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Abstract

Feature-oriented programming organizes programs around featffeer than objects, thus better supporting
extensible, product-line architectures. Programming languages sirogasupport this style of programming, but
programmers get little support from verification tools. Ideally, progrears should be able to verify features inde-
pendently of each other and use automated compositional reasoninigtezhto infer properties of a system from
properties of its features. Achieving this requires carefully designedactss: they must hold sufficient information
to enable compositional verification, yet tools should be able to generatfeftiisation automatically because ex-
perience indicates programmers cannot or will not provide it manuAtypresent a model of interfaces that supports
automated, compositional, feature-oriented model checking. To denatatheir utility, we automatically detect the
feature-interaction problems originally found manually by Robert Halhie@nail suite case study.

1 Introduction

Modules are crucial to large-scale software constructar72]. Modules divide a system into coherent collectidns o
data structures and functionality that programmers cagnalske into a suite of services. The benefits that modules be-
stow, such as independent development and code reuse,imwea the widespread adoption of modules in software
development.

Having different developers write the modules in a systeanegiases the likelihood of incompatibility between
modules. Programmers therefore need some level of corguosirification to protect against latent errors that are
not detected until late into development or even deploymBrie checking at module boundaries is perhaps the most
basic and widespread form of verification. Each module’srfate specifies its services as a series of function or
method names and the type signatures on their inputs andteuthbe module also specifies the interfaces it expects of
the modules with which it will eventually compose. Type dkers confirm that an individual module satisfies its own
interface and that it uses services from other modules ¢gpectly. Modern languages such as ML [MTH90] and
Java [GJS96] support this basic notion of modular veriftggtand it is so useful and convenient that programmers

use it daily without complaint.
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While type-based modular verification is a handy first line efiethse, it proves only a very simple theorem (typi-
cally, that well-typed programs will not go “wrong” [Mil78]furthermore, this theorem is fixed and built into the type
system. Developers often need to prove richer theoremst @system’s behavior. Behavioral verification can un-
cover subtle errors such as concurrency violations, raeditons, deadlock, and progress failures. As programa gro
more complex, and increasingly use communication and aogrecy, behavioral verification grows more critical.

The feasibility of modular behavioral verification is urtiamately diminished by a simple but critical practical con-
cern: the need for specifications. While programmers vofintarite types, decades of experience have shown that
programmers are highly unlikely to write more complex sfieations of a module’s behavior. This problem persists
even when these specifications are fed to tools that cand@@ancrete feedback [FLO1]. Worse, programmers often
simply lack sufficient understanding of the program’s bétwasnd may not have the training necessary to correctly
use the specification logics. Without specifications, haxethe modular verification tools cannot function, leaving
the programmers who most need verification unable to exiploit

One tempting proposition is to compose a complete progranoftihe modules, then verify the program as a
whole. Verifying the entire program, however, has sevenartsomings. First, not all modules are available at the
same place, because they are written by independent aahdrassembled (in a componential fashion [Szy98]) by
a client. Second, even when the modules are available (dhg atient), the total number of system configurations
can be too numerous: for instance, in a product line construfCNO02], the total number of combinations of product
line features can exhibit combinatorial explosion. Fipadlven a single one of those configurations may be too large
to verify en masse due to the well-known problem of stateasiph [CGP0O].

For behavioral verification to be useful and tractable ircpica, it must therefore apply to modules, rather than only
to whole programs. Ideally, modularverification methodology should support proving propardout individual
modules and inferring properties of composed systems frapgties of the individual modules; furthermore, these
methods should retain the automation of type checking. Nhagbrtantly, given a behavioral property expected of a
whole system, the technique must automatically generatenttdule specifications because programmers often will
not, and sometimes may not be able to, supply them. This i®¢bence of automated software engineering: to
automatically handle tasks that programmers cannot, dnai] perform manually.

The verification technique that this paper defines spedyiealdresses feature-oriented modules. These modules
encapsulate individual program features that cross-cstesys and contain state-machine representations of code
fragments that implement a feature’s functionality forkeactor in the overall system. In recent years, researchers
from a variety of applications areas have noted that progrizug with cross-cutting concerns can simplify a variety
of software engineering problems such as maintenancejtemo] and product-line development [BO92, CNO02].

This paper focuses on the interfaces that feature-oriantatiles need in order to support modular model check-
ing of behavioral properties. Interfaces must contain cieffit information for tools to prove whether composition
would violate the properties proven of an individual moduldis requires interfaces to contain constraints, similar
to verification conditions, that other modules must sat&fgomposition time. Our methodology derives these con-
ditionsautomaticallyduring feature verification. Thus, for feature-orienteddules we are able to lift the benefits of
automated modular verification to the level of behavioralarties.

This paper also demonstrates the utility of our interfabesitgh a case study, which we use as a running example
throughout the paper. The case study is based on an anafyais email system originally conducted by Robert
Hall [Hal00]. This example is interesting because it camtah substantial number of feature interactions; in our
methodology, these manifest as properties that hold ofiiddal features, yet fail after composition. Hall origilyal
identified these interactions manually. Using our methogpl we can detect these interactions automatically and
compositionallygiven desired properties of the individual features.
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Figure 1: Three features: the base feature, encryptionfeamerding. Dashed states unify with concrete states durin
feature composition. Control leaves the base feature tfirdle states labelddcomingand outgoingand returns
through those labelethail anddeliver.

Section 2 provides an overview of the case study used in #pgip Section 3 presents an overview of and prior
work on open systems. Section 4 describes our core approdehttire-oriented verification in the context of closed
systems. Section 5 extends our approach to open systemrSg@presents the results of our case study. Section 8
reviews related work. Section 9 offers concluding remarks.

2 A Motivating Scenario

We illustrate features and their interactions, and use ail@pplication as a case study to show how they lead to open
systems. The example we present is originally due to Robalit{Hal00]. The application offers several features, a
characteristic of product line systems; these featurestaamever, adversely interact with one another in many ways.
The application provides a database which stores infoomatertinent to individual users, such as their encryption
keys, mail aliases, and forwarding addresses (if any). Ppéication contains the following features (Figure 1 shows
some of their state machines): basic mail delivery, digitghatures, forwarding, anonymous remailing, encryption
decryption, signature verification, auto-reply, filterifigased on sender’'s hostname), and mail hosting. The fasature
connect through a pipe-and-filter style architecture [SG96

The following properties, elicited by Hall, should hold ofsgstem containing these features. There are two
propositions for sending maitleliver andreceived. Deliver indicates a message that reaches the current user, while
received indicates a message that was mailed to an external user aciteethe recipient.

The properties are stated both in English and in the tempmged CTL [CES86, CGP00]. CTL formulas describe
properties of states of a system. A CTL operator consistavofdesignators: a path quantifigk {or all paths orE



for some path) and a temporal operat@rfor all times,F for some future timey for until, andR for release. Rather
than reproduce the formal semantics, we provide four exaesnl CTL formulas and their English interpretations.

e AFp says “on all pathg is true at some future state”.
e AGy says “on all pathsp is true in all states” (i.e is true in all reachable states).

e E[p U y] says “there exists a path on whighis true in every state untib becomes true”y must be true in
some state along the path).

e Alp R ] says “on all pathsy) must continue to hold untip holds (if o never holdsy) must hold indefinitely)”.
ReleaseR) is the dual of until U).

Hall found a variety of interactions by manually inspectimgmerous configurations of these features. Many
of these interactions violate straightforward requireteam the individual features; this paper studies ten ofaghes
requirements. We state the requirements both informallyimiCTL.

1. Once a message is signed, the sender field is not altenéthennessage is delivered or received.
Formula:AG[ sign-msg — A[ sender-unchanged U (deliver Vv received) ]

2. When a message is ready to be remailed, it is never mailedithuthe sender’s identity exposed.
Formula:AG[ wantsRemail — A[ anonymous R —mail]]

3. If areceiver tries to verify a signature, then the messagst be verifiable.
Formula:AG[ try-verify — verifiable ]

4. When a message is encrypted, it is never decrypted andehemsghe clear.
Formula:AG[ encrypt — A[(deliver Vv received) R AG —(decrypted A E[ —encrypted U mail])]]

5. If a message is to be remailed, it is formatted correctiyitie remailer to process it.
Formula:AG[ toRemailer — in-remailer-format |

6. If an auto-response is generated, the response everituddlivered or received.
Formula:AG[ auto-response — AF (deliver Vv received)]

7. There is no loop where messages are infinitely mailed badKath.
Formula:AG AF ready

8. If a message is forwarded, it is eventually delivered oereed.
Formula:AG[ forward — AF (deliver Vv received)]

9. If the auto-responder replies to a message, then thatgessubject line must be in the clear.
Formula:AG[ auto-response-incoming — clear]

10. If an outgoing message is signed, then its body is nevarged unless is it delivered or retrieved.
Formula:AG[ sign-mail A signed — A[ delivered V retrieved R body-unchanged ]]

11. If a mailhost generates an error message, then that geeissaventually retrieved or delivered.
Formula:AG[ mailhost-errorMail — AF (deliver Vv received)]

Each of these properties holds in the feature that implesniéntEach property also fails when the feature that
implements it is composed with another (specific) featurectiBn 6 describes these interactions and the specific
aspects of our methodology that detect the failures.



3 Open Systems and Prior Work

Consider property 4 of the email application, which staleg bnce a message is encrypted, it is never sent out on
the network in the clear. This property holds of the encoypfieature. If we compose the encryption feature and
the forwarding feature, we will need to check that the folirrg feature preserves this property. The standard CTL
model checking algorithm [CES86] is potentially unsounthis case, however, because the forwarding feature’s state
machine does not contain the propositencrypted. This is not a design erroEncryption is not part of forwarding,

so the forwarding feature should not contain referencebeaniessage attributes associated with encryption. This
separation of concerns, which underlies feature-orietsign, inherently yields verification tasks involving nokvn
propositions; unknown propositions lead to open systems.

The existing work in open systems addresses two forms ofrasn uncertainty in transitions and ignorance of
propositions. Kupferman, Vardi, and Wolper address thenér[KVW98]. Their work considers cases in which
properties fail due to the values generated by an envirohmedel; their methodology reports a property true of a
system only if that property holds regardless of the envirent. The work in modal transition systems, similarly,
deals with uncertainty of transitions [HJS01]. In contrast are concerned with property preservation under specific
compositions; most cases of feature interaction arise imexts where some compositions violate properties and
others do not. The Kupfermaeat al. approach is therefore too restrictive for our work.

Bruns and Godefroid consider propositions whose valueksawn; these propositions arise from partial Kripke
structures [BG99]. They employ a 3-valued logic to pres@raperties of the partial system in the complete structure.
Our work differs in the source of the unknown propositions. their work, the unknown propositions arise from
considering only a portion of a full state space. In ours,uhknown propositions arise from tipeopertiesthat we
wish to verify. The features themselves are closed (by coctivn) but lead to open system considerations when
verified against properties containing propositions frofmeo features. Furthermore, their work does not address
a compositional methodology or other open system concesunsh(as refinement of propositions and distinctions
between control and data propositions) that we motivataig\gaper. Our methodology does exploit their algorithm
for implementing a 3-valued CTL model checker from an erist2-valued one [BGOQO]. Chechik, Easterbrook, and
Devereaux’s multi-valued model checker [CEDO1] sharesti@tcomings of Bruns and Godefroid’s work from the
perspective of this work.

The differences between our view of open systems and thodege previous works arise from the models of
composition that each work employs. Features encapswdited portions of a system and compose in a quasi-
sequential manner. Open systems in which unknown valuse arithe models (rather than from the properties)
require another module (the environment) running in pak#tl supply the unknown values; Kupfermanal’s work
operates in this context. Bruns and Godefroid’s work alqmeaps to assume this because their unknown propositions
may change value anywhere within a state space (suggeséinthe decision of how and when values change is under
the control of an external, simultaneously executing gntiin our work, the unknown propositions arise either from
data attributes controlled by other features, or from admnariables that are local to other features. These difieze
force us to develop a new methodology for open system vetiiita

Recent work by Giannakopoulouagreanu and Barringer [GPB02] presents a technique thatafesanterfaces
for labeled transition systems. The generated interfaffestigely close the system with respect to given propesrtie
This is similar in spirit to our work, but differs primarilynithree respects: their interfaces are labeled transition
systems rather than temporal logic formulae; their alparg assume parallel composition; and while their technique
can handle encodings of unknown propositions, it does rtatata support our notion of evolving propositions (which
we discuss in Section 5.2).



Many researchers have acknowledged the difficulty in dietgdeature interactions in the presence of unknown
information. Hall classifies several types of interactiomsrs fall into his “Type II” classification. Some researche
have related feature interaction detection to the framélpro from artificial intelligence [AR98, AA97, BBK95,
BMR95]. Jackson relates the frame problem to views, whietsanilar in spirit to cross-cuts [Jac95]. Like Bruns and
Godefroid, these techniques all assume a global view ofytse®, in which all propositions are known in advance.
Furthermore, none of their approaches is compositional.approach supports the addition of previously unidentified
propositions (a higher-level notion of openness) and caitipoal reasoning.

4 Modeling and Verifying Features as Closed Systems

Our goal is to develop a compositional methodology for yeni features as open systems. One especially beneficial
outcome of such a methodology would be the detection of uredds feature interactions. As an example, anonymous
remailing does not mask a sender’s identity if the senderskgiyed the message. Other interactions arise from the
order in which an application executes features. Althoumfwérding does not inherently affect encryption, if a
message is decrypted prior to forwarding, then a messagbatdeen encrypted goes out on the network in the clear.
Such feature interactions are a widespread problem indelawnications and many other applications, even giving
rise to a workshop series. In this paper, we view a featusgaction as undesirable if it violates a formal requirement
of either an individual feature or the entire system. We diodisruss the problem of extracting these properties from
the requirements.

The main challenges in developing such a methodology asgrdeting what information needs to be included in
a feature’s interface to support compositional reasorangd,devising techniques to perform these checks. In previou
work, we proposed a compositional verification methodolémyyfeatures that interacted only through sequential
transfer of control. The email application involves ricimgeractions. This section describes our previous modgl an
methodology (for features as closed systems). Section vaes$ and describes our enriched model and methodology
through the email application.

4.1 Modeling Features and Their Compositions

Our formal model of feature-oriented systems views eadufeas a single state machine. Our previous work [FK01]
shows how to reduce models where each feature has multiitersachines to the single-machine model. Hence we
adopt the single-machine model here for simplicity.

Definition 1 Let ¢ be a set of atomic proposition8.L(¢) denotes the set of propositional logic expressions over the
set of variables irp.

Definition 2 A state machine is a tupl®/ = (S, %, A, so, R, Tr, Fa) where
e Sis a set of states,
e Y andA are sets of input and output atomic propositions,

so € S'is the initial state,

e RC S x PL(X) x Sis the transition relation,

Tr : S — 22 indicates which propositions are true in each state Jamd S — 22 indicates which propositions
are false in each staté{ € S, 7r(s) N Fa(s) = 0).



This is the standard definition of a state machine, augmenitbddistinct labeling functions for true and false labels

instead of just one labeling function for the true labelsisTdistinction supports our use of 3-valued model checking.
(The state machines in Figure 1 do not illustrate the distndbetween input and output propositions. Intuitively,

the input propositions represent control decisions sudiaaskey in the encryption state machine. In general, this
definition supports both Mealy and Moore machines, whilditngres in this paper use Moore machines only, making
the transition guards implicitly true.)

We expect features in pipe-and-filter product-line systemm®mpose in a chain, where the chain begins and ends
with some basic infrastructure that is common to all proslweithin the family (such as basic mail delivery, in the
email case study). A composition of features and the basasinéicture forms @roduct where a product consists
of both a state machine and a set of interfaces where newésatuay be inserted into the system. We capture the
common infrastructure in base productwhich is like a core feature. When we verify individual feas, we must
do so within the context of the base product so that we cablestgoroperties of the feature relative to the common
infrastructure.

Definition 3 A base productis a state machinéS, X, A, so, R, T'r, Fa) with an interface({soutgoing }» Sconnect)
where

® Soutgoing € Sa
L4 Sconnect - S,
e R contains an edge froM,utgoing t0 €aCh state iBconnect (this represents the system with no features).

Definition 4 A feature is a state maching = (S, %, A, so, R, T'r, Fa) with an interface({ sincoming }, Sexit, Rexit)
where

® Sincoming € S IS the initial state for the feature,
e St C S is the set of exit states; these states must have out-degree 0

o Reit C Sexit X PL(X) x 22 x 22 specifies constraints on edges from exit states to statéeieventual
composed system. The last two arguments in each tuple gprafand false sets of propositions on the states
to which these edges are expected to connect when integth8rfeature into a product.

Our model builds up products by iteratively composing neatdess into products. In this framework, adding a
feature to a product yields another product. We could defimepositions of features into new features, but do not
present those details here to simplify the presentatiore édtension to feature compositions outside the context of
products is, however, straightforward.

In order to connect a feature to a product, we need to matchauptates irb.nnect Of the base system with the
specifications in the partial transitions from the statesdp; in the feature; if a state has no labels, we view it as
satisfying all specifications. Intuitively, we will add adge from a state i5.,;; t0 each state it¥ o0 that satisfies
the specification on the true and false propositions giveRdg; from the exit state. The following two definitions
make this precise.

Definition 5 Lete; ande, be states in (possibly different) features.andes unifyif T'r(e;) = Tr(ez) andFa(e;) =
Fa(es) (i.e., if both states agree on their true and false labets),Br(e;) andFa(e;) are both empty (foi € {1, 2}).



Figure 2: lllustrations of features, products, and thempositions.

Definition 6 Let P be a product with state machit8p,>¥p, Ap, so, Rp, Trp, Fap) and interfaces

{<Soutgoing1 ) Sconnect1>a sy <Soutgoingk; Sconnectk>}~

Let F' be a feature with state machiG8r,>r, Ar, so,., Rr, Trr, Far) and interface Sincoming ; Sexit, Rexit). The
composition ofP and " via interface(Soutgoing, s Sconnect, ) IS @ productPc. The state machine componentif is
(Sc, X, Ac, s0, Re, Tre, Fac) where

e Sc =SpUSF,

e Yoc=YpUXp,

o Ac =ApUAF,

e Rc = Rp U Rrp U R, exceptall edges between the interface sta¥gsgoing, aNdSconnect; from Rp. Ryew
contains the following edges:

— All (s,pl, s") such that there exists, pl, s’) € Rp such that € Syutgoing, S € Sconnects 8" € Sincoming
ands’ ands” unify.

— All (s,pl,s") such thats € Sexit, (8,0, t, ) € Rexits 8’ € Sconnect, t C Trp(s’) andf C Fap(s').
e Trc =TrpUTrp, and
e Fag = FapU Fap.

The interfaces ofP is the set of interfaces fron? except(Soutgoing, » Sconneet;) @Nd augmented with two new
interfaces:

L <Soutgoingi ) Sincoming>

L4 <Sexit7 Sconnect>

Figure 2 illustrates these definitions more intuitively.eTfigure shows a product consisting of a base product and
two featuresF; andF3, and the composition of featu#é onto this product (aftef};). The composition is performed
via an interface/{s1, s2}, {ss}). The interface orfy is ({s3}, {s4, s5},0). Composition removes the dashed edges
and adds the four edges that connkgtio the product. The italic labels, b2, m andd on the states of; and the
base product capture the idea behind states unifying on asitigm. WhenF; was composed with the base product,
edges connected the states fréptto the base based on matching up the labels.



4.2 The Core Verification Methodology

Our verification methodology entails three tasks:

1. Proving a CTL property of an individual feature throughdabchecking (theverification step.

2. Automatically derivingoreservation constraintsn the interface states of features and products that hédgtde
feature interactions compositionally.

3. Checking whether a featuréand a producP satisfy one another’s preservation constraints at cortipngime
(thepreservation step We establish preservation by analyzing at mosir P individually, not the composition
of FandP.

We derive the preservation constraints during the veriicastep using (a variant of) CTL model checking. The
standard CTL algorithm works by labeling all states withfsamulas of the property to be verified. When we verify

a property against a feature (in the verification step), iterface states are labeled with some of these subformulas.
During the preservation step, we must check whether theabiyaoduct violates any of these labels. We therefore
store these labels in the interface and check whether tileficdt! during preservation checks. More formally, the
verification step operates as follows:

Verification step, version: L et F' be a feature with interfackand B be the base product for the product-line that can
containF'. Lety be a CTL property to prove againBt Composé&” andB via I into an product” (see Definition 6).
Use CTL model checking to verify in the initial (incoming) state fron™.

The formal model of features and their compositions fromtiSec4.1 is constructive in that it captures the
details needed to define and compose products and featunesveTification step suggests that interfaces also have
an analytic component, where we store data required for compositioa@afication. A refined notion of interfaces
therefore accompanies each version of the verification step

Definition 7 (Interfaces, version)1IEach interfacd of a feature or a product contains a mapping from states in the
interface to a set of CTL properties (the labels placed osdlstates during the verification step).

We give an intuitive description of the preservation stepréfgrring to Figure 2. When we compogg into
the rest of the product (containing the basg, and F3), we will need to perform two sets of checks: first, that the
labels ons, andss of F5 hold once those states transitionHg, second, that the labels aa andsy hold once those
states transition tes;. We perform each set of checks by augmenting each of theréeatd the product with dummy
interface states from the other, assuming certain labelsedummy states, and verifying the remaining labels on the
dummy states through model checking. The following desiorformalizes this intuition.

Preservation step, version Let F' be a feature with interfacgé= and P be a product. Lefp be the interface of?
through which we intend to compogéand P. The algorithm checks for two possible sources of inteoacti

1. (Prove thatP doesn't interfere with properties df) We must check whether every label stored on a state in
Sexit Of I'w still holds oncef’ is connected td®. Add a dummy state, to P with an edge frons, to each state
iN Sconnect- FOr €ach state in Sey;; and each labep on s in Ir, copy the propositional labels fromto s,
then model check at s;. Report an error iff one of these verification fails.



2. (Prove thaft’ doesn't interfere with properties withiR) We must check whether the labels stored on states in
Soutegoing Of 1p still hold onceF is connected td’. Add one dummy state tb' for each state in the interfade
and insert edges betweéhand the dummy states that match those added when compBsiity P. Copy the
labels fromS. nnect 10 their respective dummy states (which are reachable ffyrand copy the propositional
labels from states i8outg0ing tO their respective dummy states (which redth For each formulg that labels
a states in Soutgoing, Model check the formula in the dummy state corresponding Report an error iff one
of these verifications fails.

Although the preservation step may appear expensive, atipeave rarely need model checking to confirm tRat
preserves the properties Bf Most labels on the exit states Bfare simple labels such as “the mail state is reachable”,
i.e., they refer explicitly to reachability conditions dretstates in the base product. In this case, we can simplkchec
these reachability constraints once when composing arkeatto the system, thereby amortizing these checks across
multiple product compositions.

The correctness of this approach to preservation folloas four earlier work [FKO1]. The rest of this paper will
revise these core algorithms to handle issues that arite ioantext of open systems.

5 Modeling and Verifying Features as Open Systems

5.1 Unknown Propositions

Using the preservation check on property 4 in the forwardesgure as an example, Section 3 motivated the need
to treat features as open systems: to perform this check, wet add theencrypted proposition to the forwarding
feature. This proposition captures a data attribute of d massage that forwarding preserves as it processes the
message. Our algorithm cannot assume a concrete truth faaltleis proposition and remain sound; instead, we
must treat this proposition as having unknown value durirgdheck. As 2-valued model checkers treat values as
explicitly true or false, we instead need a 3-valued modetkbr. We used Bruns and Godefroid’s 3-valued model
checking algorithm [BGOOQ] in this paper; Chechik, Eastedirand Devereaux’s multi-valued model checker would
also apply [CEDO1].

In 3-valued model checking, propositions can have va{tree, false, unknowh this explains our use of separate
true and false labeling functions in Definition 2. Propasi not labeled with either true or false in a state are
interpreted as unknown. We use the symboto denote an ordering on the precision of values in 3-valogiti
unknown < true andunknown < false, while < does not relat&rue andfalse.

In a 3-valued model checker, interpretations of the logiparators extend to unknown values in a straightforward
manner. A 3-valued model checker can return true, falsenkbnawn as the value of a property in a structure. From
a verification perspective, the unknown result is less udban a true or false result. Techniques for determining
concrete truth values in the presence of unknowns are tirerefxtremely useful. When no proposition maps to
unknown in any state, 3-valued model checking reduces tal@ed model checking and returns either true or false;
models with no unknowns are calledmplete Bruns and Godefroid’s algorithm checks each property maamplete
models: one in which all unknowns are replaced with true @pgmisticmodel) and one in which all unknowns are
replaced with false (thpessimistienodel). A property is guaranteed to be false if it evaluatdalse in the optimistic
model, and guaranteed to be true if it evaluates to true ipéssimistic model [BGOQ]. If neither of these guarantees
hold, their algorithm reports the property as having unkmeaue.
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Figures 3 through 5 illustrate verification of the forwagliieature under each of the regular, optimistic, and pes-
simistic interpretations (the “normalized form” in the figs rewrite all formulas without universal temporal opera-
tors). The regular check, shown in Figure 3, shows the ptgpetding. This is unsound becausecrypt-successful
is assumed false, but if were true the path tortfael state would violate the property. This examples therefegeires
the pessimistic and optimistic checks. Since the optimidteck returns true and the pessimistic one false, thesé exi
paths that both preserve and violate the property. The eatiifin step for this feature would therefore be inconclisiv

Our methodology could treat all propositions that ariségroperty but are not in the model as unknown during
preservation checks, but that is too conservative. Conpiderty 2, which refers to propositiemantsRemail. This
proposition does not capture a data attribute of a messagfheR it is acontrol proposition it determines control-
flow within a feature. Control propositions of one feature aever true in another feature because features do not
execute simultaneously. This lets us set the control piitipos from other features to false during model checking,
which increases the likelihood of a concrete result fromrtteelel checker. Thus, when the designer can partition the
propositions into control and data subsets, our technigneegploit this design information.

Given this distinction, we reduce feature-oriented veatifin to 3-valued model checking as follows:

Verification step, version:2 et F' be a feature ang a property to prove of". For each propositiop that is iny

but not in the labeling functions af, setp to false in all states of” if p is a control proposition; otherwise geto
unknown in all states. Use 3-valued model checking to vehiéproperty against the augmented state machine. Store
the labels arising from the pessimistic and optimistic &seseparately iF’s interface.

Definition 8 (Interfaces, version)2Each interfacd of a feature or a product contains:
e A set of propositions from the product or feature which cspend to control propositiorts.
e A mapping from states in the interface to a set of CTL propsrtiue during the optimistic check.

e A mapping from states in the interface to a set of CTL propsrtiue during the pessimistic check.

We must enhance the preservation step in accordance witlsewf 3-valued model checking in the verification
step. When using 2-valued model checking, preservatiorksheanfirm that true properties remain true upon compo-
sition. In a 3-valued setting, the preservation step usesstts of checks: one with the optimistic labels (which will
detect property violations) and one with the pessimistiela (which could confirm property preservation). If neithe
the optimistic nor pessimistic checks result in concreaarns, we must analyze the property against the composed
system to determine its status in the composed system.\Wfthilimits of our case study, however, the optimistic and
pessimistic checks were always sufficient.

Preservation step, version Zhe preservation step proceeds as in version 1, with twafroations. For each property
label o to be checked:

1. For each propositiop in ¢ but not in the model being checked, geto false (if a control proposition) or
unknown (if a data proposition) in all states of the model.

2. Run the preservation algorithm twice: once copying thespeistic labels, and once copying the optimistic
labels. If the property fails under the optimistic labetgnart an error. If the property holds under the pessimistic
labels, report the property as preserved.

1This set can be an underapproximation without sacrificingidnass.
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Traditional Check Property of Interest: AG [ decrypt-successful -> ! EF mail ]

Normalized form: ! EF [ ! (! decrypt-successful V ! EF mail ) |
fwd-incoming

fwd-address-provisioned

! fwd-address-provisioned

|

fwd-forward fwd-deliver
l |

/

Property holds

Sub-formulas that hold in "mail" state: .1

! decrypt-successful
EF mail

! decrypt-successful V ! EF mail
' EF ! (! decrypt-successful V ! EF mail )
Sub formulas that hold in "fwd-incoming", "fwd-address-provisioned", and "fwd-forward" states:
! decrypt-successful
EF mail
! decrypt-successful V ! EF mail
' EF ! (! decrypt-successful V ! EF mail )
Sub-formulas that hold in "! fwd-address-provisioned", "fwd-deliver", and "deliver" states:

! decrypt-successful

! EF mail

! decrypt-successful V ! EF mail

' EF ! (! decrypt-successful V ! EF mail )

Figure 3: Verifying the forwarding feature: the plain verétion results.

12



Optimistic Check Property of Interest: AG [ decrypt-successful -> ! EF mail ]

Normalized form: ! EF [ ! (! decrypt-successful V ! EF mail ) |
fwd-incoming

fwd-address-provisioned

! fwd-address-provisioned

l '
fwd-forward fwd-deliver

l J Property holds

Same as traditional check

because the optimistic check
assumes decrypt-successful is
. false everywhere

mail

! decrypt-successful

EF mail

! decrypt-successful V ! EF mail

' EF ! (! decrypt-successful V ! EF mail )

Sub formulas that hold in "fwd-incoming", "fwd-address-provisioned", and "fwd-forward" states:

Sub-formulas that hold in "mail" state:

! decrypt-successful

EF mail

! decrypt-successful V ! EF mail

' EF ! (! decrypt-successful V ! EF mail )
Sub-formulas that hold in "! fwd-address-provisioned", "fwd-deliver", and "deliver" states:

! decrypt-successful

! EF mail

! decrypt-successful V ! EF mail

' EF ! (! decrypt-successful V ! EF mail )

Figure 4: Verifying the forwarding feature: the optimistierification results.
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Pessimistic Check Property of Interest: AG [ decrypt-successful -> ! EF mail ]

Normalized form: ! EF [ ! (! decrypt-successful V ! EF mail ) ]
fwd-incoming

fwd-address-provisioned

! fwd-address-provisioned

| |

fwd-forward fwd-deliver
l |

Sub-formulas that hold in "mail" state:

Property fails

mail
decrypt-successful
EF mail
! (! decrypt-successful V ! EF mail )
EF ! (! decrypt-successful V ! EF mail )
Sub formulas that hold in "fwd-incoming", "fwd-address-provisioned", and "fwd-forward" states:
decrypt-successful
EF mail
! (! decrypt-successful V ! EF mail )
EF ! (! decrypt-successful V ! EF mail )
Sub-formulas that hold in "! fwd-address-provisioned", "fwd-deliver", and "deliver" states:

decrypt-successful

! EF mail

! decrypt-successful V ! EF mail

' EF ! (! decrypt-successful V ! EF mail )

Figure 5: Verifying the forwarding feature: the pessinusterification results.
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! remail-wantsRemail —

- \’/,"‘\\

remail-anonymize
remail-mail

o

Figure 6: The remail feature.

5.2 Evolving Propositions

Propositions with unknown values enable the preservatimtks required in feature-oriented verification, but are
insufficient to enable compositional feature verificatidbompositional verification requires that once we verify a
property of a feature, we should not need to traverse thairieagain during the preservation checks for that property
Feature-oriented systems sometimes require the intatfmnedf propositions to evolve upon composition; this imtu
complicates compositional reasoning. The key point ofghigion is that open systems arise not only from abstraction
and decomposition (the conventional contexts for operegysgrification research), but also from system evolution.

Consider property 2, which says that messages passinggthtbe anonymizing remailer cannot reveal informa-
tion that identifies the sender. How amonymous defined in this property? From the perspective of the remaile
feature alone (Figure 6anonymous is the same as the propositicemail-anonymize from the remailer. Once we
add the signing feature, however, a message also needs tsigaed in order to be considered anonymous. In other
words, adding the signing feature changes the propertyratatit from

AG (wantsRemail — Afremail-anonymize R —mail]) to
AG (wantsRemail — A[(remail-anonymize A—signed) R —mail]).

How can we verify this property against the remail featummpositionally, when the property might change in unex-
pected ways upon composition?

We present the approach intuitively before providing thenfal details. In our concrete example, evolution log-
ically strengthenednonymous: we replacedemail-anonymize with remail-anonymize A-signed. We can rea-
sonably expect the evolution of propositions to logicallgsgthen or weaken their previous interpretations (othesy,
one feature would completely override another, which ligtside the scope of our current model). Strengthening and
weakening are defined as follows:

Definition 9 Let expr andexpr’ be boolean expressionarpr’ strengthenszpr if expr’ = expr A augment, and
expr’ weakens:zpr if expr’ = expr V augment, for some expressiomugment.

Suppose we had verified the original property in the remaituiee, then needed a preservation check for this
property in the signing feature. What labels would we copynftbe remail feature to the dummy states of the signing
feature? Since the sign feature changes the property, wetaasume that the labels from the original verification
remain valid. When propositions evolve, therefore, ourtégple from the previous section is not applicable.

Assume for the moment that we had anticipated that a futwiteife might place additional restrictions on (i.e.,
strengthen) anonymity. We could have verified the propA®y (wantsRemail — A[(remail-anonymize A aug-
ment) R —mail]) against the remail feature. The labels stored in remail fpreservation check would therefore
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be valid for any extension that strengthened the definitfaanonymity. To verify the formula containingugment
against the remail feature, however, would require 3-\hlmedel checking since the interpretationaafgment is
unknown inside the remailer (by construction). This exaltlines our proposed methodology for handling evolv-
ing propositions. We will verify properties under the asgtion that certain propositions may be strengthened or
weakened, then use the labels arising from those assumaptigrerform preservation checks. While this approach
will not let us perform all composition checks composititiyat should let us perform many checks in that manner.

This proposal raises several concefDees a user need to know all the features and propositiorgdétginning
verification?No, our technique is designed to support design evolutiaryding the addition of unexpected features.
If an extension re-interprets a proposition that the desigad not expected to evolve, some existing features maly nee
to be re-verifiedDoes failure of an augmented property in the verificatiop stield useful feedback®@ur algorithm
actually verifies each property in both its original and aegted forms to help identify the actual conditions under
which a property fails.Wouldn't multiple augmented propositions in one propentyadly reduce the likelihood of
meaningful verification results¥Yes, but we have not seen that case frequently in practiciteitmore, our approach
is analogous to Bruns and Godefroid’s optimistic and peissicrinterpretations on this point. In short, we believe th
full algorithm, which we now present, adequately addreisese concerns within the limits of software engineering
practice.

Both the verification step and the preservation step musigghéo handle evolving propositions. First, we need
to distinguish between propositions whose interpretatimay evolve (henceforth callexyolving propositionsand
those whose interpretation will remain fixed. We leave thétiction to the modeler; the method remains sound as
long as the set of evolving propositions is over-approx@dat

We extend the model checker with an additional inputjraerpretation function? from evolving propositions
to boolean expressions over non-evolving propositionsusenotations\/, s, R = ¢ andM, s, R [~ ¢ to denote
properties being true and false (respectively) in this rcéel model checker (we do not use a particular notation
for a model check returningnknown). When the model checker encounters an evolving propositidtrevaluates
R(p); non-evolving propositions are evaluated directly. We tlife definition of strengthening and weakening to
interpretations, then present revised verification andgration steps.

Definition 10 An interpretationR, strengtheninterpretationR; iff for each propositiorp in the domain ofR;, either
R1(p) = Ra(p) or Ra(p) strengthensky (p). If Ry strengthens?; and Ry (p) # R1(p) for any propositiorp, then we
say thatR, strictly strengthend?; . We defineveakensndstrictly weakenst the level of interpretations analogously.

Verification step, version:35iven a propertyp to verify of a featurel” under an interpretatioR, perform version 2
of the verification step three times, each under a differgetpretation:

1. A 3-valued check using. If this check fails, the property fails to hold and the aitfon stops.

2. A strengthening check (denotégsr) in which each evolving propositiop in ¢ is strengthened t@&(p) A
augment, for some new propositioaugment,. If a check fails, recordalse as the result of verification in the
label sets for that check.

3. Aweakening check (denotégyk) in which each evolving propositignin ¢ is weakened t®(p) \ augment,,
for some new propositiotugment,. If a check fails, recordalse as the result of verification in the label sets
for that check.
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Each of the different interpretations gives rise to différeets of labels during the verification step. The interface
must expand to store all of these labels accordingly, as agethe core interpretation that was in effect when the
properties were verified.

Definition 11 (Interfaces, version)3ach interfacd of a feature or a product contains:

e The control propositions of the product or featére.

A mapping from states in the interface to a set of CTL propsrtiue during the optimistic check.

A mapping from states in the interface to a set of CTL propsrtiue during the pessimistic check.

A mapping from states in the interface to a set of CTL propsrtiue during the optimistic strengthened check.

A mapping from states in the interface to a set of CTL propertiiue during the pessimistic strengthened check.

A mapping from states in the interface to a set of CTL propsrtiue during the optimistic weakened check.

A mapping from states in the interface to a set of CTL propsrtiue during the pessimistic weakened check.

Although these interfaces appear to be getting rather aamiilis important to remember that a designer need
supply only the constructive interface and the partiticio icontrol and data propositions. All of the labels are gen-
erated and stored automatically. In addition, the setsh#l$aand the labels themselves will tend to be small, so the
space overhead is not as severe as Definition 11 might suggest

In order to complete our formal model, each product and featwust contain an interpretation of its evolving
propositions. In the case of a product, this interpretationlves as additional features are added to the product. To
formalize this notion, we must define the composition ofriptetations. When composing interpretations, the values
from features override those from products, regardlesshetier the feature strengthens or weakens the intergmetati
in the product. This may seem counterintuitive: a bettextayy appears to be to keep the stronger interpretation in
the composition. Such an interpretation, however, woutdaiow adding a feature to weaken an interpretation within
a product. This situation arises in the cas@awmbnymous being weakened tanonymous V signed. It would make
no sense to lose this more general interpretation in theahy@oduct, especially since the new interpretation arise
from a composition of features. Having the feature’s intetgtion override conflicts in the product captures the idea
that products evolve in accordance with their feature sets.

Definition 12 Let F' and P be a feature and a product to compose. Retbe the interpretation associated witrand
Rp be the interpretation associated with For all propositiong in the domain of bottRp and Ry, assumeR (p)
either strengthens or weakeRs (p). We define the compositioR¢ of Ry andRp to be an interpretation where

e For all propositions in the domain @ p but not in the domain oRr, Rc(p) = Rp(p),
e For all other propositionsR¢ (p) = R (p).

R¢ is undefined if there exists a propositipsuch that? »(p) neither strengthens nor weakeRs (p) (this definition
allows Rr(p) = Rp(p) since strengthening and weakening can be vacuously satsitle augment values oftrue
andfalse, respectively).

17



mail

! remail-wantsRemail remall mail \
: \

T remail—outgoing

remail-anonymize

Property of Interest: AG [ remail-wantsRemail -> A (anonymous R ! mail ) ]
Normalized Form: ! EF ! [ ! remail-wantsRemail V ! E ( ! anonymous U mail ) ]
Sub-formulas: remail-wantsRemail, anonymous, mail

! remail-wantsRemail, ! anonymous

E (! anonymous U mail )

1'E (! anonymous U mail )

! remail-wantsRemail V ! E (! anonymous U mail )

! (! remail-wantsRemail V ! E (! anonymous U mail ) )

EF ! [ ! remail-wantsRemail V ! E (/! anonymous U mail ) ]

' EF ![ ! remail-wantsRemail V ! E (! anonymous U mail ) ]

remail-anonymize
remail-mail

Strengthened results: anonymous = remail-anonymize AND unknown
property fails
trace: remail-outgoing -> remail-wantsRemail -> remail-anonymize ->
remail-anonymize, remail-mail -> mail

Weakened results: anonymous = remail-anonymize OR unknown
property holds
labels on remail-mail: ! remail-wantsRemail, ! anonymous, E (! anonymous U mail ),
! remail-wantsRemail V ! E (! anonymous U mail ), ! EF ! [ ! remail-wantsRemail V ! E (! anonymous U mail ) ]
labels on remail-anonymize, remail-mail: anonymous, ! remail-wantsRemail, ! E ( ! anonymous U mail ),
! remail-wantsRemail V ! E (! anonymous U mail ), ! EF ! [ ! remail-wantsRemail V ! E (! anonymous U mail ) ]

Figure 7: Verifying the remailing feature with strengthsgniand weakening.
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Naturally, the preservation step must also account fongthening and weakening. Version 2 of the preservation
step performs checks in two directions: one analyzing kabfthe product against the feature and one analyzing labels
of the feature against the product. We parameterize thewolg definition of the preservation step over the one being
analyzed and the one whose labels are being confirmed, vethréspective interpretations, the interpretatiop of
the one being analyzed and the interpretafitanof the one whose labels are being confirmed.

Preservation step, version Bor each check in version 2 of the preservation stepy le¢ the label being confirmed,
A be the feature/product being analyzed and’ldie the feature/product whose labels are being confirmedRLet
and R¢ be the interpretations of andC, respectively. Choose the labels to copy to the interfaatesiaccording to
the following algorithm:

If R4(p) strengthendk¢(p) for all evolving proposition® in ¢,

— If the optimistic strengthened labels map to false (indigathat the optimistic strengthened check failed),
report an errof.

— Otherwise, perform version 2 of the preservation step usiagstrengthened versions of the (optimistic
and pessimistic) labels. If version 2 reports a concretevanseturn it.

e If R4(p) weakensRq(p) for all evolving proposition® in ¢,

— If the optimistic weakened labels map to false (indicathmef the optimistic weakened check failed), report
an error.

— Otherwise, perform version 2 of the preservation step usgiegveakened versions of the (optimistic and
pessimistic) labels. If version 2 reports a concrete angwarrn it.

e If R4(p) is logically equivalent taR¢(p) for all evolving proposition in ¢, follow version 2 of the preserva-
tion step with the regular (non-strengthened or weakeradal$. (Note: if the two interpretations are logically
equivalent, this algorithm would first attempt the streegihd and weakened tests, performing this check only
if neither of those produced a concrete answer. For effigieme could modify the conditions for strengthened
and weakened tests to require at least one propositioni¢tysstrengthen or weaken; this would not affect our
soundness theorems.)

¢ In all other cases, or if none of the previous cases yieldsiarete answer, re-verify againstC usingR 4, then
apply version 2 of the preservation algorithm (with the nabels) to check preservation ih

5.3 Soundness

The soundness of this methodology arises from a combinatidhe soundness of the methodology for verifying
features as closed systems, the soundness of Bruns andr@dde3-valued checking with optimistic and pessimistic
interpretations, and the logic of strengthening and weiaker©Our methodology is not complete due to a combination
of our use of 3-valued logic and strengthening and weakeiniegpretations.

2This set can be an underapproximation without sacrificingndoass.

3Note that each set is at most linear in the size of each promentgh itself tends to be quite small.

4Counterexample generation is one of the benefits of model aigeckf we want to retain compositional counter-example gatien, we
can store the counterexample traces in the interface wheaesteengthened or weakened check produces false; thesistdormation would be
sufficient to reconstruct a counterexample in the composed Ingith®ut verifying in the composed model.
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Intuitively, our soundness theorems state that if the caitipmal methodology reports a particular property label
as being true or false at a state, then model checking the peoperty on the corresponding state of the composed
system would yield the same result. Our soundness resultetdmake claims about cases where the compositional
methodology yieldsinknown as the result of a verification. We present the argument aséparate theorems, one
concerning labels on states from the feature, and the otimeeening labels on states from the product.

Our soundness proofs rely on an argument about the soundhpssservation checks. We perform preservation
checks by attaching dummy states to a state machine; theseylgtates represent the interface states to which the
state machine will be connected during composition. We quoperty labels from the interface to these dummy
states, and verify properties in this augment state machitdtively, we claim that any property that labels a state
the augmented machine also labels the corresponding stiite composed machine.

We claim that the labels on the states of the fragment and dheny initial state are identical to those that
would appear had we verified the property against a compgstds. This claim is valid because state labels are
determined by the labels of their successors in CTL modalkihg, and composition does not add paths from the end
of a fragment back to its initial state. The following lemnoarhalizes this argument

Lemma 1 (The preservation lemma) Lét/ be a state machine that will be composed with state macHinvéa
interfacel. Let M’ be M augmented with a dummy state for each statg, iwith edges between statesidfand the
new states in/’ determined by the definition of composition (Definition &r. &I dummy interface states that serve
as sinks of\/’, copy all labels from the corresponding stated ito the states ofi/’; for dummy interface states that
serve as sources @ff’, copy all propositional labels from the corresponding eginI to the states of/’. Lets be
any state inM’ and lety be a CTL property. Model checking at states in M’ returns the same value as model
checkingy at the state corresponding toin the composition o/ and S.

Proof: This lemma follows from the definition of CTL model checkin@TL model checking determines the labels on
a state from the labels of its successor states. Thus, theddmlds as long as composing andS cannot affect the
labels on the sink interface states. The labels on the stekfate states can only change if composition changes the
set of states reachable from the interface states. Sinceoogposition model prohibits edges that create new cycles
at composition time, the labels on the sink interface statiest be preserved upon composition. The lemma therefore
holds.

O

Our results also depend on Bruns and Godefroid’s theoreatsatly formula that is true under the pessimistic
interpretation is true in the full model and any formula tisafialse under the optimistic interpretation is false in i fu
model [BGO0]. We do not duplicate their theorem statemantiis paper.

Lemma 2 Let S be a state machiney be a CTL formulas be a state inS, and R; and R, be interpretations of
evolving propositions ip. AssumeR, strengthensk;. ThensS,s, Ry st ¢ < S,s,Re E ¢ (i.e., the result of
model checkingr under R; is at least as precise as the result of the strengthening hadek underR;). If R
strictly strengthens?,, thenS, s, Ry =st ¢ = S, s, Ra = .

Proof: Interpretations affect model checking only at the levelm@fjositions because interpretations map propositions
to boolean expressions over other propositions. It is fbegesufficient for us to argue that the theorem holds for all
propositional formulas; the inductive definition of CTL madahecking naturally lifts this result to properties in @l
CTL.

The propositional proof breaks into several cases:
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e Assumeyp is a propositiorp. If p is not an evolving proposition, then the theorem holds beealoe value op
ats is determined by the state labelingSrand is not affected by, or R». If p is an evolving proposition, then
its truth value at is that of the expression thatmaps to under the corresponding interpretation. We thexefo
need to consider the relationship betwéer{p) and Rz (p).

e If R1(p) = Ra(p), then the strengthening model check will ché@i(p) A augment,, while the regular model
check will confirmR; (p). If R;(p) is false, then both the regular and strengthening modelkshed! return
false forp ats. If Ry (p) is not false (unknown or true), then sincegment, has valuainknown by definition,
the strengthening check will retutmknown while the regular check will retur®; (p). In both cases, the
theorem holds.

e Otherwise R2(p) = R1(p) A augment,. In this case, the strengthening model check usgh) A augment,,
in place ofp. This is equivalent taR.(p) up to renaming betweemugment and augment,. Since these
variables are logically equivalent (interpretedua&nown), the result of model checking both expressiongon
is equivalent. The theorem therefore holds in this case.

The only case in which the two model checks did not return #meesresult was wheR; (p) = Rz (p), in which case
R, does not strictly strengthe; . The strictly strengthening clause in the theorem theesfimids.

d

Corollary 1 If the model checks performed in Lemma 2 are both pessintisénS, s, Ry st ¢ = S,s,Ra E ¢
regardless of whetheR, strengthens or strictly strengthe .

Proof: This follows immediately from the argument in the proof oihu@a 2.
O

Lemma 3 Let S be a state machiney be a CTL formulas be a state inS, and R; and R, be interpretations of
evolving propositions ip. AssumeR, weakensR;. ThenS, s, Ry Ewk ¢ < S, s, Rs = ¢ (i.e., the result of model
checkingp underR; is at least as precise as the result of the weakening modekahelerR,). If R, strictly weakens
Ry, thenS;s, Ry Ewk ¢ = S, s,Ra = .

Proof: The proof is analogous to that for Lemma 2.
O

Corollary 2 If the model checks performed in Lemma 3 are both optimigten S, s, R; =wk ¢ = S,s,R2 E ¢
whetherR,; weakens or strictly weakers, .

Lemma 4 Let R and Rp be interpretations and leR- be the composition dkr and Rp. If Ry strengthens (resp.
weakensR p for all propositions in the domain of botRr and Rp, thenR¢ strengthens (resp. weaken3)- for all
propositions in the domain air.

Proof: This follows trivially from the definition ofR¢, sinceR¢(p) = Rr(p) for all propositiong in the domain of
Rp.
O

Lemma5 Let Ry and Rp be interpretations and lek- be the composition dir and Rp. If Ry strengthens (resp.
weakens) p for all propositions in the domain of botRr and Rp, thenR strengthens (resp. weaker) for all
propositions in the domain atp.
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Proof: By Lemma 4,R¢ strengthens (weaken®) for all propositions in the domain d? . R¢ therefore strength-
ens (weakensRp for all propositions in the domain of botRr and Rp by transitivity. For all propositiong in the
domain of Rp and not in the domain aRr, Rc(p) = Rp(p), So the result holds trivially.

O

We now present the main soundness result as two separatertteoVersion 1 of the preservation step consists
of two main subparts: one for determining whether the proauerferes with the properties of the feature, and one
for determining whether the feature interferes with thepprties of the product. We handle each case in a separate
soundness theorem.

Theorem 1 Let P be a product andF' be a feature. LetP; be the composition oP and F' via interfacel =
(Soutgoing, Sconnect). Letsy be a state inSincoming Of F' @nd lety be a CTL formula that labelsy (in one of the
various sets of interface labels). LB be the interpretation in use whenwas verified against’. Let Rp be the
interpretation forP and letRo be the composition a®r and Rp. If the preservation step reports thatis preserved
when composing and F' via I (i.e. thatP does not interfere with properties éf—part 1 of the preservation step,
version 1), therP¢, sf, R = ¢. If the preservation step reports thatis violated when composing and F via I,
thenPc, sy, Re .

Proof: By Definition 12, Rp neither strengthens nor weakeRg. Two cases therefore exist:

e Rp andRp are logically equivalent on all propositions¢n According to the preservation step algorithm (ver-
sion 3), we use the non-strengthened or weakened labelspphd\wersion 2 of the preservation step. Version
2 reportsy as holding (failing) if it holds (fails) in the pessimistiotimistic) interpretations. Our theorem
therefore reduces to the soundness of using pessimistienfefic) models to determine truth (falsehood) in a
3-valued model. Bruns and Godefroid’s theorem establistissoundness.

e The previous case did not hold, in which case we re-vérifysing R and then use version 2 of the preservation
step to checkp. Following reverification, this case reduces to the presione, in whichRp and Ry are
logically equivalent on all propositions ip.

a

Theorem 2 Let P be a product andF' be a feature. LetP: be the composition oP and F' via interfacel =

(Soutgoing, Sconnect). Lets, be a state iNSouigoing Of P and lety be a CTL formula that labels, (in one of the
various sets of interface labels). LB be the interpretation fronP, Rr be the interpretation fron¥’, and R the
composition ofRp and Rr. If the preservation step reports thatis preserved when composi#gand F' via I (i.e.

that F' does not interfere with properties ¢f—part 2 of the preservation step, version 1), tén s, Rc = ¢. If

the preservation step reports thatis violated when composing and F via I, thenPg, s, Rc 1= .

Proof: If states, does not reach any state frarin Pc, then the theorem holds trivially because CTL model chegkin
determines property labels from the properties of its ssmmes. Ifs, reaches any state ifi, then it must reach a state
in the interfaceSincoming Of F'. By the preservation lemma (Lemma 1), the theorem holds faf every label on
every states; in Sincoming Of ' during the preservation check is a valid labelsgiin P-. Another application of the
preservation lemma reduces this to proving that all labrlstatess. in S..;; of ' during the preservation step are
still valid on s in Px. We therefore consider the statement only for these states.
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Let s. be a state irf.,;; and lety) be a label ons, in F’. We must prove thap labelss, in Po. As this theorem
concerns the preservation step (version 3), the proof brzdés cases depending upon the relationship betw&en
andRp. In this theoremF' is the system being analyzed (call¢dn the preservation step) atlis the system being
confirmed (called” in the preservation step).

e If Ry strengthen®p for all evolving propositions iy and the optimistic strengthened labels map to false, then
the algorithm reports that does not hold in the composed system. The soundness ofepifotibws from the
soundness of false results under optimistic models piediéalse results in full 3-valued models. Bruns and
Godefroid’s theorem completes the proof in this case.

A similar argument covers the case when the optimistic weattéabels map to false.

e AssumeRy strengthendzp for all evolving propositions in) but the optimistic strengthened labels do not
map to false. The algorithm performs version 2 of the pres@m step using the strengthened versions of the
labels. Assume version 2 reports tHalt s., Rr = +; by definition of the preservation step, this check used
the pessimistic labels. Bruns and Godefroid’s theorenefoee implies that”, s., Rr | 1 using the regular
3-valued interpretation (neither optimistic nor pesstinjs The truth value ofy) at s, in P depends on the
labels copied to the dummy interface states thataches irt”. If we can argue that those labels remain valid
on the actual interface statesiy;, then this case of the soundness proof holds.

By assumptionR strengthens?p (Definition 12). Lemma 5 implies thak~ strengthens?p for all propo-
sitions iny. Based on this relationship betwe@&g and Rp, Lemma 2 guarantees that for all properties
and states in P, P,s,Rp st ¢ < P,s,Rc = ¢ (i.e. that a strengthening model check fhis no more
precise than the corresponding regular model chedR)iror each state. in Sconnect, P, S¢, Re = ¢ implies

Pc, s., Re |E ¢ since the set of states reachable fremn P. is the same as the set of states reachable from
P. This establishes this case of the theorem.

If the preservation algorithm reportsas failing based on the check in the optimistic model, theltéslds by
a similar line of reasoning (replacing uses of pessimistth wptimistic).

e AssumeRy weakensRp for all evolving propositions iny but the optimistic weakened labels do not map to
false. Then the proof follows that for the previous casesstuiing the corresponding lemmas on weakened
interpretations for those on strengthened interpretation

¢ In the remaining casesi(r and Rr are logically equivalent, or no prior case produces copcresults), the
proofs are analogous to the proofs for these cases from &mebr

6 Case Study Results

Our interfaces are only effective if they enable us to penfonost preservation checks compositionally. To evaluate
the effectiveness of our interfaces, we searched for fedhieraction errors in the email application described in
Section 2. We used the case study to determine

e whether our interfaces and methodology can detect therfeatteraction errors compositionally,
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¢ the extent to which each aspect of our methodology (orideture-oriented model checking, 3-valued model
checking, and evolving propositions) contributed to détgcactual interactions, and

e whether interactions can be detected through combinind| samrabers of features.

Our experiments use a model checker that we built specifi¢atl handling our feature-oriented verification
methodology. We do not present performance figures hererifbpeause because the state machines for these models
are too small to generate meaningful performance figuresbaoause the emphasis in developing the model checker
has been to support the methodology rather than providegedglormance. Similarly, we don't provide a compari-
son against model checking the entire system because eut istto validate our modular verification methodology;
in general, the number of combinations of systems in a piokhe makes whole-system verification prohibitively
expensive.

We manually extracted the ten properties described in @e&ifrom the interactions that Hall reported in his
study [Hal00]. Hall detected twenty-six interactions, dfish we detected sixteenOf Hall’s remaining ten interac-
tions, three were too simple to detect at our level of model\wwuld have had to artificially design a model to reflect
the interactions, and the detection would have then bedal}riTwo arose from properties that could be expressed in
LTL, but notin CTL. One involved forking a message down twtiviey paths, which really depends on features being
modeled as alternating automata. Three interactionsvadahuman concepts such as rudeness that didn't translate
well into logical formulas. Finally, one required a remaihath different behavior than the one we had designed based
on the remainder of the study.

Each of the properties from Section 2 held when verified agaime feature that was mainly responsible for
implementing it, but failed upon composition with othertigr@s® Tables 1 and 2 summarize the feature interactions
that we detected using our modeling and verification metloago Each row describes the property (from Section 2)
whose violation led to the undesired interaction, the (trdEcomposition of features with which we detected the
interaction, a description of the undesirable interagtaomd a statement of which techniques detected the interacti
The values in the table for the last column indicate one afehiechniques: the original compositional methodology,
3-valued checks, and strengthened/weakened comparisons.

The tables show several results. First, seven of the sixtéeractions required only the original methodology. The
remaining interactions required some combination of tHeaaoements. In general, using the original methodology
in the context of unknown propositions is unsound becalegditional (2-valued) model checking assumes that a
proposition that doesn't appear in a feature is false. Itds ansound to reuse interface labels that were generated
with the assumption that propositions do not evolve. Thesetuances made our original methodology inappropriate
for identifying the remaining nine interactions.

Our methodology detected the five interactions marked vggsSimistic strengthened” based solely on the infor-
mation in the interfaces; no additional model checking rwese performed during the preservation step. In these
cases, the verification step determined that strengthehangvolving propositions would lead to a violation of the
property and recorded this fact in the interface. When thiatian did occur, the model checker extracted the counter-
example already stored in the interface.

We detected two interactions using evolving propositicanrsss3-valued model checking; these are marked with
“Original” in the techniques column and a non-empty Re+iptetation column. In these cases, the preservation step
required model checking, but only for 2-valued logic. Firglthe remaining two interactions required both 3-valued

50ur tables of results show only fifteen rows because the fittsieoproperty 7 entries captures two related interactiomm Hall’s study.
6For the rest of this section, we will implicitly assume thattieas are composed with the basic mail delivery feature prietification; this
defines the propositiomaail anddeliver.
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model checking and evolving propositions; in these cabesinfformation stored about weakening and strengthening
was not enough to indicate a violation, so the preservatiep an the 3-valued model checker, using the extended
interpretation listed in the table. In no case did we havestifyw the full composition of the listed features in order to
detect an interaction.

In nine of the sixteen interactions, the propositions exdlat composition time. In all of these cases, the new
interpretations always either strictly strengthened actyy weakened their earlier interpretations; becausewf
stored interface information in these cases, we never wetede-verify a property already proven of a feature after
re-interpretation. This clearly shows that any methodplimy verifying feature-oriented designs must accommodate
evolving propositions. The propositions do, fortunatalgem to evolve predictably, which verification techniques
should exploit.

The distinction between control and data propositions weaessary to handle four of the interactions, specifi-
cally, the ones that violated properties 1 and 4. Each oftleesmpositional checks would have failed if the control
propositions had been interpretedussknown, rather than afalse, during model checking.

This case study suggests that our enriched methodologudsatifor detecting many interactions. Our original
technique could not find several of the feature interactiablems in this suite. In fact, our original modeling tech-
nigue could not even model the suite accurately due to thedfsupport for evolving propositions. This case study
therefore demonstrates the utility and effectivenesseféisults presented in this paper.

An Interesting Interaction

Property 4, which requires an encrypted message to neveedrypled and then mailed without first being re-
encrypted, led to some interesting results during thisystuthe interactions arising from this property does not
occur in our model with fewer than three features:

e The property holds of the encryption feature alone.

e The property holds when the decryption feature is compos#demcryption because the decryption feature
does not itself mail anything.

e The property holds when encryption is composed onto eitli@raspond or forward because the message stays
encrypted until mailed.

e The property fails when autorespond or forward is composida encryption followed by decryption because
this composition introduces a path from a state where thesagesis clear (and stays clear) to mail. A 3-valued
check exposes this.

e The property also fails when decryption follows either gption and autorespond or encryption and forward.
The propositiortlear is weakened fronfalse to false v decrypt-successful. A pessimistic weakened check
onencrypt-autorespond or encrypt-forward exposes this.

This property differs from the others that yielded undés&anteractions because multiple orders of composition
among the features expose the interaction; furthermoffereint techniques (3-valued checks versus evolving propo
sitions) exposed the interaction depending upon the coitiposrder.
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o . Verification
Property Features Problem Description Re-Interpretation .
Involved Techniques
The sender field of a signed messdge
; . sender-unchanged strength- -
1 sign, forward can be altered by a forwarding feature, Original
. ened fromtrue to —forward
and then mailed out. ender-unchanaed
, ) The remailer changes the sender fiela g .
1 sign, remail . strengthened fromtrue to | Original
of a signed message. )
—anonymize
Signing a message gives away the idéranonymous strength- Pessimistic
2 sign, remail tity irrespective of whether the senderened from anonymize to Strengthened
field is changed. anonymize A—signed ¢
3 encrypt, verify I atm:jas;?ge 1S S|gt].nedda;1d tther.1 En\7erifiable strengthened from Pessimistic
YpL, crypte " e_encryp lon deteats Slgna'Erue to —encrypted Strengthened
gjr%ggggcgtlggn be encrypted, maile
encrypt, decrypt, 9 ypted, , gecrypted weakened from 3-valued
4 out, decrypted, and then forwarded |r}
forward the cl alse to decrypt-successful check
e clear
A message can be encrypted, mailed
out, decrypted, and then autop-
encrypt, decrypt, yp decrypted weakened from 3-valued
4 auto-respond responded such that the auto-respo 15false to decrypt-successful heck
P contains the original text of the yp chec
message.
A message intended to be remailed . .
. .| In-remailer-format strength-| Pessimistic
5 encrypt, remail cannot be processed by the remailer i
L ened frontrue to —encrypted | Strengthened
the message is originally encrypted.
4. il The filter feature can potentially dig-
6 auto-respond, fily messages generated by the aito- Original

ter

responder.

Table 1: Each feature interaction is listed with the propérviolates, the interpretation of propositions it resr
and the verification techniques used to expose the probleant {)
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F r o . Verification
Property eatures Problem Description Re-Interpretation .
Involved Techniques

[f a user establishes a pseudonym
on a remailer and forwards to that
pseudonym, then any message sent to
the user will be forwarded to the re
mailer, sent to the user, forwarded to

the remailer, etc.
A user can provision a forward mes$

7 forward sages back to himself, thus creating fan Original

infinite loop.
[f forwarding is setup to a non-existen
user, then the mailhost generates error
messages that are then forwarded back
to the non-existent user, resulting jn
longer and longer error responses from
the mailhost

The filter feature can potentially dig

8 i Original
forward, filter card forwarded messages. rigina

An encrypted message can fail decryp-
auto-respond, der tion and thus be given to the autp-clear strengthened frontrue | Pessimistic

7 forward, remalil Original

—

7 forward, mailhost Original

9 . S
crypt, encrypt responder in which it cannot read theto —encrypted Strengthened
subject line.
The remailer will alter the body of & body-unchanged strength- Pessimistic
10 remail, sign signed message if the user wants feened from  true to
. . Strengthened
mailing. —anonymize

I[f a user sends a message to an Un-
! ) known recipient at a mailhost, then er- .
11 filter, mailhost . Original

ror messages from that mailhost can |be

discarded by the filter.

Table 2: Each feature interaction is listed with the propérviolates, the interpretation of propositions it reasr
and the verification techniques used to expose the probleant )
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7 Perspective on Verification

Identifying verification techniques that provide good sodor feature-oriented verification is an interesting and
important open problem. Both our previous work and the wegported here use model checking as the underlying
verification technology. Model checking is a reasonablé fitwice: its automated nature allows us to prototype
methodologies quickly and easily, and its low-level natoas forced us to identify fine-grained details about the
feature interfaces needed to support compositional vatiific. Although model checking is not necessarily a natural
choice for software verification, many research effortsreme exploring how well it applies to this domain.

Our choice of model checking has clearly affected our modkfsatures and their interfaces: in particular, inter-
faces would likely not associate labels with states were oteising state machine models and CTL model checking.
Nonetheless, our experiences using model checking in thiexioencourage us to reflect on how viable model check-
ing will be as a foundation for feature-oriented verificatio

First, the amount of interface information that composiibmodel checking of features seems to require is an
immediate concern. We currently store labels on severatfate states for checks under both strengthening and
weakening of evolving propositions. This information bexes less useful as the number of evolving propositions
in a property increases. We also store partitions into obmtnd data variables. Multi-actor features require even
more interface information in the form of a subgraph, as &xgld in prior work [FKO1]. Although the interface
information has not proven excessive in this study, it cdaddome so in a larger application that contains hundreds
of features spanning multiple actors. Additional caseistudre required to determine when the overhead of our
interfaces outweighs the benefits of compositional featariication.

Next, features interact implicitly through data. A viablede! of feature interaction therefore must support model-
ing and reasoning about data. Model checkers’ limitationgasoning about data are well known: the main problem
is the combinatorial explosion in propositions needed toode data values as booleans. Many model checking
efforts handle this problem through a combination of alesiva and cone-of-influence reduction. Given the deep
co-mingling of control and data in both the models and prigeiof some feature-oriented systems, we are unsure
whether these approaches will be useful in this context. dnyhrtases, the design methodology inherently performs a
partial abstraction because a feature only contains thgogitions that are relevant to it.

We believe that the real problem lies in the need to argualdyspecify data in most state-based specifications.
For data-intensive domains such as this one, declaratacfgmtions (as employed by Alloy [Jac00]) are likely more
viable in the long term. Effective integration of declavatspecifications into model checking or other featurerteié
verification techniques remains an open problem.

Finally, our work has heavily exploited the state-labeladgorithm of CTL model checking. It is unclear how to
reformulate this work in the context of LTL, which operatégtee level of full traces. This reopens the question of
whether LTL is better suited to compositional reasoning(. This departure reflects the difference in composi-
tion semantics between our work, which supports a form ofieetial composition, and most compositional model
checking, which supports parallel composition.

8 Other Related Work

Compositional verification has a long history dating bacleast to Abadi and Lamport’s work on assume-guarantee
reasoning [AL95]. In this framework, a designer states nafipudeveloped constraints (assumptions) on the behavior
of a module as part of its interface; this framework was desilgto support separate development of components.
Proof rules govern when a composition of modules is valicbetiag to the assumptions, and dictate when safety
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properties hold of a composition of modules.

Pnueli [Pnu84], McMillan [McM97], and others have develdp#oof rules for compositional model checking;
these frameworks capture module constraints through teahlogic formulas. These works, however, are really about
decompositionalerification, in which the whole system is available at theedime, but is verified piecewise for
tractability. Having the whole system specification ensallesigners to derive assumptions about the behaviors of the
surrounding system. Our modules, in contrast, are devdlopkependently of their eventual deployment context. We
can, nevertheless, exploit the sequential compositionirfiramework to automatically derive temporal logic interé
constraints that must hold at composition time. de Alfard Hienzinger capture interfaces through automata [dAHO01]
for parallel composition contexts.

Houdini infers annotations for modular checking in ESCAJ®L01]. The framework infers candidate annotations
through static analysis, then uses ESC/Java to check whbthannotations satisfy the program; if so, the annotation
can become part of the program’s interface. Our approadérsliin several ways. First, we infer properties during
individual feature verification. Second, our interfacegtaee sufficient information to preserve properties upam-co
position; Houdini’'s annotations are not property-drivand thus may not be useful for a given property. Finally, our
approach is truly modular in that we do not require informatabout the modules we may compose with in order
to derive our interfaces; Houdini requires some assumgtionthe remainder of the program to perform its modular
analysis.

Our case study uses modular model checking to detect cde@inre interactions. Feature interaction problems
have received substantial attention in the software eeging literature [KK98, Zav97]. Our emphasis here is on
modular verification, not on model checking as a tool for ditg feature interaction. Several researchers have
attempted the latter in non-modular settings [ABdRO0, BAEB8, KK98]. While we appreciate that model checking
has limitations in detecting feature interaction, we hadieur work enhances the options for using it when applicable
in this domain.

Our email example uses a pipe-and-filter model of featureposition; this model resembles Zave and Jackson’s
Distributed Feature Composition [JZ98]. Our work diffeechuse our full methodology supports features that span
multiple actors; we do not cover multiple actors in this pape they are orthogonal to our discussion of module
interfaces. Our work also differs in that its focus is on freation rather than architecture and specification.

Other verification researchers have discussed methodslémi reasoning under sequential composition [AGMO0O,
AY98, CHOO, LG98]. These efforts differ from ours in many waynone handle open systems, none were created
towards supporting cross-cutting design methodologied,adl arise in a decompositional verification context rathe
than a modular design one. Our interfaces and verificatiothodelogy are designed to support modularity at the
design level.

9 Conclusions

The automated verification of modern software systems reguffort in two directions. First, it must address the
structure of modern software: as a third-party compositibimdependently-produced components that, increasingly
encapsulate software features (as in a product line). Sedomust realize that, even as this style of software could
greatly benefit from sophisticated verification techniquesgrammers are unwilling and sometimes even unable to
write the specifications necessary for verification toolsutofatically synthesizing a suitable alternative to these
specifications is a critical software engineering chaléeng

The verification technique used in this paper is model clmegkiestricted to a modular context. Modular verifica-
tion is critical in this domain for several reasons. Most artpnt of all, there is usually no clear notion of a “whole”
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program, since independent fragments may be produced byadehfferent developers. In addition, the sizes of whole
programs can easily defeat the various techniques modeketedeploy to combat state explosion.

This paper’s contributions are twofold. First, it presemtseries of definitions of interfaces that support modular
verification in this component-based programming univerBee definitions grow to handle both the nature of the
software itself, and the needs of the verification methagipl&econd, it presents a study of verifying a suite of email
features. Our technique identifies most of the featuradteon problems previously found manually in this case
study, thus validating the utility of our interfaces.

This work does suffer from the problem that a feature devaiopay not know which particular features to verify
together to detect errors. This is not a problem for a cliesip presumably handles only a particular composition
(though dynamic loading does complicate this even at thetd$i end). Even a producer can, however, exploit our
methodology to identify potential problems. As Section &wéd, a failed pessimistic strengthened test stores a
counter-example in the interface. Thus, any other featune strengthens a feature’s propositions is guaranteed to
raise an error: the developer can detect thithout even verifying the second featufehis (and, dually, optimistic
weakening) should provide a useful diagnostic for a featieneloper.

There are numerous directions for future work. Naturallg,veed to conduct more case studies to identify other
weaknesses in our interfaces. Second, we need experietita tMioader user base to determine the true usability of
our tools. More significantly, we intend to explore otherdsrof verification tools, such as declarative specification
solvers, that might better support the incomplete inforomathat we currently model with 3-valued logic.
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