
Implementing Extensible Theorem Provers

Kathi Fisler� Shriram Krishnamurthi� and Kathryn E� Gray

Department of Computer Science� Rice University
Houston� TX ����������� USA

kfisler�cs�rice�edu

http���www�cs�rice�edu��kfisler�

Abstract� The growing application of theorem proving techniques has
increased the need for customized theorem provers	 Powerful provers con�
tain numerous interacting subsystems� each of which requires substantial
time and expertise to build
 constructing new provers from scratch is vir�
tually prohibitive	 Plug�and�play prover frameworks promise an alterna�
tive in which developers can construct provers by selecting logics� reason�
ing techniques� and interfaces	 Realizing such frameworks cleanly requires
specialized software architectures and particular language abstractions�
even for frameworks supporting only simple interactions between logics	
This paper explores architectural and linguistic issues in plug�and�play
theorem prover development	 It re�ects our experience creating and us�
ing such a framework to develop several versions of a research prototype
theorem prover	

Keywords� extensible theorem provers� plug�and�play theorem provers�
software architectures� software components� programming languages

� Introduction

Theorem provers are large bodies of software� A typical prover contains numerous
interacting subsystems that implement decision procedures� reasoning methods�
theory�declaration facilities� user interfaces� and more� As these subsystems ma�
ture� developing them demands greater expertise and labor� Simultaneously� the
growing application of formal methods in general� and theorem proving in par�
ticular� is increasing demand for theorem provers� Extensions to existing provers
can satisfy some of these applications� others require combinations of techniques
from various provers� Still others may bene�t from restricted versions of provers
that� say� trade some functionality for a smaller memory footprint� Implementing
each of these from scratch would be prohibitive� Instead� developers should be
able to build such provers by wiring together components from existing provers�
In this way� they can leverage o� extant expertise and concentrate their e�orts
on value�adding customizations and extensions� Other researchers� developers�
and users of theorem provers have also advocated a similar vision ���� �	�
���

Designing and realizing such plug�and�play systems engenders many chal�
lenging technical problems� Some of these are strictly logical� such as how to
semantically combine di�erent logics� make multiple techniques inter�operate�

������

���
���
���
���

������

������a

b

c
[3,6]t

Fig� �� Timing diagrams depict changes in boolean variables over time	 Each change
is called an event	 Arrows indicate temporal ordering on events
 optional annotations
on arrows specify discrete bounds on the time passing between the two events	 Vertical
parallel lines specify event synchronization	 The annotation on the falling transition
on b �an anchor indicates that the transition happens at time t	 Fisler ���� de�nes a
formal syntax and semantics� as well as inference rules� for timing diagrams	

or guarantee consistency after extensions� Others issues are architectural � such
as how to integrate the code for existing subsystems� Architectural decisions
greatly a�ect the maintainability and usability of a system� Thus� researchers
must consider both logical and architectural features to build modular provers�

This paper discusses architectural issues in developing plug�and�play provers�
The discussion goes beyond a standard high�level architectural description to
include details about code organization within prover modules and the linguistic
abstractions that support these organizations� Our observations and solutions
arise from our experience in developing various plug�and�play systems� including
an theorem prover framework called Ciderproof� Ciderproof lets developers

� build a new prover from selected logics and reasoning techniques�
� add new logics or reasoning techniques to an existing prover� and
� extend the expressive power of logics and techniques in an existing prover

without modifying or accessing the source code for existing prover modules�
Section
 illustrates some forms of extensibility that arise in theorem provers�

Section presents our architecture for extensible provers� Section � discusses
the role of linguistic constructs in extensible system implementation� Section �
describes Ciderproof� The last two sections discuss related work and o�er con�
cluding remarks�

� Extensible Provers� A Motivating Scenario

Consider the following scenario� which illustrates the vision of plug�and�play
prover construction�

� Tom builds a natural deduction proof checker over timing diagrams �Fig�
ure �� that have anchors but not timing constraints� He implements a simple
interactive checker in which the user selects formulas and an inference rule
to apply to them� He also implements a timing diagram data structure� a
timing diagram editor� and functions corresponding to his inference rules�
Tom distributes his tool on his web page as a set of libraries �Figure �a���

a

b

c

a

b

c

a

b

c

a

b

c

[x, y]

[x, y]

 [z, w]

 [z, w]

[x+z, y+w]

Fig� �� How adding time bounds a�ects an existing inference rule	 The original rule is
on the left
 the revised �extended rule is on the right	

first tool

Tom’s

extension

first tool

Holly’s

Tom’s

first tool

Tom’s

Tom’s

extension

first tool extension

extension

Holly’sTom’s

Tom’s Pierre’s

extension

(a) (b) (c) (d)

Fig� �� The stages of the scenario	 Each rectangle is an integrated set of libraries	

� Holly downloads Tom�s tool� but her work needs both timing diagrams and
�rst�order logic �henceforth fol�� She implements a fol data structure and
parser� as well as inference rules for fol and rules that bridge timing dia�
grams and fol� She integrates her libraries with Tom�s� producing a new
prover �Figure �b���

� Tom enhances timing diagrams with timing constraints� He implements ex�
tensions to the data structure and editor� He also extends some of his original
inference rules to handle the new syntax �as in Figure
�� Each extension
reuses the functionality of his original system� He publishes a new composite
library that integrates his original and new code �Figure �c���

� Pierre wants a proof checker over timing diagrams and monadic second�order
logic �henceforth msol�� He downloads Tom�s and Holly�s code� He extends
Holly�s fol data structure and parser with msol quanti�ers� He also adds a
substitution checker �henceforth sc� to help validate quanti�er eliminations
in his inference rules� Pierre integrates all four pieces of code to produce his
tool �Figure �d���

This scenario� comprised of extensions that we have performed with Cider�
proof� motivates the bene�ts of plug�and�play provers� Holly and Pierre clearly
saved substantial e�ort by enhancing existing code� rather than building their
own systems from scratch� However� the scenario elides both how each person
integrates their code with the others� and how each library must be structured

for integration� This paper describes these protocols and requirements� We begin
by motivating some criteria on the integration protocols�

� Developers can�t rely on the ability to embed logics in one another or in a
system�wide meta�logic� in this scenario� for example� the expressive power
of the logic increases after each extension� Well�founded interactions between
logics are possible� however� if every developer provides a formal syntax and
semantics for the logic that he supports� The requirement ensures that our
protocols apply to general classes of theorem provers�

� Developers can�t modify the source code of existing libraries� If Pierre had to
modify Holly�s code in order to integrate it with his own� he would have to
modify each new version that she produces to bene�t from her changes� This
is cumbersome� Pierre would rather program to an interface to Holly�s code
that she preserves across versions� This not only saves Pierre from managing
multiple versions of Holly�s libraries� but also prevents dependencies between
his code and implementation details of Holly�s code�

� Developers need not know which language a library has been implemented
in� This allows developers to write each library in the language that is most
appropriate for it �perhaps one for the GUI and another for the prover�� This
criterion is less idealistic than it seems if developers program to interfaces
and do not modify existing source code�

� Each library should be separately compilable� Developers can therefore dis�
tribute object �les instead of source libraries� this supports multi�language
prover development and allows proprietary code in prover libraries�

Systems that adhere to these requirements allow developers to augment ex�
isting code without access to its source� such systems are called extensible� This
paper discusses how to design extensible theorem provers for recursively de�ned
logics� Starting from the scenario and the criteria on extensibility protocols� we
derive an architecture for such systems� This architecture must go beyond a
conventional� high�level description of how a system is organized� implement�
ing extensible architectures without using cumbersome programming protocols
also requires particular language constructs� Section provides a high�level ar�
chitectural description and Section � re�nes it with details about the language
constructs that implement it�

� The High�Level Architecture

The theorem provers in the scenario of Section
 contain several types of in�
formation including representations� editors� inference rules� and tools �such as
the proof engine and the sc�� Multiple libraries may provide information of
each type� for example� each stage in the scenario contributed inference rules�
A prover engine� however� sees only one set of inference rules� The architec�
ture therefore needs to provide a uni�ed view of certain classes of information
that may cross�cut several libraries� For now� we call these views collections�
Section ��� describes collections in more detail�

Common

Control Panel
Main

TD-Rules (Tom)

datatype editor

editor

editor

editor

datatype

datatype

datatype

engine

rules

rules

rules

rules

parser

parser

Reps Editors Tools Inf Rules

TD (Tom)

Prover (Tom)

FOL (Holly)

MSOL (Pierre)

ex
te

ns
io

ns
 o

ve
r

tim
e

TD-Anc (Tom)

SC (Pierre) checker

Fig� �� The architecture at the end of the scenario in Section �	 Libraries at the target
end of a solid arrow reference information from the library at the head of the arrow	
Dashed arrows indicate that the source information extends the target information
�unlike in the base architecture	 In the annotations� TD stands for �timing diagram�
and �Anc�stands for anchors	

The following diagram shows the base architecture� Ovals denote collections
and rectangles denote code libraries� The base architecture contains two libraries�
one for the main control panel and another for code that many parts of the
system share� The solid arrows denote concrete information that �ows between
collections and libraries� for example� the control panel displays options to a
user based on the installed sets of editors and tools� The dashed arrows denote
information �ows from one collection into some element of another� the prover�
for example� needs a list of the available inference rules�

Control Panel
Main

Common

Editors Tools Inf RulesReps

The base architecture provides an empty prover� with no logics or reasoning
techniques� Integrating a library into a prover expands the collections and makes
the concrete relationships between elements of the collections more explicit� Fig�
ure � shows the architecture at the end of the scenario in Section
� Section �
describes the protocols that transform the base architecture into Figure �� The
discussions refer to the several observations about the scenario in Figure
�

�� Tom added new syntax to an existing timing diagram element�

� Holly added inference rules to Tom�s checker� Tom�s checker had to update
its list of available rules after the extension�

� Tom couldn�t predict the contexts in which other developers would use his
code� As a result� his code had to be integratable into multiple contexts �his
own extension in one case and Holly�s in another�� Furthermore� developers
who use the code� not Tom� control where to integrate Tom�s code�

�� In order to extend the timing diagram inference rules to handle timing con�
straints� Tom added functionality to his original inference rule functions�

�� Tom created a compound library from his original and extension libraries�
�� Pierre added an independent form �msol quanti�ers� to the fol syntax� and

in parallel� extended the parser� We assume that both the syntax and the
parser were de�ned recursively�

� Language Constructs for Extensible Systems

The extensibility requirements a�ect the implementation of libraries� datatypes�
tools� and databases� This section discusses these issues in turn� using the fol�
lowing terminology� A datatype speci�es a new type with one or more variants�
Each variant speci�es a record�like structure with a �xed number of typed �elds�
A client of a library is any part of a program that references information from
it� A program entity� such as a vector� is �rst�class if it can be treated as a value
in all contexts �including being stored in data structures� passed as a parame�
ter� and returned from a function�� For example� functions are not �rst�class in
Pascal because functions cannot return functions� Classes are not values at all�
much less �rst�class� in most class�oriented languages� such as C��� Java� or
Ei�el� Vectors are �rst�class in most languages� Closures in functional languages
like ML and Haskell are also �rst�class� as are continuations in Scheme�

��� Libraries

Modules are a generally accepted mechanism for structuring code libraries� For
his original tool� Tom would have written one module for the proof checker� one
for the data structure� one for the editor� and one containing the inference rules�
Connecting or linking these modules together forms his tool� Likewise� Holly and
Pierre would have written modules for their extensions�

Module systems vary according to features such as type systems� linking
styles� and support for nested modules� Sections
 and identi�ed several desir�
able features in a module system for extensible provers� separate compilability�
hierarchical linking �as in Pierre�s prover� Figure �d��� the ability to use one
module in multiple contexts� and client�controlled linking� A module with all of
these characteristics is called a component ���

Few existing module systems satisfy all the requirements to be components�
Java packages do not because they hardwire their connections to other compo�
nents ����� clients therefore do not control linking in Java� Beta�s module system
is similar �
��� ML functors are components� but with a limitation� the type

<code> <code> <code> <code>

<code> <code> <code> <code>

Object
Oriented

And

Variants

Parser
Tools

Not FOL-Univ MSOL-Univ

Functional

SC

Fig� �� Code fragments for two tools over a predicate logic datatype� and two common
ways to organize those fragments into program structures	

system prohibits mutually�recursive dependencies between functors �i�e�� linking
speci�cations must form trees instead of graphs� �
��� Such dependencies arise
in practice� Consider a data structure component and a graphical editor compo�
nent� the data structure component may use exception handlers from the editor
to display messages to a user� while the editor invokes functions from the data
structure component to create instances of the data structure� Object�oriented
implementations can often encapsulate these dependencies in objects �i�e� use
callbacks� to avoid circular graph�based linking� The MzScheme dialect ��� of
Scheme provides components with full graph�based linking�

��� Parallel Datatype and Tool Extensions

Pierre�s additions of msol quanti�ers and the sc to Holly�s code entailed adding
a new variant to the fol datatype and de�ning a new operation over the �result�
ing� msol datatype� Each operation over a datatype invokes some code fragment
to process each variant of that datatype� The table in Figure � depicts the frag�
ments for a fol datatype with and� not� and universal quanti�cation �FOL�Univ�
variants� The dashed box encloses Holly�s system� the msol universal quanti�ers
and the sc tool are Pierre�s extensions� The protocols for extending datatypes
and operations vary based on an implementation�s organization of these code
fragments� We now consider two common programming paradigms� how they
would capture the dashed box in Figure �� and how well they would support the
extensions�

An Object�Oriented Attempt� A traditional object�oriented design would
use an abstract base class for the fol datatype� each variant of the datatype
would be a separate subclass of this abstract base class� Each variant subclass
would contain the parser code that processes that variant� this is known as the
Interpreter pattern ����� Thus� an object�oriented design would view the table
in Figure � in terms of its columns� Under this organization� adding the msol
quanti�er variant is easy� We de�ne a new subclass of the abstract base class
that de�nes the parser code for msol expressions�

Adding the sc is more di�cult� The obvious approach� extending each variant
class with a subclass that contains its sc code� raises several problems�

�� Clients such as the inference rule and prover components reference the orig�
inal classes� not the extended ones� We must update the clients to reference
the new classes� but without modifying their source code �as per our extensi�
bility criteria�� This is where hardwired links between components becomes
problematic� If the implementation language allows only hardwired links� a
developer must use Factory patterns ���� or other cumbersome �and hence
error�prone� protocols to circumvent them�

� There is no place for code that the new sc classes should share� such as
functions for managing the variable bindings� Since we cannot edit the code
for the abstract base class �which is inside the dashed box�� we must duplicate
all shared code in each sc class extension� This violates good programming
style and prevents a single point of control�

� The super�classes for the sc class extensions will not be known until link�
time� A developer might link the sc component with either the original fol
datatype� or an extension thereof� This becomes problematic if the super�
classes of the sc classes must be �xed when the classes are de�ned �as most
object�oriented languages require�� Avoiding this problem requires either pa�
rameterized super�classes ���� or complex programming protocols �
��
��
that simulate them�

Thus� a na��ve object�oriented organization handles datatype extensions natu�
rally� but is clumsy for tool extensions� Fixing super�classes at class de�nition
time� rather than link�time� is the main problem in this approach�

A FunctionalAttempt�A traditional functional design would de�ne a datatype
for fol and a function for the parser� Thus� it would view the table in Figure �
in terms of its rows� Under this organization� adding the sc entails simply writ�
ing a new function� Code to be shared among the fragments takes the form of
local de�nitions within the function� this solves one of the problems from the
object�oriented approach�

Performing the msol extension� however� is problematic� First� statically�
typed functional languages have limited support for extensible datatypes� Due
to their existing type systems� the extensible datatype mechanisms for ML ���
and Haskell �
��� for example� essentially seal o� datatypes at compile�time� they
cannot handle dynamic extensions� This is less problematic in object�oriented
languages� which often give the e�ect of extensible datatypes through dynamic
subclassing� Dynamic extensions are a nice feature because they enable exten�
sions to a running system� If a user needs an additional proof technique in the
middle of a proof� loading an extension dynamically saves her from having to
recompile and resume execution �thereby losing her current work�� However� we
view this as a small matter of convenience� and therefore less fundamental than
the other issues involved in developing extensible systems�

Another problem of a more subtle nature arises in the case of recursively
de�ned logics� Consider Holly�s original parser� Since the logic is de�ned recur�
sively� the parser is likely recursive as well� The msol extension de�nes a parser
for the new variant that invokes �reuses� the original parser on the original vari�
ants� If we attempt to parse the expression �y �P�P �y�� the new parser calls the

Pred Logic

Parser
Not

Parser
FOL-Univ

Parser
And

Parser
MSOL-Univ

Shared Shared SharedShared

SC-And SC-Not SC-FOL SC-MSOL

And Not FOL

And Not FOL MSOL

Editor 1

Editor 2

Fig� �� Using mixins and units to extend the fol datatype and add the sc in parallel	
�Shared� is a mixin that extends several classes	 The dashed boxes enclose Holly�s
original fol datatype component and Pierre�s respective extensions	 The arrows link
the datatype components with editor components	

original parser to process the outermost quanti�er� The original parser processes
�P�P �y� recursively� But the recursive call invokes the original� not the extended�
parser� As �P�P �y� is in msol� which the original parser does not handle� a pars�
ing error occurs� Again� the problem here is one of hardwiring� the recursive calls
inside the original parser refer to the original parser ���
��� Object�oriented so�
lutions based on the Interpreter pattern can su�er from similar problems when
the operation creates new instances of a recursively de�ned datatype�

A Synthetic Solution�These problems with the object�oriented and functional
styles� noted by several researchers �	�
��

�
�� ��� illustrate how hardwired
relationships between program entities hinders extensibility� Ideally� an imple�
mentation framework for extensible systems should allow �exible connections
between classes� between components� and between related code fragments� the
underlying principle is to separate de�nitions from their connections ��
�� Com�
ponents provide this feature by de�nition� For classes� we need mixins� which are
reusable class extensions with parameterized super�classes� In a language with
mixins� a class is a composition of mixins onto an existing class �the language
must provide an empty base class�� Existing languages o�er varied support for
mixins� The idea appears to have arisen initially in Common Lisp �
�� VanHilst
and Notkin ��� simulate mixins in C�� using templates� but� as the authors
point out� their approach does not scale due to the amount of code duplication
it entails� Java does not support mixins because it requires hardwired super�
classes� OCaml �
� has �functorizable� classes� but the mixins obtained through
this mechanism are less �exible than the notion used in this paper� Speci�cally�
the type system demands that the super�class provided to a functor must pro�
vide only the services listed in the functor�s import signature� which makes such
mixins considerably less reusable� Beta and MzScheme both support mixins�

Using components and mixins� we can avoid the problems that arise in the
functional and object�oriented solutions� this demonstration is based on Findler

�de�ne SC�extension

�unit �import curr�And curr�Not curr�FOL curr�MSOL
�export And Not FOL�Univ MSOL�Univ
�de�ne Shared �lambda �parent �class parent 	 	 	
�de�ne SC�extend

�lambda �curr�class SC�class
�SC�class �Shared curr�class

�de�ne SC�And �lambda �parent �class parent 	 	 	
�de�ne SC�Not �lambda �parent �class parent 	 	 	
�de�ne SC�FOL �lambda �parent �class parent 	 	 	
�de�ne SC�MSOL �lambda �parent �class parent 	 	 	
�de�ne And �SC�extend curr�And SC�And
�de�ne Not �SC�extend curr�Not SC�Not
�de�ne FOL�Univ �SC�extend curr�FOL SC�FOL
�de�ne MSOL�Univ �SC�extend curr�MSOL SC�MSOL

�de�ne make�PredLogic�SC

�lambda �current�PredLogic�unit
�compound	unit �import
�link
�PL �current�PredLogic�unit
�SC �SC�extension �PL And �PL Not �PL FOL�Univ �PL MSOL�Univ
�export �SC And �SC Not �SC FOL�Univ �SC MSOL�Univ

Fig�
� Implementing the sc extension with �rst�class components and mixins	

and Flatt�s ���� approach in MzScheme �where components are called units�� Fig�
ure � shows the msol and sc extensions in terms of mixins and components� Each
dashed box de�nes a component� The class hierarchy in the innermost dashed
box implements Holly�s original fol datatype� The trapezoid labeled PredLogic

denotes the abstract base class for the datatype� each original variant is a mixin
that extends that base class� The middle dashed box shows the datatype after
the extension for msol quanti�ers� At extension time� the MSOL�Univ mixin
extends the PredLogic base class�

The outermost dashed box shows the datatype after the sc extension� Fig�
ure � shows this extension as written in MzScheme� Component SC�extension
imports classes for the four variants of the PredLogic datatype and exports ex�
tended classes for these variants� This component contains �ve mixins� one for
the code to be shared across the variants �Shared�� and one containing the sc
code for each variant �SC�And � SC�Not � SC�FOL� and SC�MSOL�� The extension
occurs when a developer links the SC�extension component with the component
de�ned by the middle dashed box in Figure �� At that time� SC�extension uses
function SC�extend to compose each sc variant mixin with the Shared mixin
and the imported mixin for that variant� this yields the extended classes�

Figure � also illustrates the protocol that performs this extension� The func�
tion make�PredLogic�SC takes a component that exports variants for And � Not �
FOL�Univ � and MSOL�Univ and links �compounds� it with SC�extension�� The
resulting component has the same interface as the original� but its exported
classes contain the sc extensions� By taking the current component as a param�
eter� make�PredLogic�SC gives developers control of where to link SC�extension

into a system� This protocol� which relies on �rst�class components� is simple to
use and shares the spirit of composition from functional languages�

Functions analogous to make�PredLogic�SC combine datatype components
with other components in a prover� Figure � shows two client editor compo�
nents� Editor � imports classes for the and� not� and fol universal quanti�er
variants� Editor � can link to any of the three predicate logic components� be�
cause each provides versions of these classes� Editor
 can link to any predicate
logic component that also provides a msol quanti�er class� In a language with
�rst�class components� changing which components to link can be as simple as
passing di�erent arguments to a function�

This solution addresses all of the problems that arose in the standard object�
oriented and functional approaches� Class hierarchies provide extensible datatypes�
Using mixins for shared code avoids source code duplication� Invoking extension
functions on revised components updates clients without modifying their source
code� Putting the code for recursively de�ned tools �such as the parser� into
the variant sub�classes solves the problem of hardwired recursive calls in the
extended parser�� Thus� an approach based on components and mixins� which
combines the object�oriented and functional programming styles� provides bet�
ter support for extensibility than either style alone� For implementations in lan�
guages without units and mixins� abstract factories ���� or Smaragdakis and
Batory�s mixin layers ��� provide alternative approaches that require more com�
plicated protocols and sacri�ce some bene�ts such as separate compilation�

��� Extending Functions

When Tom added time bounds to successor edges in the scenario� he also had to
extend the inference rules that operate on successor edges� Each rule corresponds
to a function that checks whether an application of the rule is valid� Thus�
extending inference rules requires extensions to functions� This kind of function
extension di�ers from the parser extension discussed in Section ��
� The parser
extension involved only a single� new variant of the datatype� In this case� we
must integrate new functionality into a function over an existing variant�

Function extensions require �rst�class functions and protocols for composing
them ���
��� The original function must provide a parameter for an extension
function� The passed function will process any extensions to the datatypes on

� Optional annotations on units specify and enforce names and types on imported and
exported information
 in order to simplify the code� we do not show them here	

� Extending functions that create recursively de�ned data requires a slightly more
complicated solution	

�de�ne check�rule

�lambda �edge�� edge�� new�edge hash�table extra�check
�and �equal� �target�event edge�� �source�event edge��

�ht�equal� �source�event edge�� �source�event new�edge hash�table
�ht�equal� �target�event edge�� �target�event new�edge hash�table
�extra�check edge�� edge�� new�edge hash�table

�de�ne extended�check

�lambda �edge�� edge�� new�edge hash�table extra�check
�check�rule edge�� edge�� new�edge hash�table

�lambda �e� e� newe ht
�and �� �lower�bound newe

�� �lower�bound e� �lower�bound e�
�� �upper�bound newe

�� �upper�bound e� �upper�bound e�
�extra�check e� e� newe ht

Fig� �� Extending an inference rule checker function after adding time bounds	

which the function operates� The original function must therefore invoke the
passed function at an appropriate point in its computation to process any addi�
tional variants or attributes� A simpli�ed example based on the transitivity rule
over timing diagrams appears in Figure 	� check�rule is the original inference
rule and extended�check is the extension�� Both functions have the same types�
they take the two original edges� the �asserted� transitive edge� a hash table that
correlates information between the two timing diagrams� and an extension func�
tion� and return booleans� Passing extended�check as a parameter to check�rule

allows us to pass the hash table to extended�check � Had we simply composed
the extension and the original function� either the extension would have to re�
compute the hash table� or the original function would have to return the hash
table� unless the implementation language provides native support for multiple
return values� this would require an unwieldly protocol involving multiple values�
In order to allow additional extensions to the rule� extended�check also needs a
parameter for an extension function� The extension protocol consists of writing
the function extended�check �

��� Collections Revisited

The architecture in Section contains collections of related information corre�
sponding to datatypes� editors� inference rules� and tools� We perform several
operations on these collections in the course of extending the system� adding new
items to them� extending particular items �such as inference rules�� and asking
for all items of a particular type �as the prover does for inference rules�� From

� The actual function operates over the full timing diagrams� not just the edges	

Event Waveform Edge

TD-Element

Successor Concurrent

Time Bounds

Anchors
Transitive-Edges

Transitive-with-Bounds

And-Elim Modus Ponens

Inference Rule

. . .

Fig� �� The database trees for the timing diagram datatype and the inference rules	

this description� these collections resemble databases that we query and update
at each extension to the system�

Our databases have two interesting features� First� they cross�cut compo�
nents� Many extension components provide inference rules� yet the database lets
us view them as a uni�ed data structure� Second� databases act as a version con�
trol system� When the prover queries the rules database for the available rules�
the database must return the most extended versions� Models for handling cross�
cutting and version control are therefore candidates for implementing databases�
We currently view a database as a tree of de�nitions� Figure � shows trees for
the timing diagram representation and the inference rules� These trees resemble
class hierarchies� but they may contain items other than classes �such as inference
rule functions�� The tree for the timing diagram elements has a branch for each
variant� while the inference rule tree has a branch for each rule� The required
operations on databases� such as adding items� �nding elements� and getting lists
of elements� are simply operations on trees� Each database provides a traversal
method for searching and obtaining its leaves� Storing classes in databases� such
as those for the timing diagram datatype� therefore requires �rst�class classes�

��� Summary and Perspective

Our discussions identi�ed several language constructs that naturally express ex�
tensible theorem prover frameworks�

� Extensible datatypes
� First�class functions
� First�class classes
� First�class components

� Mixins �externally connected classes�
� Components �externally linked modules�
� Databases
� Compoundable components

Automatic memory management is also critical in extensible frameworks� The
data�ows in an extensible system are quite complicated� and hence di�cult to
manage manually� Even worse� extensions may break existing code by altering
when data may be released ���� Furthermore� our experience in attempting to
combine program fragments that use di�erent memory management strategies
indicates that this is not feasible in practice� Using automatic memory manage�
ment avoids these issues and also reduces programming overhead�

Extensible systems are� in the end� the products of careful design� not just
the choice of an appropriate programming language� As the second author�s prior
work �
��
�� has shown� object�oriented and functional design are strongly re�
lated� and this relationship is manifest in their strengths and weaknesses at han�
dling extensions� This work also showed that functional design more e�ectively
synthesizes these strengths� and that the Visitor pattern ���� is really a manual�
object�oriented encoding of functional programming �
���� The main remaining
bene�t we get from object�oriented languages is their support for dynamic type
extensions� �Functional programming in uni�typed languages� like core Scheme
and Erlang ���� also o�ers this bene�t�� In this paper� we have attempted to
describe our design in abstract terms� and then discuss how the design elements
map to various concrete programming languages� identifying areas where the
mappings break down in certain languages�

It is nevertheless much easier to program in languages that directly support
the linguistic elements used to describe the design� Languages that have both
functional and object�oriented constructs� such as Beta� OCaml� and MzScheme�
are good candidates for extensible system development� Beta�s main limitation
appears to be the module system� which hinders extensibility through hardwired
connections� OCaml�s main limitation lies with mixins� as discussed in Section ��
MzScheme provides adequate support for the features we have needed to imple�
ment extensible systems in practice�

� Ciderproof

Using the techniques described in this paper� we have built an extensible theorem
prover called Ciderproof �see Figure ���� Ciderproof supports a logic of hard�
ware design representations� including circuit diagrams� state machines� timing
diagrams� linear temporal logic� and monadic second�order logic ����� Such log�
ics� which support multiple syntactic representations �without embedding them
in one another� are called heterogeneous ��� or multi�language ����� They are
ideal for problem domains� such as hardware design� in which people use multi�
ple notations on individual problems� Since the notations that people use when
reasoning about particular domains can evolve over time� reasoning tools for
heterogeneous logics need to be extensible in order to evolve accordingly�

Ciderproof currently supports additions and extensions to representations�
editors� inference rules� and reasoning tools� Developers could add databases of
and extensions to other kinds of information� We have performed every exten�
sion demonstrated in this paper in Ciderproof� using similar protocols to those
described in Section�� We have implemented Ciderproof in MzScheme� mainly
because it supports �rst�class mixins and units ���� Ciderproof is a real research
tool� currently containing roughly �
���� lines of MzScheme code� Using the tech�
niques described in the paper� a team of two undergraduates and a part�time
programmer implemented a prototype system in only three months� During that

� That paper also discusses the type problems that arise when implementing these
solutions in a language without generic types �like Java	

Fig� �� A view of Ciderproof with msol and timing diagram representations	

time� we built several versions of Ciderproof by composing various components
as described in this paper� Based on this experience� we believe our architecture
and protocols are robust and provide a viable base for extensible prover design�

The main limitation of our system is the same as for any plug�and�play prover
framework� interactions between subsystems must be expressible as interfaces�
Boyer and Moore�s integration of a decision procedure into an existing prover
shows that this is not trivial ����Whether we could develop some of the integrated
reasoning tools in the literature ��� in our framework depends on whether we
could express them in this manner� This remains a problem for future work�

� Related Work

Plug�and�play provers are a popular research topic� The Open Mechanized Rea�
soning Systems �OMRS� project members have written several papers on logi�
cal issues in extensible theorem prover development� Giunchiglia� Pecchiari and
Talcott provide a general architecture for the logical components of such sys�
tems ����� while Armando and Ranise present a methodology for lifting spe�
cialized reasoning tools out of existing provers ��� The architectures discussed
throughout the OMRS project address logical issues� but neither implementa�
tion architectures nor aspects of the protocols needed to realize their systems�
PROSPER �
��� a joint project of several theorem proving research groups� also
concerns how to design open prover frameworks� though we are not aware of any
published documents on their architecture�

Gravell and Pratten propose a Java�based architecture for open and extensi�
ble theorem provers ��	����� They addresses syntactic extensions to recursively�

de�ned languages� as well as some logical issues� Their system handles syntactic
extensions using a combination of Java packages and the Abstract Factory pat�
tern� We have already discussed how hardwiring in Java hinders extensibility�
Pattern�based solutions expect programmers to manually maintain complex in�
variants and intertwine functionality with sca�olding from the pattern� Further�
more� such solutions often have to subvert the Java type system �
��� Gravell
and Pratten also acknowledge a limitation in Java� namely that they �would like
to separate the identi�cation of the subclass relationship ����� from the de�nition
of the class� ������ page ���� Mixins provide exactly this ability�

Openproof �
�� a multi�syntactic and diagrammatic reasoning tool supporting
Venn diagrams� Hasse diagrams� position diagrams� and blocks�world diagrams�
is similar in spirit to Ciderproof� It uses JavaBeans to support dynamic addition
of new representations� but it does not support extensions to existing representa�
tions� While commercial component frameworks� such as JavaBeans� COM� and
CORBA� support dynamic linking� they do not address issues such as function
extensions and parallel extensions to recursively de�ned datatypes and tools�
The resulting protocols for these operations therefore require the programmer
to maintain more complicated invariants than in frameworks that provide native
constructs for expressing extensions�

Isabelle �
	� is a widely�used theorem prover development framework� Devel�
opers can embed �at shallow or deep levels� object logics into its core meta�logic�
the core prover engine then operates over the new object logics� Isabelle and our
framework have di�erent design goals� Isabelle has been crafted primarily to sup�
port logical extensibility� Our work emphasizes software engineering aspects of
component�based theorem prover design� Isabelle appears to support customiza�
tions to monolithic� rather than component�based� provers�

� Conclusions

Plug�and�play theorem provers are a challenging� exciting� and extremely prac�
tical research direction for the theorem proving community� Implementing these
provers requires research into both logic �e�g� interoperability� and engineering
�e�g� how to add features to a logic and its tools with minimal or no source
code modi�cation�� The complexity of these issues and their potential interac�
tions� coupled with the recursive structure of many of our logics� makes theorem
provers a potent case study for extensible systems�

This paper proposes an architecture for extensible prover frameworks and
explores the language constructs that naturally express its features� We have
intentionally designed our architecture for systems with minimal logical features
but sophisticated kinds of extensibility� Minimizing the logical features allows
us to identify fundamental architectural issues for plug�and�play prover design�
In the long term� we plan to study how we must re�ne this architecture and
its protocols to handle more complicated logical interactions �including embed�
dings�� as well as di�erent kinds of logics� In general� however� our experience
shows that such extensible frameworks are naturally expressed in languages that

support a combination of declarative programming styles and allow �exible con�
nections between program entities� such as components� classes� and even pieces
of functions� These observations have signi�cant impact on how we select or
design programming languages for implementing extensible provers�

We have used our framework to implement an extensible theorem prover
called Ciderproof� Ciderproof allows users to add syntactic representations� ex�
tend existing representations in expressive ways� and add reasoning tools that op�
erate on those representations� Developers repeatedly compose separately com�
pilable prover components to create new instances of Ciderproof� The composi�
tion protocols involve no source code modi�cations or cumbersome programmer�
maintained invariants� Our team has built several versions of Ciderproof in this
manner� We are con�dent� based on our experience building these and other
extensible systems� that our architecture is both viable and robust�

References

�	 Aagaard� M	 D	� R	 B	 Jones and C	�J	 H	 Seger	 Combining theorem proving
and trajectory evaluation in an industrial environment	 In Proceedings of the ��th

Design Automation Conference� ����	
�	 Allwein� G	 Private commmunication� ����	
�	 Armando� A	 and S	 Ranise	 From integrated reasoning specialists to �Plug�and�

Play� reasoning components	 Technical Report MRG�DIST �������� Dipartimento
Informatica Sistemistica Telematica� Universit�a di Genova� November ����	

�	 Armstrong� J	� R	 Virding� C	 Wikstr�om and M	 Williams	 Concurrent Program�

ming in Erlang	 Prentice�Hall� ����	
�	 Barwise� J	 and J	 Etchemendy	 Heterogeneous logic	 In Glasgow� J	� N	 H	

Narayanan and B	 Chandrasekaran� editors� Diagrammatic Reasoning� Cognitive

and Computational Perspectives� pages �������	 MIT Press� ����	
�	 Boyer� R	 S	 and J	 S	 Moore	 Integrating decision procedures into heuristic theorem

provers� A case study with linear arithmetic	 Machine Intelligence� ��� ����	
�	 Cartwright� R	 S	 and M	 Felleisen	 Extensible denotational language speci�cations	

In Hagiya� M	 and J	 C	 Mitchell� editors� Symposium on Theoretical Aspects of

Computer Software� pages �������	 Springer�Verlag� April ����	 LNCS ���	
�	 Cook� W	 R	 Object�oriented programming versus abstract data types	 In Foun�

dations of Object�Oriented Languages� pages �������� June ����	
�	 Duggan� D	 and C	 Sourelis	 Mixin modules	 In International Conference on

Functional Programming� pages �������� May ����	
��	 Findler� R	 B	 and M	 Flatt	 Modular object�oriented programming with units and

mixins	 In Proceedings of the International Conference on Functional Program�

ming� ����	
��	 Fisler� K	 A Uni�ed Approach to Hardware Veri�cation Through a Heterogeneous

Logic of Design Diagrams	 PhD thesis� Indiana University� ����	
��	 Flatt� M	 Programming Languages for Reusable Software Components	 PhD thesis�

Rice University� Department of Computer Science� ����	
��	 Flatt� M	 and R	 B	 Findler	 PLT MrEd� Graphical toolbox manual	 Technical

Report TR������� Rice University� ����	
��	 Gamma� E	� R	 Helm� R	 Johnson and J	 Vlissides	 Design Patterns� Elements of

Reusable Object�Oriented Software	 Addison�Wesley Personal Computing Series	
Addison�Wesley� Reading� MA� ����	

��	 Giunchiglia� F	 Multilanguage systems	 In Proceedings of the AAAI��� Spring

Symposium on Logical Formalizations of Commonsense Reasoning� ����	
��	 Giunchiglia� F	� P	 Pecchiari and C	 Talcott	 Reasoning theories� Towards an ar�

chitecture for open mechanized reasoning systems	 Technical Report STAN�CS�
TN������� Stanford University Department of Computer Science� September ����	

��	 Gosling� J	� B	 Joy and G	 L	 Steele� Jr	 The Java Language Speci�cation	 Addison�
Wesley� ����	

��	 Gravell� A	 M	 and C	 H	 Pratten	 A prototype generic tool supporting the embed�
ding of formal notations	 In Grundy� J	 and M	 Newey� editors� Theorem Proving

in Higher Order Logics� Emerging Trends� pages �����	 Australian National Uni�
versity� ����	

��	 Gravell� A	 M	 and C	 H	 Pratten	 Using Java to build an open and extensible
theorem prover component	 University of Southamption� ����	

��	 Krishnamurthi� S	 and M	 Felleisen	 Toward a formal theory of extensible software	
In ACM Symposium on the Foundations of Software Engineering� ����	

��	 Krishnamurthi� S	� M	 Felleisen and D	 P	 Friedman	 Synthesizing object�oriented
and functional design to promote re�use	 In European Conference on Object�

Oriented Programming� pages ������� July ����	
��	 K�uhne� T	 The translator pattern�external functionality with homomorphic map�

pings	 In Proceedings of TOOLS ��	 USA� pages ������ July ����	
��	 Leroy� X	 The Objective Caml system	 documentation and user
s guide� ����	
��	 Liang� S	� P	 Hudak and M	 Jones	 Monad transformers and modular interpreters	

In Symposium on Principles of Programming Languages� pages �������� ����	
��	 Madsen� O	 L	� B	 M ller�Pedersen and K	 Nygaard	 Object�oriented programming

in the BETA programming language	 Addison�Wesley� ����	
��	 Milner� R	� M	 Tofte and R	 Harper	 The De�nition of Standard ML	 MIT Press�

����	
��	 Palsberg� J	 and C	 B	 Jay	 The essence of the Visitor pattern	 Technical Report ���

University of Technology� Sydney� ����	
��	 Paulson� L	 C	 Isabelle � a generic theorem prover	 Number ��� in Lecture Notes

in Computer Science	 Springer�Verlag� Berlin
 New York� ����	
��	 PROSPER� Proof and speci�cation assisted design environments	 Project Pro�

gramme� available at http���www�dcs�gla�ac�uk�prosper�� March ����	
��	 Reynolds� J	 C	 User�de�ned types and procedural data structures as complemen�

tary approaches to data abstraction	 In Schuman� S	 A	� editor� New Directions in

Algorithmic Languages� pages �������	 IFIP Working Group �	� on Algol� ����	
��	 Smaragdakis� Y	 and D	 Batory	 Implementing layered designs with mixin layers	

In Proceedings of the ��th European Conference on Object�Oriented Programming�
pages �������� ����	

��	 Steele� G	 L	� Jr	� editor	 Common Lisp� the Language	 Digital Press� Bedford�
MA� second edition� ����	

��	 Szyperski� C	 Component Software� Beyond Object�Oriented Programming	
Addison�Wesley�ACM Press� ����	

��	 VanHilst� M	 and D	 Notkin	 Using C�� templates to implement role�based de�
signs	 In Second JSSST International Symposium on Object Technologies for Ad�

vanced Software� pages �����	 Springer�Verlag� ����	
��	 Wilson� P	 R	 Uniprocessor garbage collection techniques	 In International Work�

shop on Memory Management	 Springer�Verlag� September ����	

