, University of Ed-
inburgh, Edinburgh, Scotland, 1990.

Smaragdakis, Y. and D. Batory. Implementing layered designs and mixin layers. In
Furopean Conference on Object-Oriented Programming, pages 550-570, July 1998.
Steele, G. L., Jr., editor. Common Lisp: the Language. Digital Press, Bedford,
MA, second edition, 1990.

Taha, W. and T. Sheard. Multi-stage programming with explicit annotations. In
ACM SIGPLAN Symposium on Partial Evaluation and Semantics- Based Program
Manipulation, pages 203-217, 1997.

Wadler, P. The essence of functional programming. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 1-14, January 1992.

