
Verifying Interactive Web Programs ∗

Daniel R. Licata and Shriram Krishnamurthi
Brown University

Abstract

Web programs are important, increasingly representing
the primary public interfaces of commercial organizations.
Unfortunately, Web programs also exhibit numerous flaws.
In addition to the usual correctness problems faced by soft-
ware, Web programs must contend with numerous subtle
user operations such as clicking the Back button or cloning
and submitting a page multiple times. Many existing Web
verification tools fail to even consider, much less effectively
handle, these operations.

This paper describes a model checker designed to iden-
tify errors in Web software. We present a technique for au-
tomatically generating novel models of Web programs from
their source code; these models include the additional con-
trol flow enabled by these user operations. In this technique,
we exploit a constraint-based approach to avoid overap-
proximating this control flow; this approach allows us to
evade exploding the size of the model. Further, we present
a powerful base property language that permits specifica-
tion of useful Web properties, along with several property
idioms that simplify specification of the most common Web
properties. Finally, we discuss the implementation of this
model checker and a study of its effectiveness.

1 Introduction

The interactive Web is here to stay. Not only are Web
sites generated by programs, but they are increasingly play-
ing the role of “services”—accepting inputs from users,
combining these with information in databases, and dynam-
ically computing results. Indeed, from most users’ perspec-
tives, a corporation such as Amazon.com or eBay is a Web
site: the browser is their principal, often only, means of in-
teracting with the organization. As a result, the robustness
of Web software has become increasingly important.

Web applications operate in a world of complex user op-
erations. Users can click on the Back button, or clone a win-
dow and submit a request from each clone. The Back but-

∗This research was partially supported by NSF grant CCR-0305949 and
by Brown University’s Karen T. Romer UTRA program.

ton forces the computation to resume at a prior interaction
point; submitting multiple clones causes computation at the
same interaction point to resume multiple times. Worse,
these user operations are silent: they occur in the browser
only, and are not reported to the Web application.

The consequence of these complex and silent user oper-
ations is that Web programs manifest numerous subtle er-
rors [11]. For instance, travel sites reserve the wrong flight
or hotels. Furthermore, programmers who have not antic-
ipated a sequence of operations are likely neither to de-
velop defensively against it nor to subsequently test for it.
User experience demonstrates that even the professionally-
developed Web sites of commercially successful companies
are not immune to these errors.

User operations are prevalent: (somewhat outdated)
studies have shown that the Back button accounts for a sig-
nificant percentage of user actions [6]. Even attempts to
program defensively against them may go awry. A recent
New York Times article [22] describes such a situation:

But when I clicked on the National [car rental]
price[. . .], the site responded with this message:
“You may have back-buttoned too far.” This was
my first experience with “back-button” as a verb.
I first translated the phrase as, “You may have
pushed the back button too many times.” Since
that was patently untrue, I decoded its true mean-
ing: “We ran out.”

In short, any verification tool for the Web that does not ac-
count for user operations is not only incomplete, but poten-
tially even misleading.

In this paper, we present a verification technique for Web
software that does account for user operations; this tech-
nique includes several significant technical contributions.
First, we have designed a Web-aware control-flow analy-
sis that generates a model of a Web program from its source
code; this model captures the control flow engendered by
user operations. Secondly, we have developed a powerful
data-flow-analysis-based property language useful for spec-
ifying Web properties, along with several property idioms
that simplify specification of the most common Web prop-
erties. Finally, we have specialized a model checker with
Web domain knowledge for precise verification.

Figure 1. The Orbitz Bug
[Step 1] A user enters the desired dates and destination of
his flight; he is then presented with a page listing possible
flights, including Flight A and Flight B.
[Step 2] He clicks a link to open the description of Flight A
in a new browser window.
[Step 3] Not being particularly enthused about that flight,
he returns to the list of flights . . .
[Step 4] and clicks a link to load the description of Flight
B, again in a new browser window.
[Step 5] Deciding that Flight A was better after all, he
switches back to the window still on the screen showing
Flight A . . .
[Step 6] and submits the form, causing a page confirming
his reservation to be displayed.
[Result] Orbitz incorrectly makes a reservation on Flight B.

2 Motivation and Foundations

We begin by presenting several typical Web program
properties that we would like to verify; these properties
drive our choice of a particular verification approach.

2.1 Example Properties

A sequence of user operations that exposes an actual bug
in the flight-reservation program of Orbitz.com (a travel
website) is described in Figure 1. The Orbitz property
asserts the absence of this bug: the flight described on
the page that the user submits in Step 6 (which we will
call the flight-displayed) should be the same as
the actual flight for which his reservation is made (the
flight-reserved).

One might conclude from this example that all Web sites
should have the Orbitz property—that the data used for
computation should always correspond to what the user saw
on the last page he submitted. However, sometimes it is
more desirable to have the Amazon property, which is drawn
from a desired property of Amazon.com: once the user se-
lects a book to purchase, it should be contained in his shop-
ping cart. In particular, the user should be able to select
books in two different browser windows and have both ap-
pear in his cart—but this means that the cart will not also
satisfy the Orbitz property.

Finally, the password-page property prescribes that an
authentication page should always be visited before access-
ing a certain controlled page—starting at page A, you must
go through an access-control page B to reach page C.

Each of these three properties involves a notion of tem-
poral sequencing of events. Further, each prescribes that
only certain sequences of events should occur on all execu-

Figure 2. Orbitz control-flow graph

flight−displayed

use flight
to compute

flight
setsend

page listing flights

send page displaying
reservation

compute
flight−reserved

using flight

w3

w1 a b c

w2d

page
send flight−detail

Solid denotes immediate successor; solid-with-ellipsis de-
notes elided nodes; dotted denotes Web control-flow edge.

tions of a system. These qualities suggest the application of
model checking.

2.2 Verification Approach: Model Checking

To apply model checking, a developer first creates a
model of the system being verified and then writes down the
correctness properties with respect to which he would like
to verify the model; he then applies a suitable model check-
ing algorithm, which consumes the model and the proper-
ties and tells him whether the properties hold for the model.

We now informally work through this methodology for
the Orbitz example given above. The desired property is
that flight-reserved equals flight-displayed.
Prior work has shown what code for a Web program that
exhibits the Orbitz bug would look like [11]; we must ex-
tract a model from this code. We could first try the most
straightforward technique: from the source code, generate
a control-flow graph. A sketch of a control-flow graph is
depicted in Figure 2 (ignore the dashed line for now—all
the other edges correspond to control-flow from the actual
code); though we have elided many details for the sake of
presentation, all relevant events (in particular, all assign-
ments to the variable flight) are shown. Looking at this
model, we notice something interesting: there is no error!
Once flight-displayed has been computed using the
value of the variable flight, the program must use the
same value compute flight-reserved.

Our analysis failed because the sequence of operations
listed in Figure 1 that exposed the bug included several in-
stances of the user using his browser to return to and resub-
mit a previously visited Web page. These actions exploited
additional control flow not present in the standard control-
flow graph; we must therefore augment our model. The
dotted line in Figure 2 shows the control-flow-graph edge
necessary to capture the user’s ability to return to and re-
submit the list-of-flights page (Steps 3 and 4 in Figure 1).
(No edge needs to be added corresponding to the browser

window switch in Step 5 because the two pages were gener-
ated by the same program expression.) This added control
flow exposes the bug—now, we can see that the user might
set flight to a new value and then submit the page gen-
erated using the old one. To develop a sound model of Web
programs, we will need to add similar edges for all possible
user operations.

2.3 User Operation Calculus

Rather than accounting for each individual operation
that a Web browser provides, we use a calculus of primi-
tive user operations due to Graunke, et al. [11]; all tradi-
tional browser operations can be expressed in this calculus.
Consequently, these primitives are the only user operations
about which our verification tool needs to reason.

Like Graunke et al. [11], we distill the Web to a single
server and a single user client. The user’s client displays
Web pages and accepts input; each page includes some text
and provides a single form that can be submitted. The client
stores a currently active page and a list of previously visited
Web pages (which initially contains some start page), and
at each step the client can either submit the current page’s
form or switch to a previously visited page. When the user
submits a form, the server dispatches the request to the cor-
rect Web program, which generates and returns a new page
based on the client’s input. When he switches the client’s
currently active page, the client does not communicate this
change to the server. It is the Web program’s lack of knowl-
edge about these switches that causes so many subtle bugs.

In the present work, we make two simplifying assump-
tions about the user operations: we do not account for the
user typing in a URL, and we assume that a Web browser’s
cache contains all previously visited Web pages. Given
these assumptions, we can express the following user op-
erations as combinations of switches and submits: submit-
ting forms, following links, clicking the Back and Forward
buttons, choosing a page from the history or bookmarks, re-
freshing a page, and cloning (i.e., opening a new copy of)
a browser window. Verifying using this calculus provides
some robustness in the face of new operations that browsers
might someday provide—as long as they can be expressed
in terms of switch and submit, we will not need to change
our technique. The exact translation of each operation to
switches and submits is in our technical report [17].

3 Generating Models From Source

In this section, we describe how we generate a model of
the control flow of a Web program from its source code. We
assume that the programs we verify are written using special
Web-interaction procedures. In the present work, we ana-
lyze programs written in PLT Scheme that exploit the Web

programming procedure send/suspend [13]. This pro-
cedure consumes a representation of a Web page and sends
that page to the user; when he submits the form on the pro-
vided page, the Web program resumes computation with the
values submitted by the user. In PLT Scheme, this primitive
is implemented using continuations (following the lead of
Queinnec [20], and as other Web servers also do [1, 2]).
When a Web program is written in this form (rather than as
a collection of independent scripts), it is not necessary to
reason about the marshalling and unmarshalling of data at
every Web-interaction point.

We model a Web program P by its Web control-flow
graph (WebCFG). The WebCFG is an augmented control-
flow graph (CFG). We define the CFG (N,n0, E) of a pro-
gram P as follows:

• The node set N contains one node corresponding to
each expression in the source code of P . We denote
by expr(n) the source expression corresponding to the
CFG node n.

• n0 ∈ N is a unique start node
• The edge set E ⊆ N ×N contains an edge (n1, n2) iff

expr(n2) might be the next expression to be evaluated
after evaluating expr(n1).

This CFG corresponds to Shivers’s 0CFA [21], in that it
identifies all executions of a single source expression.

As we saw in the Orbitz example, we must add the con-
trol flow engendered by user operations to our model if
we are to build a sound verification tool. By the reduc-
tion to primitive user operations in Section 2.3, we must
only account for switch and submit. When the user per-
forms a switch and then a submit, he causes the program
to return from a different Web interaction expression than
normal control flow would predict. That is, when the user
performs a switch, he changes which Web-interaction call
will be returned from on the next submit; the program will
return from the one that generated the page to which he
switched. A submit without any switches introduces no new
control flow—control proceeds as expected to the succes-
sors of the Web interaction expression that generated the
submitted page.

To model the control flow enabled by switch, we should
add a transition from each Web-interaction node w to the
successor nodes of each Web-interaction node that the user
passed through before reaching w; this corresponds to the
user being able to return from (i.e., switch to) any previously
visited page. Because adding this exact set of edges for all
possibles executions will explode the size of the model, we
overapproximate by adding to the CFG an edge from each
Web interaction node to the successors of every other Web-
interaction node (regardless of whether those nodes were
passed through on any particular execution).

Formally, we can define the WebCFG
(NWebCFG, nWebCFG

0
, EWebCFG) of a Web program P

Figure 3. Orbitz WebCFG

x2

flight−displayed

use flight
to compute

flight
setsend

page listing flights

send page displaying
reservation

compute
flight−reserved

using flight

w3

w1 a b c

w2d

page
send flight−detail

x3

x1

This figure uses the same arrow convention as Figure 2.

with CFG (NCFG, nCFG
0

, ECFG) as follows. Let W be
the set of Web interaction nodes in P . Let X be a set
of fresh nodes, called post-Web-interaction nodes, where
|X| = |W | and xi ∈ X is called the post-Web-interaction
node corresponding to wi ∈ W . Then:

• The set NWebCFG of nodes is given by NCFG
⋃

X .
• nWebCFG

0
= nCFG

0
.

• The set EWebCFG of edges is the union of

• {(n1, n2) where n1, n2 ∈ NCFG − W and
(n1, n2) ∈ ECFG}

• {(xi, n) where (wi, n) ∈ ECFG}
• {(wi, xj) for all wi ∈ W and xj ∈ X}.

We could have directly added edges from each Web-
interaction node to the successors of every other Web-
interaction node, but we have instead introduced the post-
Web-interaction nodes to collect these edges—the reasons
for this are detailed in Section 6.1.

We construct the WebCFG completely automatically
from the source of a Web program using a standard CFG
construction technique (Set-Based Analysis [10, 14] ap-
proximates the values of procedure-call positions; the CFG
can then be constructed by traversing the program’s syn-
tax) followed by a simple graph traversal to add the post-
Web-interaction nodes and the Web-interaction edges. Fig-
ure 3 presents the WebCFG corresponding to the Orbitz
CFG considered in Figure 2.

4 Properties

If we annotate the nodes of the WebCFG with elements
of some set of atomic propositions, then the graph will de-
scribe all traces (atomic proposition sequences) that might
occur during execution. The developer formulates a desired
property as a set of traces that should occur. Verification
then reduces to containment of the former in the latter [23].

Developers specify a set of traces as an automaton whose
input alphabet is the set of atomic propositions. Following
Naumovich and Clarke [19], whose algorithms we employ,

we require developers to write separate automata for safety
and liveness properties. (Alpern and Schneider [3] prove
that any property described in terms of traces can be decom-
posed into safety and liveness properties.) Because safety
properties are refutable by finite traces, they are expressed
as finite-state, finite-word automata with a designated vio-
lation (i.e., non-accept) state. Liveness properties are writ-
ten as deterministic Büchi automata [7]. The determinism
is imposed by the model-checking algorithm we have cho-
sen [19], and in principle slightly limits the class of prop-
erties we can verify (though we have not encountered this
obstacle in practice).

To state concrete properties about Web programs, we
must overcome two more challenges:

• To express the Orbitz property, we must be able to
talk about strings (the flight-displayed and
the flight-reserved) that appear on Web pages.
How can we identify the program expressions that gen-
erate these strings?

• The atomic propositions that label WebCFG nodes
must be simple enough to be generated automatically,
yet rich enough to enable the expression of interesting
properties. What should these be?

The next two sections address each of these problems in
turn. We then present some example properties, followed
by three common property idioms that ease specification.

4.1 Identifying Web-Page Content

How can we associate Web-page contents with the
source expressions that generate them? Parsing the HTML
fragments in the program to search for strings is likely to be
complex, unwieldy and highly sensitive to data and format-
ting changes. Forcing the developer to use special language
constructs to label source expressions is intrusive and not
portable. Finally, using static-distance coordinates is brittle
in the face of program evolution.

We create a solution that is lightweight, robust in the face
of change, and unintrusive by observing that the association
is often already in the Web program’s source! Web devel-
opers often use Cascading Style Sheets (CSS) to tag impor-
tant page elements with an ID for which independent style-
sheets provide formatting directives. We simply ask devel-
opers to associate a CSS ID with any Web page element
they want to refer to in a property and then to use the ID
in an atomic proposition. This ID allows us to identify the
source expression that generates the associated Web page
element. We similarly use the names of user-input fields to
identify source expressions that extract the values of sub-
mitted forms. This solution avoids the complexity and brit-
tleness of the other proposed solutions and has the added ad-
vantage of being very easy for developers to comprehend—

we have essentially integrated Web presentation elements
into the property language.

We refer to a source expression that generates a CSS-
tagged HTML element or extracts form input as a tagged
expression. For example, the Orbitz code might contain
tagged expressions that generate HTML with CSS IDs
flight-displayed and flight-reserved, while
a search engine might contain one that accesses the user in-
put query.

4.2 Atomic Propositions

We give a brief description of our atomic propositions
here; a formal treatment is presented in Appendix A.1-2.
Some of our atomic propositions are designed for reasoning
about misuse of two sets of data bindings: the data local
to each page the user sees (e.g., hidden form fields) and
the data shared by all pages (e.g., session state or cookies).
Many common errors in Web programs result from this mis-
use [11, 12]. The two data sets have different properties
when the user performs browser actions between the gen-
eration and the submission of a given Web page: bindings
local to each page are guaranteed not to change between
page generation and submission, whereas shared bindings
may be modified.

Our set of atomic propositions consists of:

• tagged propositions that are true on WebCFG states
corresponding to Web program expressions with CSS
or user-input tags. These allow the developer to check
that certain states have certain values and to reason
about the value flow from one expression to another.

• set and join propositions that are true on states cor-
responding to operations on shared data. set oper-
ations replace one value with another, whereas join
operations add a new value to a collection including all
the old ones (for example, mutatively adding to a list is
a join). These propositions are useful in specifying
the Orbitz and Amazon properties.

• web and postweb propositions that are true at
states corresponding to Web-interaction expressions
and their successors. These propositions allow the
developer to write properties about the sequencing of
Web-page generation.

The WebCFG can automatically be annotated with these
atomic propositions using the results of a data-flow analysis.
However, this analysis requires knowledge about the poten-
tial return values of all primitive operations, which means
knowing the sets of values that a user might type into each
form field. As in the work of Godefroid [5], we presume
that the developer has written down some approximation
of these values. We assume our tool is given an explicit
dictionary-style mapping from field names to values; this

mapping could be generated from a more sophisticated (and
hence less burdensome to create) user input abstraction such
as Godefroid’s SmartProfiles.

4.3 Example Property Automata

In the following, we label the violation state of a safety
property v and the accept states of a liveness property with
double concentric circles. Any atomic proposition that is
not shown labels a self-loop; any part of a proposition
shown with an underscore does not affect atomic proposi-
tion matching.

Assuming that there is an expression with CSS tag
password-entry on the password page and an expres-
sion with CSS tag access-controlled on the access-
controlled page, we can translate the password-page safety
property described in Section 2.1 into a property automaton:

1

2

v

(tagged,password−entry,_,_)

(tagged,access−controlled,_,_)

Assuming an input tagged query and a page element
tagged display-query that displays the query back to
the user on the results page, we can check the property
that a search engine always displays the results of a user’s
query on the next-generated page in part by verifying that
the following automaton is satisfied (we also need to verify
that display-query takes the value of query; see Sec-
tion 4.4). This automaton uses the web propositions to state
that the displayed text is generated before the next page is
sent:

1

2

(tagged,display−query_,_)

v
(web,_)

(tagged,query,_,_)

Assuming a tag portal on a portal page, we can check
that a portal page is always eventually reachable by verify-
ing that this automaton is satisfied:

1

2

(web,_)

(tagged,portal,_,_)

4.4 Property Idioms

Though we could now write the Orbitz and Amazon
properties directly as automata, we instead define three
property idioms of which they are instances. We write these
idioms as automata in Appendix A.3.

So far, we have described the Orbitz property as
a relationship between the value of the expression
tagged flight-displayed and the value of the ex-
pression tagged flight-reserved: the value of
flight-reserved must be generated from the value
of flight-displayed displayed on the page that
the user submitted to make his reservation (call this
page pprev). This property is implied by the con-
junction of two other properties. First, all poten-
tial values of flight-reserved are also values of
flight-displayed. Second, no values used in the
computation of flight-reserved that were present
when pprev was generated have changed since its genera-
tion. Similarly, we want to capture the Amazon property
that once a user selects an item to buy, it it appears in his
shopping cart. Assuming appropriate CSS taggings, we
state this by saying that the shopping-cart contains all
values input as selected-item.

We offer generalized versions of these properties as id-
ioms in our property language. In the following definitions,
let e1 and e2 denote expressions in the Web program source.

• We say that e1 takes the value of e2 iff any potential
value of e1 must also be a value of e2. The first Orbitz
subproperty is an instance of this idiom.

• Let pprev denote the last page the user saw before the
evaluation of e1. Then we say that e1 is page iff no
values used in the computation of e1 that were present
when pprev was generated have changed since that
page’s generation. The second Orbitz subproperty is
an instance of this idiom.

• We say that e1 accumulates the values of the e2 iff the
value of e1 contains the value that e2 produces at each
evaluation (where the exact notion of containment de-
pends on the type of value that e2 produces). The Ama-
zon property is an instance of this idiom.

5 Verification Process

The model and property language described above are
derived from those used in the FLAVERS toolkit [8]: the
FLAVERS algorithms consume a model represented as a
graph whose nodes are annotated with certain atomic propo-
sitions and a property written as an automaton over those
same propositions. We may thus reuse the FLAVERS model
checking algorithms in our work. We give only an intuitive
description of the algorithms; they are presented formally
by Naumovich and Clarke [19].

In FLAVERS, a slightly different algorithm is used for
verifying liveness properties than for verifying safety prop-
erties. Both start with a common subroutine: traverse the
model and associate with each model state the property

states that are reached at that model state (the atomic propo-
sitions reached on model states drive the property automa-
ton). Continue until no model state n can be reached with
the property in a state not already associated with n.

Then, to check if a safety property is true for the model,
ascertain that no model states are associated with the vio-
lation state of the property. Recall that a liveness property
is expressed as a deterministic Büchi automaton, and that
such an automaton accepts a string iff it reaches an accept
state infinitely often. To check a liveness property, form a
cross-product graph between each state in the model and
the property states that were reached at that state, and prune
this graph of all nodes where the property is in an accept
state. Then, ascertain that this restricted graph does not con-
tain any strongly connected components. This is a standard
model-checking technique (used also in LTL model check-
ing [7, 23]); it relies on the observation that an infinite path
where the property never reaches an accept state exists iff
such a strongly connected component exists. It is this step
that requires the restriction of our property language to de-
terministic Büchi automata.

At this point, we are able to discover the bug in a model
of Orbitz. Using the state labellings from Figure 3 (and
only mentioning the depicted nodes), we see that the trace
[w1, x1, a, b, c, w2, x2, d] violates the property that the ex-
pression tagged flight-reserved is page.

6 Improving Precision and Efficiency

In this section, we present two improvements upon our
verification technique. The first reduces the number of spu-
rious errors; the second improves the time efficiency of the
verification task.

6.1 Constraint Automata for Better Precision

When we discovered the Orbitz bug, we also found that
the trace [w1, x2, d, w3, x1, a, b, c, w2, x2, d] failed to sat-
isfy the desired property. This corresponds to the user vis-
iting the successors of the second Web-interaction point
before he has even gotten to generating the second page,
something he clearly cannot actually do. Where did this
spurious path come from? When we first defined the Web-
CFG, we added edges from each Web-interaction node to
the successor of each other Web-interaction node. This
overapproximates the control flow introduced by Web in-
teractions: in reality, a user can only switch to pages he has
seen before, not to any page at all. In this case, the overap-
proximation resulted in a spurious trace being reported for
a program that actually was incorrect. In other cases, it will
cause correct programs to be deemed incorrect—for exam-
ple, the password-page property would never hold, as these

spurious model paths would make it seem as if the user
could always jump directly to the access-controlled page.

We can improve the number of correct programs that we
deem correct by eliminating these infeasible paths. The
naı̈ve way of accomplishing this would be to redesign the
WebCFG, adding many slightly augmented copies of the
original graph to represent the enabling of new transitions
and adding the appropriate transitions between these copies.
This approach would cause an exponential explosion in the
size of our model, which in turn would drastically increase
the time required to check properties over it.

Fortunately, the FLAVERS algorithm gives us a better
option. The full FLAVERS algorithm allows the developer
to specify any number of constraint automata in addition
to the property. A constraint automaton, like a safety prop-
erty, is a finite-state, finite-word automaton with a single
violation state that is driven by the propositions reached on
the model states. However, the interpretation of reaching
the violation state is different: when a constraint automa-
ton is violated, the model path leading to that violation is
no longer considered valid; the property is thus allowed to
be violated on such paths. The modified FLAVERS kernel
can be used directly for the safety property algorithm; it re-
quires only a slight modification (the cross-product graph is
now over the model, the property, and all of the constraints)
for the liveness-property algorithm. Constraints thus pro-
vide an easy and efficient way to prevent certain paths in
the model from affecting the results [8].

Helpfully, the constraints needed to remove the spurious
paths we introduced in the WebCFG can be generated au-
tomatically. We create one constraint of the following form
for each Web-interaction node:

1

2

v

(web,m)

(postweb,m)

Constraint m will be violated on any path where post-Web-
interaction node m is visited before Web-interaction node
m; since we have a constraint for each Web-interaction
node, at least one constraint will be violated on any path that
includes a switch to a previously unvisited page. The post-
Web-interaction nodes are necessary for specifying these
constraints: because we have folded all evaluations of an
expression into one WebCFG node, any original CFG node
can potentially be reached before any given Web interaction
node. Thus, none of these original nodes can be used as the
atomic proposition that sends the constraint to its violation
state without creating the possibility that the constraint will
be violated on a valid path.

6.2 Property-language-driven Optimization

Our labelling function associates certain nodes in the
WebCFG with the empty set of atomic propositions. Be-
cause of the way we have defined the verification process,
these unlabeled nodes have no influence on the verification
results (since the atomic propositions reached on the model
states are the inputs to the property and constraint automata,
traversing unlabeled model states will have no effect). Thus,
we remove any sequence of unlabeled states from the graph,
connecting the predecessors of the sequence directly to its
successors. The impact of this optimization on the model
size of an example program is presented in Section 8.

7 Soundness and Complexity

We can now state a soundness result of our model
checker: if the model checker claims that the WebCFG of
a Web program P has a certain property, then that prop-
erty will hold for all executions of P during which the user
performs only switches to previously visited pages and sub-
mits. This result follows directly from the soundness of the
FLAVERS algorithms and the fact that the WebCFG and the
atomic proposition labelling are overapproximations. The
WebCFG overapproximates the control flow of the Web
program (i.e, if a sequence of expressions is evaluated in or-
der in some execution of the program, then the correspond-
ing sequence of nodes appears in the WebCFG) because the
standard CFG construction techniques yield an overapprox-
imation and the edges added to form the WebCFG but not
disallowed by the constraints exactly reflect the control flow
enabled by the user operations. Our atomic proposition la-
belling is an overapproximation (i.e., if an atomic propo-
sition holds for a program expression, then the WebCFG
node corresponding to that expression is labelled with that
proposition) because Set-Based Analysis [10, 14] overap-
proximates runtime values. These two facts imply that the
set of atomic proposition traces along paths in the WebCFG
is a superset of the set of atomic proposition traces that ac-
tually occur at runtime. By the soundness of FLAVERS, if
the model checker claims that a given property holds for a
WebCFG, then that property is true for all atomic proposi-
tion traces along paths through the WebCFG; in particular,
it is true for the subset of those traces that occur at runtime.

The complexity of our method is determined by the com-
plexities of the various phases. The data-flow analysis has
worst-case time complexity O(n3) where there are n ex-
pressions in the program source; building the WebCFG
then takes time O(n2), so the time for constructing the
model is O(n3). The FLAVERS safety algorithm takes time
O(n2 · p · k) where p is the number of states in the property
and k is the product of the numbers of states in each of
the constraints. If a developer uses only the constraints we

generate for the Web control flow, then there will only be
one constant-size constraint for each Web-interaction node.
Thus, k is O(w), where w denotes the number of Web-
interaction nodes, and therefore k is O(n). In this case,
we get an overall worst-case upper bound of O(n3 · p), but
we will often do better—w is likely to be much less than
n. Checking liveness properties requires additional time for
detecting strongly connected components. Our space com-
plexities are the same as those of FLAVERS.

8 Implementation and Results

We have implemented the algorithms described above
for constructing the WebCFG and verifying safety and live-
ness properties. Our implementation accepts Web programs
written in PLT Scheme, so we rely on an implementation of
Set-Based Analysis called MrFlow [18] for our data-flow
analysis. Because our notion of atomic-proposition match-
ing is nuanced (see Appendix A.2), we use a quick reimple-
mentation of the relevant algorithms.

Our implementation makes some simple assumptions to
aid in data reasoning. MrFlow does not provide useful value
set information about strings, which constitute most Web
pages. This is because strings can be combined and de-
composed in an arbitrary manner. In contrast, many Web
applications do not decompose strings; they only combine
strings collected from various sources. (The use of struc-
tured forms decreases the need to inspect strings for implicit
patterns, such as prefixes that determine gender; this infor-
mation is instead collected explicitly through separate form
fields.) These strings therefore closely resemble collection
data structures such as lists (about which MrFlow provides
rich value-flow information). We therefore map the string
primitives onto list primitives, which enables us to trace the
flow of strings through the program. This restriction has
sufficed for the programs we have verified.

We have successfully applied our verifier to both correct
and incorrect program snippets corresponding to the exam-
ples discussed in this paper. Additionally, we have begun to
verify CONTINUE [15], a conference-management system
that has been used for ISSTA 2004 and many other confer-
ences. Preliminary results are encouraging: an initial Web-
CFG contained 17,200 nodes, but the property-language-
driven state space optimization yielded a model with ap-
proximately 500 nodes (the exact number depends on how
many expressions are tagged for property use).

9 Related Work

There have been some past efforts to apply formal veri-
fication techniques to the Web. De Alfaro [9] uses model
checking techniques to verify properties of static (as op-
posed to interactive and program-generated) Web pages. He

treats the page and link structure of the web as a model
and then verifies properties written in a slightly restricted
µ-calculus over that model. This technique allows him to
check many path properties over static Web sites (such as
the password-page property) and to present errors as paths
through the Web model that violate a given property. Un-
like de Alfaro, we are interested in proving properties of
interactive, program-generated Web sites.

Godefroid’s VeriWeb tool [5] explores interactive Web
sites using a special browser that systematically explores
all paths up to a specified depth. A user of this tool first
makes a model approximating the values that a user might
type into the forms of interest. Next, the user specifies prop-
erties (such as string containment) about individual Web
pages. The verifier then traverses the Web sites of inter-
est and reports errors as sequences of Web operations that
lead to a page which violates a property. Like Godefroid,
we are concerned with verifying properties of interactive
Web sites. However, our work addresses several key limita-
tions of Godefroid’s tool. First, Godefroid does not take into
account user operations, so his tool is unable to catch er-
rors that only occur in their presence. Our verifier accounts
for the control flow enabled by user operations and discov-
ers user-operation-related bugs. Secondly, Godefroid’s ver-
ification is limited to single-page properties. We provide
a method for verifying path properties of interactive Web
sites; in particular, we prove properties true of all paths
through a Web site. We can do this because our verifier
operates statically on the program’s source, whereas Gode-
froid’s tool is dynamic, effectively “running” the Web site
as a Web browser would.

Baresi et al. [4] observe a bug in Amazon and extended
UML’s OCL with assertions to capture it. These assertions
roughly correspond to the properties that we have expressed
with page; in contrast, we provide a much richer property
language. Furthermore, it is unclear how to verify a pro-
gram against their assertions, as the authors provide neither
an algorithm nor a mapping to traditional OCL verifiers.

Our formal model for Web operations is given by
Graunke et al. [11]. Using this model, the authors created
a type system that statically discovers abuses of the values
filled into form fields and devised a strategy for detecting
data inconsistency problems such as the Orbitz bug. How-
ever, these inconsistency problems are only detected dy-
namically through changes to the server’s run-time system.
In contrast, our system is static and can provide guarantees
about all possible execution sequences.

10 Future Work

In the future, we would like to perform more case studies
to further demonstrate the utility of our tool. We expect that
these will help us identify more property idioms, eventually

resulting in a catalog of Web verification patterns.
To verify a larger set of Web applications, we must even-

tually permit richer reasoning about data. In particular, we
must support a broader set of operations on strings (espe-
cially string decomposition), as well as arithmetic opera-
tions. We expect it will be essential to complement our
model checker with a theorem prover: the model checker
would output data propositions to the theorem prover, which
would determine whether the desired property could be
proven from those constraints.

One factor that greatly influences the utility of a model
checker is the quality of the error traces it provides when
a property is violated. Our technique has the advantage of
being able to present traces very intuitively as sequences
of Web pages and Web operations that lead to a violation.
Indeed, we could potentially even generate this output in the
WebVCR format [5] so that a developer could sit back and
watch as the error is played out.

We have restricted ourselves to analyzing programs that
use the send/suspend primitive. Many Web programs,
unfortunately, are not written in this style. We conjec-
ture two solutions to this problem. First, based on prior
work [12], we conjecture that we can use an “inverse CPS
transformation” to convert ordinary CGI programs into a
form suitable for our verifier. However, such a tool would
have to overcome many engineering obstacles. Secondly,
we could treat individual CGI scripts as open features and
use techniques [16] for reasoning about their composition.

Currently, we do not address the concurrency issues re-
sulting from multiple simultaneous accesses to a server by
different clients (which are different from those resulting
from repeated sequential submissions of the same page by
a client). Given that many Web sites allow multiple users
to interact with the same data, this is an important path for
future research. We hope to exploit results on atomicity to
reduce the sizes of models involving multiple clients. This
process might be abetted by the fact that our current design
of the WebCFG includes more knowledge about the partic-
ular sequencing of some events than may be necessary.

Acknowledgements: We thank the anonymous reviewers
for helping us improve the presentation of these results.

References

[1] Mawl. http://www.bell-labs.com/project/MAWL/.

[2] Seaside. http://www.beta4.com/seaside2/.

[3] B. Alpern and F. B. Schneider. Recognizing safety and live-
ness. Distributed Computing, 2:117–126, 1987.

[4] L. Baresi, G. Denaro, L. Mainetti, and P. Paolini. Assertions
to better specify the amazon bug. In 14th Software Engi-
neering and Knowledge Engineering, 2002.

[5] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Auto-
matically testing dynamic web sites. In International World
Wide Web Conference, Honolulu, 2002.

[6] L. D. Catledge and J. E. Pitkow. Characterizing browsing
strategies in the World-Wide Web. Computer Networks and
ISDN Systems, 27(6):1065–1073, 1995.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, Cambridge, MA, 1999.

[8] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil.
FLAVERS: A finite state verification technique for software
systems. IBM Systems Journal, 41(1), 2002.

[9] L. de Alfaro. Model checking the world wide web. Lecture
Notes in Computer Science, Conference on Computer Aided
Verification, 2001.

[10] C. Flanagan and M. Felleisen. Componential set-based anal-
ysis. ACM Transactions on Programming Languages and
Systems, 21(2):369–415, 1999.

[11] P. Graunke, R. B. Findler, S. Krishnamurthi, and
M. Felleisen. Modeling web interactions. In European Sym-
posium on Programming, 2003.

[12] P. T. Graunke, R. B. Findler, S. Krishnamurthi, and
M. Felleisen. Automatically restructuring programs for the
Web. In IEEE International Symposium on Automated Soft-
ware Engineering, pages 211–222, Nov. 2001.

[13] P. T. Graunke, S. Krishnamurthi, S. van der Hoeven, and
M. Felleisen. Programming the Web with high-level pro-
gramming languages. In European Symposium on Program-
ming, pages 122–136, Apr. 2001.

[14] N. Heintze. Set-based analysis of ML programs. In LISP
and Functional Programming, 1994.

[15] S. Krishnamurthi. The CONTINUE server. In Symposium on
the Practical Aspects of Declarative Languages, 2003.

[16] H. C. Li, S. Krishnamurthi, and K. Fisler. Modular verifica-
tion of open features through three-valued model checking.
Automated Software Engineering: An International Journal,
2003.

[17] D. Licata and S. Krishnamurthi. Verifying interactive web
programs. Technical Report CS-03-18, Brown University,
2003.

[18] P. Meunier. Selector-based versus conditional-constraint-
based data-flow analysis of programs. Master’s thesis, Rice
University, 2001.

[19] G. Naumovich and L. A. Clarke. Extending flavers to check
properties on infinite executions of concurrent software sys-
tems. In Monterey Workshop on Engineering Automation for
Software Intensive System Integration, 2001.

[20] C. Queinnec. The influence of browsers on evaluators or,
continuations to program web servers. In ACM SIGPLAN In-
ternational Conference on Functional Programming, 2000.

[21] O. Shivers. Control-flow analysis in scheme. In SIGPLAN
Conference on Programming Language Design and Imple-
mentation, 1988.

[22] M. Slatalla. Big, curved and road-ready? Book it. New York
Times, 07-17-2003.

[23] M. Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification. In Logic In Computer
Science, pages 332–344, 1986.

A Appendix: Full Property Language

1. Data-flow Analysis

Our property language relies on the results of a standard
data-flow analysis. In this work, we use Set-Based Anal-
ysis [10, 14], which produces three useful outputs. First,
it computes an overapproximation of the runtime values of
each expression in the source of the program. Second, it
generates a set of flow variables for each expression in the
source; this set contains one flow variable for each potential
value of that expression. The value set enables reasoning
about the values of an expression, whereas the flow variable
set enables reasoning about value flow between expressions.
Thirdly, it computes a dataflow graph.

2. AP and Labelling

Our atomic propositions rely on a distinction between two
sets of bindings, the environment (data local to a Web page),
and the store (data shared by all pages). We assume that
a Web program has exactly two syntactically identifiable
store operations set and join. A set replaces the value
of its first argument with the value of the second, whereas a
join adds the value of the second to a collection containing
all values previously joined to the first.

expr(n) denotes the source expression corresponding to
the WebCFG node n. Tags denotes the set of all tags;
nodes(tag) denotes the WebCFG nodes tagged with tag ∈
Tags. V denotes the set of all program values, FV denotes
the set of all flow variables, and for n ∈ NWebCFG, V (n)
and FV (n) denote the value and flow variable sets corre-
sponding to expr(n). Flow-variable expressions are de-
scribed by the grammar FVE ::= s | v | SCv and
SC = = | ⊆ | * | ⊇ | + where s ⊆ FV and v
is a flow-variable variable.

AP consists of five kinds of tuples,
tagged, set, join, web, postweb. Their
types are as follows: (tagged, Tags, V, FV),
(set/join, Exprs, FV E, FV E), and
(web/postweb, Z). A labelling function L : N → P(AP)
associates each node in the WebCFG with a set of atomic
propositions that are true at that node. For a given n, L(n)
includes:

• (value, tag, V (n), FV (n)) iff n ∈ nodes(tag).
• (set/join, nx, FV (nx), FV (nv)) iff expr(n) is an

expression that sets or joins expr(nx) to expr(nv).
• (web/postweb,m) iff n is Web-interaction or post-

Web-interaction node number m (corresponding
Web/post-Web nodes have the same number).

There are a few subtleties in how the developer uses
these atomic propositions in properties. When writing set

1 2 v

takes the value of

(tagged,tag1,_,X)

(tagged,tag2,_, X)

(tagged,tag2,_, X)

1 2 v

(value,id,_,_)

page

(set,<n>,_,_)
(join,<n>,_,_)

1

accumulates

(tagged,tag2,_,f2)

32 v

(tagged,tag1,_,_)

(join,_,f1,f2)

(tagged,tag1,_, f2)
(tagged,tag1,_, f2)

Figure 4. Property Idioms as Automata
expr(tag2) takes the value of expr(tag1), expr(tag)
is page, and expr(tag1) accumulates the values of
expr(tag2). For page, we label the transition from state 1
to state 2 with one set and one join for each node whose
value is used to compute expr(tag) (we identify these using
the dataflow graph).

and join propositions explicitly, the developer must ei-
ther specify the CFG node by source position, not specify
it at all, or use a rule to generate properties for the spe-
cific model being checked (we use the second and third ap-
proaches when we write page and accumulates as automata
in Figure 4). The use of flow-variable expressions exploits
the fact that our verification algorithm is parameterized by
the definition of atomic-proposition matching (which de-
termines which transition a property should take when a
given model proposition is announced). Other than FVE
positions, atomic propositions must exactly match. FVE
positions are matched as follows: a literal set in the prop-
erty matches an identical literal set from the model; a flow-
variable variable in the property matches any literal set on
the model, and the variable is associated with the literal set
in a relation kept by the matching routine; a set-constraint
in the property matches a literal set in the model iff the con-
straint is satisfied for all literal sets related to the constraint’s
variable. This notion of matching allows us to use value-
flow relationships in temporal properties (as we do in takes
the value of and accumulates in Figure 4).

3. Property Idiom Translation

Figure 4 shows how to write our idioms as automata over
the full set of atomic propositions. takes the value of is
simple to express with flow-variable set-constraints. page
requires that no value used to compute the page value can
be kept in the store (if some value were kept in the store, the
Web control flow would allow it to be mutated between page
generation and submission). accumulates requires that the
accumulated value be joined to the accumulating value.

