
Synthesizing Object�Oriented and

Functional Design to

Promote Re�Use�

Shriram Krishnamurthi Matthias Felleisen

Daniel P� Friedmany

Department of Computer Science

Rice University

April �� ����

A preliminary version of this paper appeared in the
European Conference on Object�Oriented Programming� ����

Abstract

Many problems require recursively speci�ed types of data and a collection of tools that operate on
those data� Over time� these problems evolve so that the programmer must extend the toolkit or
extend the types and adjust the existing tools accordingly� Ideally� this should be done without
modifying existing code� Unfortunately� the prevailing program design strategies do not support
both forms of extensibility� functional programming accommodates the addition of tools� while
object�oriented programming supports either adding new tools or extending the data set� but
not both� In this paper� we present a composite design pattern that synthesizes the best of both
approaches and in the process resolves the tension between the two design strategies� We also
show how this protocol suggests a new set of linguistic facilities for languages that support class
systems�

� Evolutionary Software Development

Programming practice frequently confronts programmers with the following design dilemma� A
recursively de�ned set of data must be processed by several di�erent tools� In anticipation of future
extensions� the data speci�cation and the tools should therefore be implemented such that it is easy
to

�� add a new variant of data and adjust the existing tools accordingly� and

�� extend the collection of tools�

Ideally� these extensions should not require any changes to existing code� For one� source modi�cation
is cumbersome and error�prone� Second� the source may not be available for modi�cation because
the tools are distributed in the form of object code� Finally� it may be necessary to evolve the base

�This research was partially supported by NSF grants CCR��������� CCR��������� CCR����	��� and CDA�
������
� and a Texas ATP grant�

yPermanent address� Computer Science Department� Indiana University�

�



program in several di�erent directions� in which case code modi�cations are prohibitively expensive
because the required duplication would result in duplicated maintenance costs�
This dilemma manifests itself in many di�erent application areas� A particularly important

example arises in the area of programming languages� Language grammars are typically speci�ed
via BNFs� which denote recursively de�ned data sets� Language�processing tools recursively traverse
sentences formed from the grammar� In this scenario� a new form of data means an additional clause
in the BNF	 new tools must be able to traverse all possible elements of the 
extended� grammar�
Unfortunately� prevailing design strategies do not accommodate the required evolution�

� The 
functional� approach� which is often realized with conventional procedural languages�
implements tools as procedures on recursive types� While this strategy easily accommodates
the extension of the set of tools� it requires signi�cant source modi�cations when the data set
needs to be extended�

� The 
standard� 
object�oriented� approach de�nes a recursive set of data with a collection
of classes� one per variant 
BNF clause�� and places one method per tool in each class� In
the parlance of object�oriented design patterns ����� this approach is known as the Interpreter
pattern� The problem it poses is dual to the problem of the functional approach� variants are
easy to add� while tool additions require code modi�cations�

� If the collection of tools is large� the designer may also use the Visitor pattern� a variant of the
Interpreter pattern� which collects the code for a tool in a single class� Roughly speaking� the
Visitor pattern emulates the functional approach in an object�oriented setting� As a result� it
su�ers from the same problem as the functional approach�

In short� the two design styles su�er from a serious problem� Each style accommodates one form of
extension easily and renders the other nearly impossible��

This paper presents the Extensible Visitor pattern� a new composite design pattern ����� which
provides an elegant solution to the above dilemma� The composite pattern is a combination of
the Visitor and Factory Method patterns� Its implementation in any class�based object�oriented
programming language is straightforward� In addition� the paper introduces a linguistic abstraction
that facilitates the implementation of the Visitor and Extensible Visitor patterns� The abstraction
syntactically synthesizes the best of the functional and the object�oriented design approaches� Using
the abstraction� a programmer only speci�es the necessary pieces of the pattern	 a translator assem�
bles the pattern implementation from these pieces� We consider this approach a promising avenue
for future research on pattern implementations�
Section � introduces a simple example of the design dilemma and brie�y discusses the functional

approach and the standard object�oriented approach 
based on the Interpreter pattern� to extensible
software� Section � analyzes the problems of the Visitor pattern and then develops the Extensible
Visitor pattern in the context of the same running example� Section � describes some of the type�
checking issues that arise when using this pattern� Section � presents a linguistic extension that
facilitates the implementation of the Visitor and Extensible Visitor patterns� Section � discusses the
state of our implementation and our experiences� The last two sections describe related work and
summarize the ideas in this paper�

� Existing Design Approaches

To illustrate the design problem with a concrete example� we present a simplistic 
geometry man�
ager� program� derived from a US Department of Defense programming contest ����� We discuss
both the functional and the object�oriented design methods in this context and expose their failings�

�Cook 
�� devotes his tutorial to this problem� which was �rst anticipated by Reynolds 

���

�



datatype Shape � of num

j � of num

j �� � of Point � Shape

Figure �� The Functional Approach� Types

ContainsPt � Point � Shape �� boolean

ContainsPt p � s� � � � �
j p �� r� � � � �
j p ��� � d s� � � � � ContainsPt p� s � � �

Figure �� The Functional Approach� Tools

Shrink � num � Shape �� Shape

Shrink pct � s� � � � � ��
j pct �� r� � �� � � ��
j pct ��� � d s� � ��� � d �Shrink pct s��

Figure �� The Functional Approach� Adding Tools

For this discussion� we use the term tool to refer to a service provided by the program� which is
typically implemented as a class� function� or procedure�
Initially� our system speci�es a set of data 
Shape� partitioned into three subsets�squares 
 ��

circles 
�� and translated shapes 
� � ���and a tool that� given a shape and a point� determines
whether the point is inside the shape 
ContainsPt�� The set of shapes is then extended with a
composite shape that is the union of two others 
��� The set of tools grows to include a shrinker
that� given a number and a shape� creates a copy of that shape shrunken in its dimensions by the
given percentage 
Shrink��

��� The Functional Approach

In a functional language� recursively de�ned data are speci�ed using datatype declarations� Such
a declaration introduces a new type with one or more variants� In Haskell ���� or SML ����� for
example� a programmer could use the data or datatype construct� respectively� to represent the
set of shapes� as shown in Fig� ��� Each variant introduces a new tag to distinguish it from the other
forms of data� Each variant also speci�es a record�like structure with a �xed number of typed �elds�
The types may include the datatype being declared� In the �gure� the three variants of the datatype
describe the structure of the di�erent shapes� the square is described by the length of its side 
a
number�� a circle by its radius 
a number�� and a translated shape by a displacement 
a Point� for
the underlying shape� Values are constructed by writing the name of a variant followed by as many
expressions as there are �elds for that variant� For example� 
 �� constructs a square� which is of
type Shape and whose side has length ��
Tools map variants of the Shape datatype to results� For example� Fig� � shows the outline

of the tool ContainsPt� which determines whether a point is inside a shape� Its mathematics has
been elided since it is rudimentary and not relevant to our example� The function de�nition uses
pattern�matching� if a pattern matches� the identi�ers to the left of � are bound on the right to the
corresponding values of the �elds� For example� the pattern 
 s� in the �rst line of the function
matches only squares and binds s to the length of the square�s side�
Since the datatype de�nition of a shape is recursive� the corresponding tools are usually recursive�

�In C 
���� one would use �recursive� pointers� structures and unions to represent this set of constructs�

�



too� The recursive calls in a tool match the recursive structure of the datatype� This template can
be used to de�ne other tools	 for example� Fig� � shows the structure of Shrink� which takes a shrink
factor 
a number� and a shape� and produces the same shape but with the dimensions shrunk by
the speci�ed factor� We can add tools like Shrink without making any changes to existing tools such
as ContainsPt�
In the functional style� the code for all the variants is de�ned within the scope of a single function�

This simpli�es the task of comprehending the tool� It also makes it easy to de�ne abstractions over
the code for the variants�
Unfortunately� it is impossible to add a variant to Shape without modifying existing code� First�

the datatype representing shapes must be modi�ed because most existing functional languages do
not o�er an extensible datatype mechanism at all or do so in a restricted manner ��� ��� ���� Second�
even if extensible datatype de�nitions are available� the code for each tool� such as ContainsPt� must
be edited to accommodate these extensions to the datatype��

In summary� the conventional functional programming methodology makes it easy to add new
tools� but impossible to extend the datatype without code modi�cation�

��� The Object�Oriented Approach

In an object�oriented program� the data de�nitions for shapes and their tools are developed in
parallel� Abstract classes introduce new collections of data and specify signatures for the operations
that are common to all variants� Concrete classes represent the variants and provide implementations
of the actual operations� This is known as the Interpreter pattern ������ For instance� the SML
program from Figs� � and � corresponds to the Java ���� program shown in Fig� �� The recursive
references among the collection of classes lead to corresponding recursive calls among methods�
analogous to the recursion in the functional program�
In this setting� it is straightforward to extend the set of shapes� It su�ces to add a new concrete

class that extends Shape and whose methods specify the behavior of the existing tools for that
extension� For example� Fig� � shows how �� the union of two shapes� is added to our system�
Most importantly� existing tools remain unchanged�
Unfortunately� the Interpreter pattern makes it impossible to add a new tool if existing code is

to stay the same� The only option is to create� for each concrete class� an extension that de�nes a
method for the new tool� This a�ects every client� i�e�� any code that creates instances of the concrete
classes� The clients must be updated to create instances of the new� extended classes instead of the
old ones so that the objects they create have methods that implement the new tool�
The a�ected clients can include an existing tool� For example� in Fig� �� the shrink method

creates concrete instances of Shape that have methods for only the containsPt and shrink tools� If
a tool T that is added later invokes shrink � the object returned by the method will not support all
tools� in particular T � unless the shrink method is physically updated�
In summary� object�oriented programming�as represented by the Interpreter pattern�provides

the equivalent of an extensible� user�de�ned datatype� The Interpreter pattern solves the problem
of extending the set of shapes� However� this conventional design makes it di�cult or� in general�
impossible to extend the collection of tools without changing existing code� Furthermore� the code
for each tool is distributed over several classes� which makes it more di�cult to comprehend the
tool�s functionality� Any abstractions between the branches of a tool must reside in Shape 
unless
the programming language has multiple�inheritance�� even though the abstraction may not apply to
most tools and hence does not belong in Shape�

�Sometimes� the modi�cations may change the semantics of the operation� In such cases� a more sophisticated
protocol is necessary� such as that speci�ed by Cartwright and Felleisen 

��

�The Composite pattern 
��� is sometimes used instead�

�



abstract class Shape f
Shape shrink �double pct�� g

class extends Shape f
double s�

�double s� f this�s � s � g
boolean containsPt �Point p� f � � � g g

class � extends Shape f
double r �
� �double r� f this�r � r � g
boolean containsPt �Point p� f � � � g g

class �� � extends Shape f
Point d �
Shape s�
�� � �Point d � Shape s� f this�d � d � this�s � s � g
boolean containsPt �Point p� f

return �s�containsPt �� � ��� � g g

Figure �� The Object�Oriented Approach� Basic Types and Tools

class � extends Shape f
Shape lhs� rhs�
� �Shape lhs� Shape rhs� f this�lhs � lhs � this�rhs � rhs � g
boolean containsPt �Point p� f

return �lhs�containsPt �p� � rhs�containsPt �p�� � g g

Figure �� The Object�Oriented Approach� Adding Variants

class Shrink extends f
���
Shape shrink �double pct� f

return �new Shrink �� � ��� � g
��� g

class Shrink� extends � f � � � g

class Shrink�� � extends �� � f � � � g

class Shrink� extends � f � � � g

Figure �� The Object�Oriented Approach� Adding Tools

�



� A Protocol for Extensibility and Re�Use

In any interesting system� both the 
recursive� data domain and the toolkit are subject to change�
Thus re�use through extensibility along both dimensions is essential�
In this section� we develop a programming protocol based on object�oriented concepts that sat�

is�es these desiderata�� We present the protocol in three main stages� First we explain how to
represent extensible datatypes and tools via the Visitor pattern and how the Visitor pattern su�ers
from the same problem as the functional design strategy� Still� the Visitor pattern can be reformu�
lated so that a programmer can extend the data domain and the toolkit in a systematic manner�
Finally� we demonstrate how the protocol can accommodate extensions across multiple tools and
mutually�referential data domains�
The ideas are illustrated with fragments of code written in Pizza ����� a parametrically polymor�

phic extension of Java� The choice of Pizza is explained in Sect� �� In principle� any class�based
language� such as C��� Ei�el� Java� or Smalltalk� su�ces�

��� Representing Extensible Datatypes

The representation of extensible datatypes in the Visitor pattern is identical to that in the Interpreter
pattern� but each class 
variant� contains only one interpretive method� process� This method
consumes a processor� which is an object that contains a method corresponding to each variant in
the datatype� For each variant� the process method dispatches on that method in the processor
corresponding to that variant� and returns the result of the invoked method� Figure � illustrates
how the datatype from Sect� ��� is represented according to this protocol�
Since di�erent processors return di�erent types of results� the process method has the paramet�

rically polymorphic type ShapeProcessorh�i �� �� That is� process�s argument has the parametric
type ShapeProcessorh�i� which is implemented as an interface in Pizza� The return type is � in
place of a single� �xed type� In Pizza� this type is written as h�i �� For our running example� the
parametric interface and the outline of the tool that checks for point containment 
ContainsPt� are
shown in Fig� ��
If a processor depends on parameters other than the object to be processed� it accepts these

as arguments to its constructor and stores them in instance variables� Thus� to check whether
a point p is in a shape s� we create an instance of the ContainsPt processor� which is of type
ShapeProcessorhbooleani and which accepts the point p as an argument� new ContainsPt 
p�� This
instance of ContainsPt is passed to the shape�s process method�

s�process 
new ContainsPt 
p��

Similarly� recursion in a processor is implemented by invoking the process method of the appro�
priate object� If the processor�s extra arguments do not change� process can be given this� i�e�� the
current instance of the processor� as its argument	 otherwise� a new instance of the processor is cre�
ated� Consider the ContainsPt processor in Fig� �� It deals with translated shapes by translating the
point and checking it against the underlying shape� The underlined expression in the forTranslated
method implements the appropriate recursive call by creating a new processor�
The Visitor pattern ensures that the code for each tool is localized in a single class and easily

comprehensible� as in the functional approach� In the absence of a parametrically polymorphic type
system� however� it is di�cult to specify the types for the Visitor pattern� Section � discusses this
issue in detail�

�A preliminary version of this protocol appears in the book by Felleisen and Friedman 
���

�



abstract class Shape f
abstract h�i � process �ShapeProcessorh�i p� � g

class extends Shape f
double s�

�double s� f this�s � s � g
h�i � process �ShapeProcessorh�i p� f

return p�forSquare �this� � g g
class � extends Shape f

double r �
� �double r� f this�r � r � g
h�i � process �ShapeProcessorh�i p� f

return p�forCircle �this� � g g
class �� � extends Shape f

Point d �
Shape s�
�� � �Point d � Shape s� f this�d � d � this�s � s � g
h�i � process �ShapeProcessorh�i p� f

return p�forTranslated �this� � g g

Figure �� The Visitor Pattern� Types

interface ShapeProcessorh�i f
� forSquare � s��
� forCircle �� c��
� forTranslated ��� � t� � g

class ContainsPt implements ShapeProcessorhbooleani f
Point p�
ContainsPt �Point p� f this�p � p � g
public boolean forSquare � s� f � � � g
public boolean forCircle �� c� f � � � g
public boolean forTranslated ��� � t� f

return t�s�process �new ContainsPt 
� � ��� � g g

Figure �� The Visitor Pattern� Tools

�



class Shrink implements ShapeProcessorhShapei f
double pct �
Shrink �double pct� f this�pct � pct � g
public Shape forSquare � s� f � � � g
public Shape forCircle �� c� f � � � g
public Shape forTranslated ��� � t� f

return new �� � �t�d � t�s�process �this�� � g g

Figure �� The Visitor Pattern� Adding Tools

interface UnionShapeProcessorh�i extends ShapeProcessorh�i f
� forUnion �� u� � g

class � extends Shape f
Shape s� � s� �
� �Shape s� � Shape s� � f � � � g
h�i � process �ShapeProcessorh�i p� f

return ��UnionShapeProcessor� p��forUnion �this� � g g

Figure ��� Datatype Extension

class ContainsPtUnion extends ContainsPt

implements UnionShapeProcessorhbooleani f
ContainsPtUnion �Point p� f super �p� � g
public boolean forUnion �� u� f

return u�lhs�process �this� � u�rhs�process �this� � g g

Figure ��� Processor Extension

��� Adding Tools

Extending a program�s tool collection based on the Visitor pattern is straightforward� For instance� a
processor that shrinks shapes would implement the ShapeProcessorhShapei interface� This is outlined
in Fig� �� In this example� a translated shape is shrunk by shrinking the underlying shape	 the shrink
factor does not change for the translated �gure� Hence� the recursive call uses the same processor

this� underlined in the �gure��

��� Extending the Datatype� A False Start

Since concrete subclasses represent the variants of a datatype� extending a datatype description
means adding new concrete subclasses� Each new class must contain the process method� which is
the de�ning characteristic of Visitor�style datatypes� The actual processors are de�ned separately�
In parallel to the datatype extension� we must also de�ne an extension of the interface for

processors� The extended interface speci�es one method per variant in the old datatype and one for
each new variant� Of course� the process method in the new variants should only accept processors
that implement the new interface� This requirement is expressed di�erently in di�erent languages�
In Pizza� for example� we use a runtime check	 in languages that allow process to be overridden
covariantly� any usage errors would be caught during type�checking�
To illustrate this idea� we add the union shape 
�� to the collection of shapes� The new concrete

class and interface are shown in Fig� ��� A cast 
underlined in the �gure� requires the processor
for ��s to implement the extended interface� UnionShapeProcessor� The extended processors can

�



class ContainsPt implements ShapeProcessorhbooleani f
Point p�
ContainsPt �Point p� f this�p � p � g
ContainsPt makeContainsPt �Point p� f

return new ContainsPt �p� � g
public boolean forSquare � s� f � � � g
public boolean forCircle �� c� f � � � g
public boolean forTranslated ��� � t� f

return t�s�process �makeContainsPt �� � ��� � g g

class ContainsPtUnion extends ContainsPt

implements UnionShapeProcessorhbooleani f
ContainsPtUnion �Point p� f super �p� � g
ContainsPt makeContainsPt �Point p� f

return new ContainsPtUnion �p� � g
public boolean forUnion �� u� f

return u�lhs�process �this� � u�rhs�process �this� � g g

Figure ��� Extensible Visitor Processor Extension

then be de�ned as class extensions of the existing processors for the earlier set of shapes� These
extensions implement the new interface� as shown in Fig� ���
Unfortunately� this straightforward extension of ContainsPt is incorrect� Consider the forTrans�

lated method in ContainsPt� It creates a new instance of ContainsPt to process the translated shape�
The new instance checks whether the 
un�translated� point is in the translated shape� Since Con�
tainsPt does not implement a forUnion method� a ContainsPt processor cannot process a � shape�
More concretely� checking whether the shape

new �� � 
p�
new � 
new 
� � ���

new � 
� � ����

contains some point q causes a runtime error� Speci�cally� when the forTranslated method creates a
new ContainsPt processor and when this new processor is about to process the � shape� the process
method in � �nds that the processor does not implement the UnionShapeProcessor interface and
therefore raises a runtime error�

��� Extending the Datatype� The Solution

The error points out that processors in the Visitor pattern are not designed to accommodate exten�
sion of the datatype� Suppose a recursive processor P can handle the variants v�� � � � � vn� As long
as the recursive call passes this to the datum� it does not matter whether the object is an instance
of P or of a subtype of P � If� however� P creates a new instance of P for the recursive call� the new
object can only handle the variants v�� � � � � vn� When a new variant� vn��� is added� the processor
provided in the recursive call can no longer process all possible inputs�
To avoid this problem� we must refrain from making a premature commitment in the recursive

step� To delay making the commitment prematurely� we must delegate the decision of which proces�
sor P creates� Initially� the delegate creates instances of P � Then� when the variant vn�� is added
and P is extended to P �� a new delegate overrides the old one to create instances of P � instead� We
can encode this idea to create the Extensible Visitor protocol as follows�

�� The creation of new processors is performed via a separate method� a virtual constructor 
or
Factory Method ������ called makeContainsPt in our example�

�



�
� Shape

�
�

� � � �� � �

�

process

�

�

�

�

ShapeProcessorh�i

ContainsPt

process

�

�

�

�

UnionShapeProcessorh�i

�
�
�
�
�
��

�
��

��
��

ContainsPtUnion

Figure ��� Datatype and Processor Extension

�� The virtual constructor is an ��expansion of the original constructor� e�g�� in ContainsPt� the
virtual constructor is

ContainsPt makeContainsPt 
Point p� f
return new ContainsPt 
p� 	 g

�� Expressions that construct processors are replaced with invocations of the virtual constructor�

�� The virtual constructor is overridden in all extensions of processors� Thus� in ContainsPtUnion�
we now have

ContainsPt makeContainsPt 
Point p� f
return new ContainsPtUnion 
p� 	 g

The �nal version of the code is shown in Fig� ���
The form of the system after the extension is shown in Fig� ��� The rectangles represent concrete

classes� the parallelograman abstract class� and the thin ovals interfaces� Solid lines with arrowheads
show inheritance� while those without arrowheads indicate that a class implements an interface�
Dashed lines connect classes and interfaces� The label on a dashed line names a method in the class
that accepts an argument whose type is the interface� The boxed portion is the extended datatype
and its corresponding processor� For a processor and datatype extension all code outside of the thick
box can be re�used without any change�

��� Updating Dependencies Between Tools and Datatypes

The problem of updating the dependencies of processors has a general counterpart� Suppose the
processors P�� P�� and P� all process the same datatype D and depend on each other as follows� P�
creates instances of P� and P�� P� uses P�� and P� uses itself� Figure �� 
a� illustrates this situation�
each processor at the tail of an arrow creates an instance of the processor at the head� When D is
extended to D� with new variants� the tools are extended to P �

�� P
�

�� and P
�

�� respectively� If P�� P��
and P� directly create instances of each other� however� the extensions cannot process all of D

��
This problem can be resolved with the following extension of Extensible Visitor� Each processor�

P � is equipped with a virtual constructor for every processor that it uses 
including itself�� This
is shown in Fig� �� 
b�� where the dashed lines indicate the use of a virtual constructor to create

��



�a�

P� P�

P�

� �

��

�b�

P� P�

P�

� �

��

�c�

P� P�

P�

P �

� P �

�

P �

�

�� �

��

Figure ��� Updating Dependencies Between Tools

��



instances of processors� When P is extended to re�ect a datatype extension� every virtual constructor
is correspondingly overridden� Thus each processor gets the most current version of the tools it uses

see Fig� �� 
c�� while existing code remains unchanged� In the example� all the existing dependencies
are redirected� and two new ones are added� P �

� on itself and on P
�

��
A related problem arises when a program contains datatypes which are mutually recursive�

Consider a multimedia editor that supports both text and images� Suppose we wish to incorporate
our graphical package into the editor� The editor provides a new kind of shape� Hybrid� which
contains a Drawable element� Each Drawable entity is either a Char or an Image� and each Image

contains a Shape� Thus� Shape and Drawable are mutually recursive� Figure �� shows these new
de�nitions�
Figure �� presents two processors� RenderShape and RenderDrawable� which take a display device

as an argument and render Shapes and Drawables on the device� respectively� Each processor uses
a virtual constructor to create new instances of itself and of the processor for the other datatype�
An extension of a datatype requires an upgrade of both processors� Their virtual constructors
for the processor corresponding to the datatype before extension must now create instances of the
processor that accepts the extended datatype� In short� we can treat these two processors as if they
were unrelated 
rather than implementing the same functionality over two related datatypes�� and
redirect their dependencies as discussed above�

� Types

Typed object�oriented languages can provide 
at least� two kinds of polymorphism� object polymor�
phism and parametric polymorphism� Object polymorphism means that a variable declared to be of
a particular class 
type�� say C� can hold instances of C or subclasses of C� In contrast� parametric
polymorphism allows types to contain type variables that are 
implicitly� universally quanti�ed	
for example� list
�� is the type of a homogenous list containing any type of element� Most typed
object�oriented languages provide object polymorphism	 a few o�er parametric polymorphism��

Pizza�s parametric polymorphism greatly facilitates the implementation of Extensible Visitors��

To illustrate this point in more detail� we contrast the Pizza implementation with one in Java� In
Java� if process is expected to return values� its return type must be declared as Object� Choosing
any other type Cp would force all clients to return subtypes of Cp� which is inappropriate for some
clients and prevents re�use of existing libraries and classes�� All clients that invoke processors�
including recursive invocations�must then use narrowing casts to restore the returned value to its
original type� If we translate ContainsPt to return Boolean instead of boolean� the Java version of
the forUnion method in ContainsPtUnion is�

public Object forUnion 
� u� f
return new Boolean





Boolean� 
u�lhs�process 
this����booleanValue 
�� �



Boolean� 
u�rhs�process 
this����booleanValue 
��� 	 g

�C���s 
��� template mechanism provides a limited amount of parametric polymorphism�
�Thorup 
��� has proposed a di�erent style of type parameterization for Java� virtual types� To implement

Extensible Visitor using virtual types� which are overrideable types in classes analogous to virtual methods� and
obtain the bene�ts of type�checking� we need to declare process as follows �where � is the virtual type declared in the
processor��

p�� process �ShapeProcessor p�

Unfortunately� this is currently not possible with virtual types 
personal communication� August ������ Hence� virtual
types are not yet a viable alternative for our Extensible Visitor�

�The choice of Object still cannot accommodate processors �such as ContainsPt� that return primitive types� which
are not subtypes of any other type� including Object 
���� Such processors are forced to use the �wrapped� versions
of primitive types� incurring both space and time penalties�

��



class Hybrid extends Shape f
Drawable d �
��� g

abstract class Drawable f � � � g
class Char extends Drawable f � � � g
class Image extends Drawable f

Shape s�
��� g

Figure ��� Mutually Recursive Datatypes

class RenderShape implements ShapeProcessorhvoidi f
Device d �
RenderShape �Device d� f this�d � d � g
RenderShape makeRenderShape �Device d� f

return new RenderShape �d� � g
RenderDrawable makeRenderDrawable �Device d� f

return new RenderDrawable �d� � g
��� g

class RenderDrawable implements DrawableProcessorhvoidi f
Device d �
RenderDrawable �Device d� f this�d � d � g
RenderDrawable makeRenderDrawable �Device d� f

return new RenderDrawable �d� � g
RenderShape makeRenderShape �Device d� f

return new RenderShape �d� � g
��� g

Figure ��� Tools over Mutually Recursive Datatypes

��



For the Pizza version of the same code 
see Fig� ��� the compiler statically veri�es that the return
type of a processor is acceptable in each invoking context� Thus� in a proper implementation� the
programmer gets the full bene�t of type�checking� and the program incurs no runtime expense� In
contrast� the Java version passes the type�checker� but the programmer is forced to specify runtime
checks� These checks compromise both the program�s robustness and its e�ciency� A Java compiler
could eliminate some of these checks� but this would rely on sophisticated �ow analyses� which few
compilers 
if any� perform�	

Even Pizza requires the programmer to repeat several pieces of type information� For example�
when ContainsPtUnion is de�ned as an extension to ContainsPt� the type parameter of UnionShape�
Processor must still be instantiated 
see Fig� ���� Also� the methods inside a processor need type
declarations� even though the return type is the same as the parameter of the interface� A powerful
type inference mechanism� such as those of Eifrig� Smith� and Trifonov ��� and Palsberg ����� can
alleviate many of these problems� especially in the context of dynamically�typed object�oriented
languages�

� A Language for Extensible Systems

Although the Extensible Visitor pattern solves our problem� it requires the management of numerous
mundane details� such as writing class declarations to de�ne the datatype and its variants� de�ning
and overriding the virtual constructors� and keeping the type information consistent� Since these
tasks are cumbersome and error�prone and can be managed automatically� we have also designed
and implemented a language extension for specifying instances of the Visitor and Extensible Visitor
patterns�
Our system� called Zodiac� provides constructs for declaring and extending datatypes and pro�

cessors� Datatypes and processors are translated into collections of classes� Processors are de�ned
with respect to a datatype� The action for each variant V of the datatype is implemented by a
method mV in the processor� The method mV accepts one argument� which is an instance of the
class used to implement the variant V �
Figure �� illustrates how to use a Pizza�oriented version of Zodiac to specify the datatype and

toolkit for our running example� At the top we de�ne the collection of shapes� followed by the
ContainsPt processor� Below that we specify UnionShape� which is Shape extended with the union
of two shapes� and its corresponding processor as an extension of ContainsPt� The example uses all
of Zodiac�s constructs�

datatype de�nes a new extensible datatype or extends an existing one��
 Each variant of the
datatype� together with its �elds� is listed following the keyword variant� Zodiac creates an
abstract class for a new datatype� and translates each variant into a concrete subclass with a
process method�

processor de�nes a processor for the datatype that is speci�ed in the processes clause� The

optional� uses clause is followed by a list of tools that are used by the processor��� The
processor�s return type is declared after returns� The 
optional� �elds clause speci�es the
parameters of a processor� from which Zodiac determines the instance variable declarations
and the constructor� The individual methods for the variants are declared with variant�

Zodiac creates a virtual constructor� such as makeContainsPt in the example� for each tool
listed as a dependency� Processor extensions inherit the returns and �elds declarations and

�These comments apply equally well to the Visitor protocol�
�	This datatype construct is super�cially related to Pizza�s algebraic data types� Pizza�s data types are meant

principally for creating data structures� they do not provide default visitor methods�
��This clause is optional since a tool may not have any dependencies to declare� This information cannot be inferred

since deciding which tool dependencies should be updated is a design decision that must be made by the programmer�

��



datatype Shape f
variant �double s��
variant � �double r��
variant �� � �Point d � Shape s��

g

processor ContainsPt processes Shape

uses ContainsPt

returns boolean f
�elds �Point p��
variant for �s� f � � � g
variant for��c� f � � � g
variant for �� ��t� f

return t�s�process �makeContainsPt �� � ��� � g
g

datatype UnionShape extends Shape f
variant � �Shape lhs� Shape rhs��

g

processor ContainsPtUnion extends ContainsPt

processes UnionShape f
variant for��u� f

return u�lhs�process �this� �
u�rhs�process �this� � g

g

Figure ��� Sample Extended Pizza Speci�cation

��



the uses dependency of their parent� A derived processor needs to declare only the new �elds
and dependencies� The constructor of a processor extension accepts values for all its �elds and
those of its superclass� and conveys values for the inherited �elds to its superclass�s constructor�

Zodiac expands the Extensible Visitor speci�cation into a collection of classes and interfaces that
is ��equivalent to the code in Sect� ��

� Implementation and Performance

Zodiac is currently implemented as a language extension to MzScheme ����� a version of Scheme ���
extended with a Java�like object system�
A preliminary version of Zodiac has been used to implement DrScheme� a Scheme programming

environment ����� DrScheme is a pedagogically�motivated system that helps beginners by presenting
Scheme as a succession of increasingly complex languages� It also supports several tools such as a
syntax checker� a program analyzer� etc�
The largest language handled by DrScheme is the complete MzScheme language� which is many

times the size of standard Scheme� Still� the language processing portions of DrScheme were de�
veloped and are maintained 
part�time� by a single programmer� The preliminary implementation
of Zodiac played a signi�cant r�ole in this rapid development� It simpli�ed the speci�cation of the
language tower� which� in turn� avoided many clerical errors and facilitated the maintenance of the
software�
Our current implementation has been in use for about two years� The resulting environment

is used daily in courses at Rice University and other institutions� The environment is also used to
develop actual applications� and the overhead of Extensible Visitor is low enough to be practical for
such use�
Zodiac is also being applied in other domains� We have used it to build Chisel� a general�purpose�

extensible document construction system� This system handles 
real�world� documents� and eas�
ily meets demanding performance criteria� For example� Chisel generates our entire departmental
brochure 
corresponding to ����� printed pages� or about ��� kilobytes of generated HTML� in ��
seconds on a modern workstation�
The marginal cost of using our method over the Visitor pattern is minimal� The sole di�erence

is in the creation of processors� When the virtual constructor is not overridden� the only cost is
that of a local method call� which is e�ectively inlined in Visitor� In many cases this overhead is
avoided entirely because the current instance is re�used for recursive calls� The overall cost of this
indirection depends on how often an application constructs data� and on the implementation model
used for objects and methods� In our experience� this cost has been negligible�

� Background and Related Work

Several researchers� including Cook ���� K�uhne ����� Palsberg and Jay ����� and R�emy ����� have
observed the trade�o�s between the functional and object�oriented design approaches� and have
noted the relative strengths and weaknesses of each method at datatype and toolkit extension� Of
them� only K�uhne ���� and Palsberg and Jay ���� suggest a solution�
K�uhne�s solution ���� is to replace the dispatching in the Visitor protocol with generic functions

that perform double�dispatch� While K�uhne�s approach can accommodate legacy classes� i�e�� classes
that do not have an explicit method for the visitor� it has the disadvantage of potentially violating
the hierarchical design of the program� does not address the organization of the generic function
itself� and depends on language features that support double�dispatch�
Palsberg and Jay ���� propose to use re�ection to implement a Visitor�like protocol� In their

protocol� all visitors are subclasses of the Walkabout class� which provides a default visitor� The

��



default visitor examines the argument	 if the argument is not a base class� the Walkabout obtains
the argument�s �elds using Java�s re�ection facility ����� and then recursively visits each �eld�
While Palsberg and Jay�s approach also scales to legacy classes� it is unclear how well their

system works when the variants have instance variables unrelated to the �elds of the variant� or
when they have multiple �elds with the same type� Their proposal also relies on the existence
of re�ective operators� which are not found in many languages� Finally� their system is over two
orders of magnitude slower than a plain Visitor� making it unsuitable for practical use� In contrast�
Extensible Visitor works with generic object�oriented languages� and incurs a negligible overhead
beyond that of Visitor�
Lieberherr and his colleagues have built a system for adaptive programming ����� which addresses

the structural and behavioral adaptation of systems� Using their system� Demeter� programmers
write separate speci�cations of traversals and actions� and Demeter combines these to generate a
complete program� In particular� Demeter consumes four inputs� a description of the class graph�
a traversal speci�cation for the graph� the operations to perform at each node� and some glue
code for linking traversals and operations� Consequently� Demeter is only applicable when all these
speci�cations are available for the production team to reconstruct the program� A company that
wishes to distribute its product only in the form of object code to protect its proprietary algorithms
would probably be unwilling to distribute its Demeter speci�cation� In contrast� our method both
assumes an open�ended program and allows the distribution and extension of object code�
The literature on design patterns contains many other attempts to de�ne and implement patterns

similar to Interpreter and Visitor� The primary presentation of the Visitor pattern ���� states that
datatype extension is di�cult� but does not solve the problems that arise� Baumgartner� L�aufer and
Russo ��� propose an implementation of Visitor based on multi�method dispatch and claim that it
makes datatype and toolkit extension easy� but they do not recognize the problems that arise when
extending tools or coordinating multiple tools� Seiter� Palsberg� and Lieberherr ���� describe how
dynamic relationships between classes can be captured more expressively using context relations�
which extend and override the behavior of classes and decouple behavioral evolution and inheritance
hierarchies� While context relations o�er a more concise way of expressing Visitor�like operations�
the authors do not mention or solve the recursive instantiation problem 
described in Sect� �����
We can alternatively view the variants of a datatype as specifying the terms of a language� and

interpreters as tools� The functional language community has been interested in the problem of
creating interpreters from fragments that interpret portions of the language ��� �� ��� ���� These
approaches are orthogonal to ours in that they can handle semantic extensions to the interpreters�
but none of them consider the problem of an extensible toolkit� Most of them ��� �� ��� do not
address the problem of extending the datatype either�
Duggan and Sourelis ���� Findler ����� and Liang� Hudak� and Jones ���� describe methods for

creating restricted notions of extensible datatypes� None of these approaches� however� produce
datatypes that are extensible in the sense of our protocol� The programmer may specify variants
of the datatype separately� but the �nal datatype must be assembled and 
closed� before it can be
used� As a result� it is not possible to extend the variants of an existing datatype� Any further
additions require access to the source code�
Cartwright and Felleisen�s work on extensible interpreters ���� if translated into an object�oriented

framework� would probably resemble the Extensible Visitor protocol in an untyped setting�

� Conclusions and Future Work

We have presented a programming protocol� Extensible Visitor� that can be used to construct systems
with extensible recursive data domains and toolkits� It is a novel combination of the functional and
object�oriented programming styles that draws on the strengths of each� The object�oriented style
is essential to achieve extensibility along the data dimension� yet tools are organized in a functional

��



fashion� enabling extensibility in the functional dimension� Systems based on the Extensible Visitor
can be extended without modi�cation to existing code or recompilation 
which is an increasingly
important concern��
We have also described Zodiac� a language extension for writing extensible programs� Zodiac

manages the mundane and potentially error�prone administrative tasks that arise when implementing
the Extensible Visitor� A variant of Zodiac has been in use for about two years in our programming
environment DrScheme ����� Through it� DrScheme is able to o�er a hierarchy of language levels
that facilitate a pedagogically sound introduction to programming� It supports multiple program�
processing tools that operate over this range of language levels� Zodiac has also been used to build
other systems� such as a document generator with multiple rendering facilities�
Our work suggests future investigations into the e�ciency of the new language facilities� The

current implementation of Extensible Visitor incurs an execution penalty due to dispatching� Indeed
many design patterns su�er similar overheads� but their popularity suggests that users are more
interested in design and extensibility considerations than in �ne�grained e�ciency� For example�
Portner ���� reports that his use of the Interpreter pattern to implement a command language is up
to �� slower than a hand�crafted C implementation	 still� he states that the low development cost
far outweighs the execution penalty� Nevertheless� we believe that a compiler can exploit a Zodiac
speci�cation and assemble more e�cient code than the na�!ve translation outlined above�

Acknowledgments

We thank Corky Cartwright� Mike Fagan� Bob Harper� Thomas K�uhne� Karl Lieberherr� Jens
Palsberg� and Scott Smith for helpful discussions and for comments on preliminary versions of
this paper�

References

��� Baumgartner� G�� K� L�aufer and V� F� Russo� On the interaction of object�oriented design
patterns and programming languages� Technical Report CSD�TR�������� Purdue University�
Feburary �����

��� Cartwright� R� S� and M� Felleisen� Extensible denotational language speci�cations� In
Hagiya� M� and J� C� Mitchell� editors� Symposium on Theoretical Aspects of Computer Science�
pages ���"���� Springer�Verlag� April ����� LNCS ����

��� Clinger� W� and J� Rees� The revised� report on the algorithmic language Scheme� ACM Lisp

Pointers� �
��� July �����

��� Cook� W� R� Object�oriented programming versus abstract data types� In Foundations of

Object�Oriented Languages� pages ���"���� June �����

��� Coplien� J� O� and D� C� Schmidt� editors� Pattern Languages of Program Design� Addison�
Wesley� Reading� MA� �����

��� Duggan� D� and C� Sourelis� Mixin modules� In ACM SIGPLAN International Conference on

Functional Programming� pages ���"���� May �����

��� Eifrig� J�� S� Smith and V� Trifonov� Type inference for recursively constrained types and its
application to OOP� Mathematical Foundations of Program Semantics� �����

��� Espinosa� D� Building interpreters by transforming strati�ed monads� Unpublished manuscript�
June �����

��� Felleisen� M� and D� P� Friedman� A Little Java� A Few Patterns� MIT Press� �����

��



���� Findler� R� B� Modular abstract interpreters� Unpublished manuscript� Carnegie Mellon Uni�
versity� June �����

���� Findler� R� B�� C� Flanagan� M� Flatt� S� Krishnamurthi and M� Felleisen� DrScheme� A
pedagogic programming environment for Scheme� In Ninth International Symposium on Pro�

gramming Languages� Implementations� Logics� and Programs� �����

���� Flatt� M� PLT MzScheme� Language manual� Technical Report TR������� Rice University�
�����

���� Gamma� E�� R� Helm� R� Johnson and J� Vlissides� Design Patterns� Elements of Reusable

Object�Oriented Software� Addison�Wesley Personal Computing Series� Addison�Wesley� Read�
ing� MA� �����

���� Gosling� J�� B� Joy and G� L� Steele� Jr� The Java Language Speci�cation� Addison�Wesley�
�����

���� Hudak� P� and M� P� Jones� Haskell vs� Ada vs� C�� vs� Awk vs� � � �An experiment in software
prototyping productivity� Research Report YALEU#DCS#RR������ Department of Computer
Science� Yale University� New Haven� CT� USA� October �����

���� Hudak� P�� S� Peyton Jones and P� Wadler� Report on the programming language Haskell� a
non�strict� purely functional language� ACM SIGPLAN Notices� ��
��� May ����� Version ����

���� Kernighan� B� W� and D� M� Ritchie� The C Programming Language� Prentice Hall� �����

���� K�uhne� T� The translator pattern�external functionality with homomorphic mappings� In
Proceedings of TOOLS ��� USA� pages ��"��� July �����

���� Liang� S�� P� Hudak and M� Jones� Monad transformers and modular interpreters� In Symposium
on Principles of Programming Languages� pages ���"���� �����

���� Milner� R�� M� Tofte and R� Harper� The De�nition of Standard ML� MIT Press� Cambridge�
MA� �����

���� Odersky� M� and P� Wadler� Pizza into Java� Translating theory into practice� In Symposium

on Principles of Programming Languages� pages ���"���� Janurary �����

���� Palsberg� J� E�cient inference of object types� Information � Computation� ���
������"����
�����

���� Palsberg� J� and C� B� Jay� The essence of the Visitor pattern� Technical Report ��� University
of Technology� Sydney� �����

���� Palsberg� J�� C� Xiao and K� Lieberherr� E�cient implementation of adaptive software� ACM
Transactions on Programming Languages and Systems� ��
������"���� �����

���� Portner� N� Flexible command interpreter� A pattern for an extensible and language�
independent interpreter system� ����� Appears in ����

���� R�emy� D� Introduction aux objets� Unpublished manuscript� lecture notes for course de mag�

ist�ere� Ecole Normale Sup�erieure� �����

���� Reynolds� J� C� User�de�ned types and procedural data structures as complementary approaches
to data abstraction� In Schuman� S� A�� editor� New Directions in Algorithmic Languages� pages
���"���� IFIP Working Group ��� on Algol� �����

��



���� Riehle� D� Composite design patterns� In ACM SIGPLAN Conference on Object�Oriented

Programming Systems� Languages � Applications� pages ���"���� �����

���� Seiter� L� M�� J� Palsberg and K� J� Lieberherr� Evolution of object behavior using context
relations� IEEE Transactions on Software Engineering� �����

���� Steele� G� L�� Jr� Building interpreters by composing monads� In Symposium on Principles of

Programming Languages� pages ���"���� Janurary �����

���� Stroustrup� B� The C		 Programming Language� Addison�Wesley� �����

���� Sun Microsystems� Java core re�ection� API and Speci�cation� �����

���� Thorup� K� K� Genericity in Java with virtual types� In European Conference on Object�Oriented

Programming� pages ���"���� �����

��


