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Abstract

Feature-oriented programming organizes programs around features rather than objects, thus better supporting

extensible, product-line architectures. Programming languages increasingly support this style of programming, but

programmers get little support from verification tools. Ideally, programmers should be able to verify features inde-

pendently of each other and use automated compositional reasoning techniques to infer properties of a system from

properties of its features. Achieving this requires carefully designed interfaces: they must hold sufficient information

to enable compositional verification, yet tools should be able to generate thisinformation automatically because ex-

perience indicates programmers cannot or will not provide it manually.We present a model of interfaces that supports

automated, compositional, feature-oriented model checking. To demonstrate their utility, we automatically detect the

feature-interaction problems originally found manually by Robert Hall in an email suite case study.

1 Introduction

Modules are crucial to large-scale software construction [Par72]. Modules divide a system into coherent collections of

data structures and functionality that programmers can assemble into a suite of services. The benefits that modules be-

stow, such as independent development and code reuse, have ensured the widespread adoption of modules in software

development.

Having different developers write the modules in a system increases the likelihood of incompatibility between

modules. Programmers therefore need some level of composition verification to protect against latent errors that are

not detected until late into development or even deployment. Type checking at module boundaries is perhaps the most

basic and widespread form of verification. Each module’s interface specifies its services as a series of function or

method names and the type signatures on their inputs and outputs; the module also specifies the interfaces it expects of

the modules with which it will eventually compose. Type checkers confirm that an individual module satisfies its own

interface and that it uses services from other modules type-correctly. Modern languages such as ML [MTH90] and

Java [GJS96] support this basic notion of modular verification, and it is so useful and convenient that programmers

use it daily without complaint.

∗Work partially supported by NSF grants ESI-0010064, ITR-0218973, CCR-0132659, SEL-0305950, and the Brown UniversityKaren T. Romer

undergraduate research program.
†Research done while at Brown University.
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While type-based modular verification is a handy first line of defense, it proves only a very simple theorem (typi-

cally, that well-typed programs will not go “wrong” [Mil78]); furthermore, this theorem is fixed and built into the type

system. Developers often need to prove richer theorems about a system’s behavior. Behavioral verification can un-

cover subtle errors such as concurrency violations, race conditions, deadlock, and progress failures. As programs grow

more complex, and increasingly use communication and concurrency, behavioral verification grows more critical.

The feasibility of modular behavioral verification is unfortunately diminished by a simple but critical practical con-

cern: the need for specifications. While programmers voluntarily write types, decades of experience have shown that

programmers are highly unlikely to write more complex specifications of a module’s behavior. This problem persists

even when these specifications are fed to tools that can provide concrete feedback [FL01]. Worse, programmers often

simply lack sufficient understanding of the program’s behavior and may not have the training necessary to correctly

use the specification logics. Without specifications, however, the modular verification tools cannot function, leaving

the programmers who most need verification unable to exploitit.

One tempting proposition is to compose a complete program out of the modules, then verify the program as a

whole. Verifying the entire program, however, has several shortcomings. First, not all modules are available at the

same place, because they are written by independent authorsand assembled (in a componential fashion [Szy98]) by

a client. Second, even when the modules are available (say atthe client), the total number of system configurations

can be too numerous: for instance, in a product line construction [CN02], the total number of combinations of product

line features can exhibit combinatorial explosion. Finally, even a single one of those configurations may be too large

to verify en masse due to the well-known problem of state explosion [CGP00].

For behavioral verification to be useful and tractable in practice, it must therefore apply to modules, rather than only

to whole programs. Ideally, amodularverification methodology should support proving properties about individual

modules and inferring properties of composed systems from properties of the individual modules; furthermore, these

methods should retain the automation of type checking. Mostimportantly, given a behavioral property expected of a

whole system, the technique must automatically generate the module specifications because programmers often will

not, and sometimes may not be able to, supply them. This is theessence of automated software engineering: to

automatically handle tasks that programmers cannot, or will not, perform manually.

The verification technique that this paper defines specifically addresses feature-oriented modules. These modules

encapsulate individual program features that cross-cut systems and contain state-machine representations of code

fragments that implement a feature’s functionality for each actor in the overall system. In recent years, researchers

from a variety of applications areas have noted that programming with cross-cutting concerns can simplify a variety

of software engineering problems such as maintenance, evolution, and product-line development [BO92, CN02].

This paper focuses on the interfaces that feature-orientedmodules need in order to support modular model check-

ing of behavioral properties. Interfaces must contain sufficient information for tools to prove whether composition

would violate the properties proven of an individual module. This requires interfaces to contain constraints, similar

to verification conditions, that other modules must satisfyat composition time. Our methodology derives these con-

ditionsautomaticallyduring feature verification. Thus, for feature-oriented modules we are able to lift the benefits of

automated modular verification to the level of behavioral properties.

This paper also demonstrates the utility of our interfaces through a case study, which we use as a running example

throughout the paper. The case study is based on an analysis of an email system originally conducted by Robert

Hall [Hal00]. This example is interesting because it contains a substantial number of feature interactions; in our

methodology, these manifest as properties that hold of individual features, yet fail after composition. Hall originally

identified these interactions manually. Using our methodology, we can detect these interactions automatically and

compositionallygiven desired properties of the individual features.
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Figure 1: Three features: the base feature, encryption, andforwarding. Dashed states unify with concrete states during

feature composition. Control leaves the base feature through the states labeledincomingandoutgoingand returns

through those labeledmail anddeliver.

Section 2 provides an overview of the case study used in this paper. Section 3 presents an overview of and prior

work on open systems. Section 4 describes our core approach to feature-oriented verification in the context of closed

systems. Section 5 extends our approach to open systems. Section 6 presents the results of our case study. Section 8

reviews related work. Section 9 offers concluding remarks.

2 A Motivating Scenario

We illustrate features and their interactions, and use an email application as a case study to show how they lead to open

systems. The example we present is originally due to Robert Hall [Hal00]. The application offers several features, a

characteristic of product line systems; these features can, however, adversely interact with one another in many ways.

The application provides a database which stores information pertinent to individual users, such as their encryption

keys, mail aliases, and forwarding addresses (if any). The application contains the following features (Figure 1 shows

some of their state machines): basic mail delivery, digitalsignatures, forwarding, anonymous remailing, encryption,

decryption, signature verification, auto-reply, filtering(based on sender’s hostname), and mail hosting. The features

connect through a pipe-and-filter style architecture [SG96].

The following properties, elicited by Hall, should hold of asystem containing these features. There are two

propositions for sending mail,deliver andreceived. Deliver indicates a message that reaches the current user, while

received indicates a message that was mailed to an external user and reaches the recipient.

The properties are stated both in English and in the temporallogic CTL [CES86, CGP00]. CTL formulas describe

properties of states of a system. A CTL operator consists of two designators: a path quantifier (A for all paths orE
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for some path) and a temporal operator (G for all times,F for some future time,U for until, andR for release. Rather

than reproduce the formal semantics, we provide four examples of CTL formulas and their English interpretations.

• AFϕ says “on all pathsϕ is true at some future state”.

• AGϕ says “on all paths,ϕ is true in all states” (i.e.,ϕ is true in all reachable states).

• E[ϕ U ψ] says “there exists a path on whichϕ is true in every state untilψ becomes true” (ψ must be true in

some state along the path).

• A[ϕ R ψ] says “on all paths,ψ must continue to hold untilϕ holds (ifϕ never holds,ψ must hold indefinitely)”.

Release (R) is the dual of until (U).

Hall found a variety of interactions by manually inspectingnumerous configurations of these features. Many

of these interactions violate straightforward requirements on the individual features; this paper studies ten of these

requirements. We state the requirements both informally and in CTL.

1. Once a message is signed, the sender field is not altered until the message is delivered or received.

Formula:AG[ sign-msg → A[ sender-unchanged U (deliver ∨ received) ]]

2. When a message is ready to be remailed, it is never mailed outwith the sender’s identity exposed.

Formula:AG[ wantsRemail → A[ anonymous R ¬mail]]

3. If a receiver tries to verify a signature, then the messagemust be verifiable.

Formula:AG[ try-verify → verifiable ]

4. When a message is encrypted, it is never decrypted and then sent in the clear.

Formula:AG[ encrypt → A[(deliver ∨ received) R AG ¬(decrypted ∧ E[ ¬encrypted U mail])]]

5. If a message is to be remailed, it is formatted correctly for the remailer to process it.

Formula:AG[ toRemailer → in-remailer-format ]

6. If an auto-response is generated, the response eventually is delivered or received.

Formula:AG[ auto-response → AF (deliver ∨ received)]

7. There is no loop where messages are infinitely mailed back and forth.

Formula:AG AF ready

8. If a message is forwarded, it is eventually delivered or received.

Formula:AG[ forward → AF (deliver ∨ received)]

9. If the auto-responder replies to a message, then that message’s subject line must be in the clear.

Formula:AG[ auto-response-incoming → clear]

10. If an outgoing message is signed, then its body is never changed unless is it delivered or retrieved.

Formula:AG[ sign-mail ∧ signed → A[ delivered ∨ retrieved R body-unchanged ]]

11. If a mailhost generates an error message, then that message is eventually retrieved or delivered.

Formula:AG[ mailhost-errorMail → AF (deliver ∨ received)]

Each of these properties holds in the feature that implements it. Each property also fails when the feature that

implements it is composed with another (specific) feature. Section 6 describes these interactions and the specific

aspects of our methodology that detect the failures.
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3 Open Systems and Prior Work

Consider property 4 of the email application, which states that once a message is encrypted, it is never sent out on

the network in the clear. This property holds of the encryption feature. If we compose the encryption feature and

the forwarding feature, we will need to check that the forwarding feature preserves this property. The standard CTL

model checking algorithm [CES86] is potentially unsound inthis case, however, because the forwarding feature’s state

machine does not contain the propositionencrypted. This is not a design error.Encryption is not part of forwarding,

so the forwarding feature should not contain references to the message attributes associated with encryption. This

separation of concerns, which underlies feature-orienteddesign, inherently yields verification tasks involving unknown

propositions; unknown propositions lead to open systems.

The existing work in open systems addresses two forms of openness: uncertainty in transitions and ignorance of

propositions. Kupferman, Vardi, and Wolper address the former [KVW98]. Their work considers cases in which

properties fail due to the values generated by an environment model; their methodology reports a property true of a

system only if that property holds regardless of the environment. The work in modal transition systems, similarly,

deals with uncertainty of transitions [HJS01]. In contrast, we are concerned with property preservation under specific

compositions; most cases of feature interaction arise in contexts where some compositions violate properties and

others do not. The Kupfermanet al.approach is therefore too restrictive for our work.

Bruns and Godefroid consider propositions whose value is unknown; these propositions arise from partial Kripke

structures [BG99]. They employ a 3-valued logic to preserveproperties of the partial system in the complete structure.

Our work differs in the source of the unknown propositions. In their work, the unknown propositions arise from

considering only a portion of a full state space. In ours, theunknown propositions arise from thepropertiesthat we

wish to verify. The features themselves are closed (by construction) but lead to open system considerations when

verified against properties containing propositions from other features. Furthermore, their work does not address

a compositional methodology or other open system concerns (such as refinement of propositions and distinctions

between control and data propositions) that we motivate in this paper. Our methodology does exploit their algorithm

for implementing a 3-valued CTL model checker from an existing 2-valued one [BG00]. Chechik, Easterbrook, and

Devereaux’s multi-valued model checker [CED01] shares theshortcomings of Bruns and Godefroid’s work from the

perspective of this work.

The differences between our view of open systems and those inthese previous works arise from the models of

composition that each work employs. Features encapsulate related portions of a system and compose in a quasi-

sequential manner. Open systems in which unknown values arise in the models (rather than from the properties)

require another module (the environment) running in parallel to supply the unknown values; Kupfermanet al.’s work

operates in this context. Bruns and Godefroid’s work also appears to assume this because their unknown propositions

may change value anywhere within a state space (suggesting that the decision of how and when values change is under

the control of an external, simultaneously executing entity). In our work, the unknown propositions arise either from

data attributes controlled by other features, or from control variables that are local to other features. These differences

force us to develop a new methodology for open system verification.

Recent work by Giannakopoulou, Pǎšareanu and Barringer [GPB02] presents a technique that generates interfaces

for labeled transition systems. The generated interfaces effectively close the system with respect to given properties.

This is similar in spirit to our work, but differs primarily in three respects: their interfaces are labeled transition

systems rather than temporal logic formulae; their algorithms assume parallel composition; and while their technique

can handle encodings of unknown propositions, it does not natively support our notion of evolving propositions (which

we discuss in Section 5.2).
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Many researchers have acknowledged the difficulty in detecting feature interactions in the presence of unknown

information. Hall classifies several types of interactions; ours fall into his “Type II” classification. Some researchers

have related feature interaction detection to the frame problem from artificial intelligence [AR98, AA97, BBK95,

BMR95]. Jackson relates the frame problem to views, which are similar in spirit to cross-cuts [Jac95]. Like Bruns and

Godefroid, these techniques all assume a global view of the system, in which all propositions are known in advance.

Furthermore, none of their approaches is compositional. Our approach supports the addition of previously unidentified

propositions (a higher-level notion of openness) and compositional reasoning.

4 Modeling and Verifying Features as Closed Systems

Our goal is to develop a compositional methodology for verifying features as open systems. One especially beneficial

outcome of such a methodology would be the detection of undesirable feature interactions. As an example, anonymous

remailing does not mask a sender’s identity if the sender key-signed the message. Other interactions arise from the

order in which an application executes features. Although forwarding does not inherently affect encryption, if a

message is decrypted prior to forwarding, then a message that had been encrypted goes out on the network in the clear.

Such feature interactions are a widespread problem in telecommunications and many other applications, even giving

rise to a workshop series. In this paper, we view a feature interaction as undesirable if it violates a formal requirement

of either an individual feature or the entire system. We do not discuss the problem of extracting these properties from

the requirements.

The main challenges in developing such a methodology are determining what information needs to be included in

a feature’s interface to support compositional reasoning,and devising techniques to perform these checks. In previous

work, we proposed a compositional verification methodologyfor features that interacted only through sequential

transfer of control. The email application involves richerinteractions. This section describes our previous model and

methodology (for features as closed systems). Section 5 motivates and describes our enriched model and methodology

through the email application.

4.1 Modeling Features and Their Compositions

Our formal model of feature-oriented systems views each feature as a single state machine. Our previous work [FK01]

shows how to reduce models where each feature has multiple state machines to the single-machine model. Hence we

adopt the single-machine model here for simplicity.

Definition 1 Let φ be a set of atomic propositions.PL(φ) denotes the set of propositional logic expressions over the

set of variables inφ.

Definition 2 A state machine is a tupleM = (S,Σ,∆, s0, R, Tr, Fa) where

• S is a set of states,

• Σ and∆ are sets of input and output atomic propositions,

• s0 ∈ S is the initial state,

• R ⊆ S × PL(Σ) × S is the transition relation,

• Tr : S → 2∆ indicates which propositions are true in each state, andFa : S → 2∆ indicates which propositions

are false in each state (∀s ∈ S, Tr(s) ∩ Fa(s) = ∅).
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This is the standard definition of a state machine, augmentedwith distinct labeling functions for true and false labels

instead of just one labeling function for the true labels. This distinction supports our use of 3-valued model checking.

(The state machines in Figure 1 do not illustrate the distinction between input and output propositions. Intuitively,

the input propositions represent control decisions such ashas-key in the encryption state machine. In general, this

definition supports both Mealy and Moore machines, while thefigures in this paper use Moore machines only, making

the transition guards implicitly true.)

We expect features in pipe-and-filter product-line systemsto compose in a chain, where the chain begins and ends

with some basic infrastructure that is common to all products within the family (such as basic mail delivery, in the

email case study). A composition of features and the base infrastructure forms aproduct, where a product consists

of both a state machine and a set of interfaces where new features may be inserted into the system. We capture the

common infrastructure in abase product, which is like a core feature. When we verify individual features, we must

do so within the context of the base product so that we can establish properties of the feature relative to the common

infrastructure.

Definition 3 A base productis a state machine(S,Σ,∆, s0, R, Tr, Fa) with an interface〈{soutgoing}, Sconnect〉

where

• soutgoing ∈ S,

• Sconnect ⊂ S,

• R contains an edge fromsoutgoing to each state inSconnect (this represents the system with no features).

Definition 4 A feature is a state machineM = (S,Σ,∆, s0, R, Tr, Fa) with an interface〈{sincoming}, Sexit, Rexit〉

where

• sincoming ∈ S is the initial state for the feature,

• Sexit ⊆ S is the set of exit states; these states must have out-degree 0.

• Rexit ⊆ Sexit × PL(Σ) × 2∆ × 2∆ specifies constraints on edges from exit states to states in the eventual

composed system. The last two arguments in each tuple specify true and false sets of propositions on the states

to which these edges are expected to connect when integrating the feature into a product.

Our model builds up products by iteratively composing new features into products. In this framework, adding a

feature to a product yields another product. We could define compositions of features into new features, but do not

present those details here to simplify the presentation. The extension to feature compositions outside the context of

products is, however, straightforward.

In order to connect a feature to a product, we need to match up the states inSconnect of the base system with the

specifications in the partial transitions from the states inSexit in the feature; if a state has no labels, we view it as

satisfying all specifications. Intuitively, we will add an edge from a state inSexit to each state inSconnect that satisfies

the specification on the true and false propositions given inRexit from the exit state. The following two definitions

make this precise.

Definition 5 Let e1 ande2 be states in (possibly different) features.e1 ande2 unify if Tr(e1) = Tr(e2) andFa(e1) =

Fa(e2) (i.e., if both states agree on their true and false labels), or if Tr(ei) andFa(ei) are both empty (fori ∈ {1, 2}).
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Figure 2: Illustrations of features, products, and their compositions.

Definition 6 Let P be a product with state machine(SP ,ΣP ,∆P , s0, RP , T rP , FaP ) and interfaces

{〈Soutgoing
1
, Sconnect1〉, . . . , 〈Soutgoing

k
, Sconnectk

〉}.

Let F be a feature with state machine(SF ,ΣF ,∆F , s0F
, RF , T rF , FaF ) and interface〈Sincoming, Sexit, Rexit〉. The

composition ofP andF via interface〈Soutgoing
i
, Sconnecti

〉 is a productPC . The state machine component ofPC is

(SC ,ΣC ,∆C , s0, RC , T rC , FaC) where

• SC = SP ∪ SF ,

• ΣC = ΣP ∪ ΣF ,

• ∆C = ∆P ∪ ∆F ,

• RC = RP ∪ RF ∪ Rnew exceptall edges between the interface statesSoutgoing
i

andSconnecti
from RP . Rnew

contains the following edges:

– All (s, pl, s′′) such that there exists(s, pl, s′) ∈ RP such thats ∈ Soutgoing, s′ ∈ Sconnect, s′′ ∈ Sincoming

ands′ ands′′ unify.

– All (s, pl, s′) such thats ∈ Sexit, (s, pl, t, f) ∈ Rexit, s′ ∈ Sconnect, t ⊆ TrP (s′) andf ⊆ FaP (s′).

• TrC = TrP ∪ TrF , and

• FaC = FaP ∪ FaF .

The interfaces ofPC is the set of interfaces fromP except〈Soutgoing
i
, Sconnecti

〉 and augmented with two new

interfaces:

• 〈Soutgoing
i
, Sincoming〉

• 〈Sexit, Sconnect〉

Figure 2 illustrates these definitions more intuitively. The figure shows a product consisting of a base product and

two featuresF1 andF3, and the composition of featureF2 onto this product (afterF1). The composition is performed

via an interface〈{s1, s2}, {s6}〉. The interface onF2 is 〈{s3}, {s4, s5}, ∅〉. Composition removes the dashed edges

and adds the four edges that connectF2 to the product. The italic labelsb1, b2, m andd on the states ofF3 and the

base product capture the idea behind states unifying on composition. WhenF3 was composed with the base product,

edges connected the states fromF3 to the base based on matching up the labels.
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4.2 The Core Verification Methodology

Our verification methodology entails three tasks:

1. Proving a CTL property of an individual feature through model checking (theverification step).

2. Automatically derivingpreservation constraintson the interface states of features and products that help detect

feature interactions compositionally.

3. Checking whether a featureF and a productP satisfy one another’s preservation constraints at composition time

(thepreservation step). We establish preservation by analyzing at mostF or P individually, not the composition

of F andP .

We derive the preservation constraints during the verification step using (a variant of) CTL model checking. The

standard CTL algorithm works by labeling all states with subformulas of the property to be verified. When we verify

a property against a feature (in the verification step), the interface states are labeled with some of these subformulas.

During the preservation step, we must check whether the overall product violates any of these labels. We therefore

store these labels in the interface and check whether they still hold during preservation checks. More formally, the

verification step operates as follows:

Verification step, version 1: Let F be a feature with interfaceI andB be the base product for the product-line that can

containF . Letϕ be a CTL property to prove againstF . ComposeF andB via I into an productF ′ (see Definition 6).

Use CTL model checking to verifyϕ in the initial (incoming) state fromF ′.

The formal model of features and their compositions from Section 4.1 is constructive, in that it captures the

details needed to define and compose products and features. The verification step suggests that interfaces also have

an analytic component, where we store data required for compositional verification. A refined notion of interfaces

therefore accompanies each version of the verification step.

Definition 7 (Interfaces, version 1) Each interfaceI of a feature or a product contains a mapping from states in the

interface to a set of CTL properties (the labels placed on those states during the verification step).

We give an intuitive description of the preservation step byreferring to Figure 2. When we composeF2 into

the rest of the product (containing the base,F1, andF3), we will need to perform two sets of checks: first, that the

labels ons4 ands5 of F2 hold once those states transition toF3; second, that the labels ons1 ands2 hold once those

states transition tos3. We perform each set of checks by augmenting each of the feature and the product with dummy

interface states from the other, assuming certain labels onthe dummy states, and verifying the remaining labels on the

dummy states through model checking. The following description formalizes this intuition.

Preservation step, version 1: Let F be a feature with interfaceIF andP be a product. LetIP be the interface ofP

through which we intend to composeF andP . The algorithm checks for two possible sources of interactions:

1. (Prove thatP doesn’t interfere with properties ofF ) We must check whether every label stored on a state in

Sexit of IF still holds onceF is connected toP . Add a dummy statesd to P with an edge fromsd to each state

in Sconnect. For each states in Sexit and each labelϕ on s in IF , copy the propositional labels froms to sd,

then model checkϕ atsd. Report an error iff one of these verification fails.
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2. (Prove thatF doesn’t interfere with properties withinP ) We must check whether the labels stored on states in

Soutgoing of IP still hold onceF is connected toP . Add one dummy state toF for each state in the interfaceIP

and insert edges betweenF and the dummy states that match those added when composingF with P . Copy the

labels fromSconnect to their respective dummy states (which are reachable fromF ) and copy the propositional

labels from states inSoutgoing to their respective dummy states (which reachF ). For each formulaϕ that labels

a states in Soutgoing, model check the formula in the dummy state corresponding tos. Report an error iff one

of these verifications fails.

Although the preservation step may appear expensive, in practice we rarely need model checking to confirm thatP

preserves the properties ofF . Most labels on the exit states ofF are simple labels such as “the mail state is reachable”,

i.e., they refer explicitly to reachability conditions on the states in the base product. In this case, we can simply check

these reachability constraints once when composing a feature into the system, thereby amortizing these checks across

multiple product compositions.

The correctness of this approach to preservation follows from our earlier work [FK01]. The rest of this paper will

revise these core algorithms to handle issues that arise in the context of open systems.

5 Modeling and Verifying Features as Open Systems

5.1 Unknown Propositions

Using the preservation check on property 4 in the forwardingfeature as an example, Section 3 motivated the need

to treat features as open systems: to perform this check, we must add theencrypted proposition to the forwarding

feature. This proposition captures a data attribute of a mail message that forwarding preserves as it processes the

message. Our algorithm cannot assume a concrete truth valuefor this proposition and remain sound; instead, we

must treat this proposition as having unknown value during the check. As 2-valued model checkers treat values as

explicitly true or false, we instead need a 3-valued model checker. We used Bruns and Godefroid’s 3-valued model

checking algorithm [BG00] in this paper; Chechik, Easterbrook and Devereaux’s multi-valued model checker would

also apply [CED01].

In 3-valued model checking, propositions can have values{true, false, unknown}; this explains our use of separate

true and false labeling functions in Definition 2. Propositions not labeled with either true or false in a state are

interpreted as unknown. We use the symbol≤ to denote an ordering on the precision of values in 3-valued logic:

unknown ≤ true andunknown ≤ false, while≤ does not relatetrue andfalse.

In a 3-valued model checker, interpretations of the logicaloperators extend to unknown values in a straightforward

manner. A 3-valued model checker can return true, false, or unknown as the value of a property in a structure. From

a verification perspective, the unknown result is less useful than a true or false result. Techniques for determining

concrete truth values in the presence of unknowns are therefore extremely useful. When no proposition maps to

unknown in any state, 3-valued model checking reduces to 2-valued model checking and returns either true or false;

models with no unknowns are calledcomplete. Bruns and Godefroid’s algorithm checks each property in two complete

models: one in which all unknowns are replaced with true (theoptimisticmodel) and one in which all unknowns are

replaced with false (thepessimisticmodel). A property is guaranteed to be false if it evaluates to false in the optimistic

model, and guaranteed to be true if it evaluates to true in thepessimistic model [BG00]. If neither of these guarantees

hold, their algorithm reports the property as having unknown value.
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Figures 3 through 5 illustrate verification of the forwarding feature under each of the regular, optimistic, and pes-

simistic interpretations (the “normalized form” in the figures rewrite all formulas without universal temporal opera-

tors). The regular check, shown in Figure 3, shows the property holding. This is unsound becausedecrypt-successful
is assumed false, but if were true the path to themail state would violate the property. This examples therefore requires

the pessimistic and optimistic checks. Since the optimistic check returns true and the pessimistic one false, there exist

paths that both preserve and violate the property. The verification step for this feature would therefore be inconclusive.

Our methodology could treat all propositions that arise in the property but are not in the model as unknown during

preservation checks, but that is too conservative. Consider property 2, which refers to propositionwantsRemail. This

proposition does not capture a data attribute of a message. Rather, it is acontrol proposition: it determines control-

flow within a feature. Control propositions of one feature are never true in another feature because features do not

execute simultaneously. This lets us set the control propositions from other features to false during model checking,

which increases the likelihood of a concrete result from themodel checker. Thus, when the designer can partition the

propositions into control and data subsets, our technique can exploit this design information.

Given this distinction, we reduce feature-oriented verification to 3-valued model checking as follows:

Verification step, version 2: Let F be a feature andϕ a property to prove ofF . For each propositionp that is inϕ

but not in the labeling functions ofF , setp to false in all states ofF if p is a control proposition; otherwise setp to

unknown in all states. Use 3-valued model checking to verifythe property against the augmented state machine. Store

the labels arising from the pessimistic and optimistic checks separately inF ’s interface.

Definition 8 (Interfaces, version 2) Each interfaceI of a feature or a product contains:

• A set of propositions from the product or feature which correspond to control propositions.1

• A mapping from states in the interface to a set of CTL properties true during the optimistic check.

• A mapping from states in the interface to a set of CTL properties true during the pessimistic check.

We must enhance the preservation step in accordance with ouruse of 3-valued model checking in the verification

step. When using 2-valued model checking, preservation checks confirm that true properties remain true upon compo-

sition. In a 3-valued setting, the preservation step uses two sets of checks: one with the optimistic labels (which will

detect property violations) and one with the pessimistic labels (which could confirm property preservation). If neither

the optimistic nor pessimistic checks result in concrete answers, we must analyze the property against the composed

system to determine its status in the composed system. Within the limits of our case study, however, the optimistic and

pessimistic checks were always sufficient.

Preservation step, version 2: The preservation step proceeds as in version 1, with two modifications. For each property

labelϕ to be checked:

1. For each propositionp in ϕ but not in the model being checked, setp to false (if a control proposition) or

unknown (if a data proposition) in all states of the model.

2. Run the preservation algorithm twice: once copying the pessimistic labels, and once copying the optimistic

labels. If the property fails under the optimistic labels, report an error. If the property holds under the pessimistic

labels, report the property as preserved.

1This set can be an underapproximation without sacrificing soundness.
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fwd-incoming

! fwd-address-provisionedfwd-address-provisioned

fwd-forward fwd-deliver

delivermail

Normalized form:  ! EF [ ! ( ! decrypt-successful V ! EF mail ) ]

Property of Interest:  AG [ decrypt-successful -> ! EF mail ] Traditional Check

Sub-formulas that hold in "mail" state:

Sub formulas that hold in "fwd-incoming", "fwd-address-provisioned",  and "fwd-forward" states:

Sub-formulas that hold in "! fwd-address-provisioned", "fwd-deliver", and "deliver" states:

Property holds

! EF ! ( ! decrypt-successful V ! EF mail )

! decrypt-successful V ! EF mail

! decrypt-successful

EF mail

mail

! EF ! ( ! decrypt-successful V ! EF mail )

! decrypt-successful V ! EF mail

! decrypt-successful

EF mail

! decrypt-successful

! EF mail

! EF ! ( ! decrypt-successful V ! EF mail )

! decrypt-successful V ! EF mail

Figure 3: Verifying the forwarding feature: the plain verification results.
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fwd-incoming

! fwd-address-provisionedfwd-address-provisioned

fwd-forward fwd-deliver

delivermail

Normalized form:  ! EF [ ! ( ! decrypt-successful V ! EF mail ) ]

Property of Interest:  AG [ decrypt-successful -> ! EF mail ] 

Sub-formulas that hold in "mail" state:

Sub formulas that hold in "fwd-incoming", "fwd-address-provisioned",  and "fwd-forward" states:

Sub-formulas that hold in "! fwd-address-provisioned", "fwd-deliver", and "deliver" states:

Property holds

Optimistic Check

because the optimistic check

false everywhere

Same as traditional check

assumes decrypt-successful is

! EF ! ( ! decrypt-successful V ! EF mail )

! decrypt-successful V ! EF mail

! decrypt-successful

EF mail

mail

! EF ! ( ! decrypt-successful V ! EF mail )

! decrypt-successful V ! EF mail

! decrypt-successful

EF mail

! decrypt-successful

! EF mail

! EF ! ( ! decrypt-successful V ! EF mail )

! decrypt-successful V ! EF mail

Figure 4: Verifying the forwarding feature: the optimisticverification results.
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Property of Interest:  AG [ decrypt-successful -> ! EF mail ] 

Sub-formulas that hold in "mail" state:

Sub formulas that hold in "fwd-incoming", "fwd-address-provisioned",  and "fwd-forward" states:

Sub-formulas that hold in "! fwd-address-provisioned", "fwd-deliver", and "deliver" states:

Pessimistic Check

Property fails

mail

EF mail

! EF mail

! EF ! ( ! decrypt-successful V ! EF mail )

! decrypt-successful V ! EF mail

EF mail

decrypt-successful

! (! decrypt-successful V ! EF mail )

EF ! ( ! decrypt-successful V ! EF mail )

decrypt-successful

! ( ! decrypt-successful V ! EF mail )

EF ! ( ! decrypt-successful V ! EF mail )

decrypt-successful

Normalized form:  ! EF [ ! ( ! decrypt-successful V ! EF mail ) ]
fwd-incoming

! fwd-address-provisionedfwd-address-provisioned

fwd-forward fwd-deliver

delivermail

Figure 5: Verifying the forwarding feature: the pessimistic verification results.
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remail-outgoing

! remail-wantsRemail

remail-wantsRemail

remail-mail

remail-anonymize

remail-anonymize
remail-mail

Figure 6: The remail feature.

5.2 Evolving Propositions

Propositions with unknown values enable the preservation checks required in feature-oriented verification, but are

insufficient to enable compositional feature verification.Compositional verification requires that once we verify a

property of a feature, we should not need to traverse that feature again during the preservation checks for that property.

Feature-oriented systems sometimes require the interpretation of propositions to evolve upon composition; this in turn

complicates compositional reasoning. The key point of thissection is that open systems arise not only from abstraction

and decomposition (the conventional contexts for open system verification research), but also from system evolution.

Consider property 2, which says that messages passing through the anonymizing remailer cannot reveal informa-

tion that identifies the sender. How isanonymous defined in this property? From the perspective of the remailer

feature alone (Figure 6),anonymous is the same as the propositionremail-anonymize from the remailer. Once we

add the signing feature, however, a message also needs to be unsigned in order to be considered anonymous. In other

words, adding the signing feature changes the property statement from

AG (wantsRemail → A[remail-anonymize R ¬mail]) to

AG (wantsRemail → A[(remail-anonymize ∧¬signed) R ¬mail]).

How can we verify this property against the remail feature compositionally, when the property might change in unex-

pected ways upon composition?

We present the approach intuitively before providing the formal details. In our concrete example, evolution log-

ically strengthenedanonymous: we replacedremail-anonymize with remail-anonymize ∧¬signed. We can rea-

sonably expect the evolution of propositions to logically strengthen or weaken their previous interpretations (otherwise,

one feature would completely override another, which lies outside the scope of our current model). Strengthening and

weakening are defined as follows:

Definition 9 Let expr andexpr′ be boolean expressions.expr′ strengthensexpr if expr′ ≡ expr ∧ augment, and

expr′ weakensexpr if expr′ ≡ expr ∨ augment, for some expressionaugment.

Suppose we had verified the original property in the remail feature, then needed a preservation check for this

property in the signing feature. What labels would we copy from the remail feature to the dummy states of the signing

feature? Since the sign feature changes the property, we cannot assume that the labels from the original verification

remain valid. When propositions evolve, therefore, our technique from the previous section is not applicable.

Assume for the moment that we had anticipated that a future feature might place additional restrictions on (i.e.,

strengthen) anonymity. We could have verified the propertyAG (wantsRemail → A[(remail-anonymize ∧ aug-
ment) R ¬mail]) against the remail feature. The labels stored in remail for apreservation check would therefore
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be valid for any extension that strengthened the definition of anonymity. To verify the formula containingaugment
against the remail feature, however, would require 3-valued model checking since the interpretation ofaugment is

unknown inside the remailer (by construction). This example outlines our proposed methodology for handling evolv-

ing propositions. We will verify properties under the assumption that certain propositions may be strengthened or

weakened, then use the labels arising from those assumptions to perform preservation checks. While this approach

will not let us perform all composition checks compositionally, it should let us perform many checks in that manner.

This proposal raises several concerns.Does a user need to know all the features and propositions before beginning

verification?No, our technique is designed to support design evolution, including the addition of unexpected features.

If an extension re-interprets a proposition that the designer had not expected to evolve, some existing features may need

to be re-verified.Does failure of an augmented property in the verification step yield useful feedback?Our algorithm

actually verifies each property in both its original and augmented forms to help identify the actual conditions under

which a property fails.Wouldn’t multiple augmented propositions in one property greatly reduce the likelihood of

meaningful verification results?Yes, but we have not seen that case frequently in practice; furthermore, our approach

is analogous to Bruns and Godefroid’s optimistic and pessimistic interpretations on this point. In short, we believe the

full algorithm, which we now present, adequately addressesthese concerns within the limits of software engineering

practice.

Both the verification step and the preservation step must change to handle evolving propositions. First, we need

to distinguish between propositions whose interpretations may evolve (henceforth calledevolving propositions) and

those whose interpretation will remain fixed. We leave this distinction to the modeler; the method remains sound as

long as the set of evolving propositions is over-approximated.

We extend the model checker with an additional input, aninterpretation functionR from evolving propositions

to boolean expressions over non-evolving propositions: weuse notationsM, s,R |= ϕ andM, s,R 6|= ϕ to denote

properties being true and false (respectively) in this extended model checker (we do not use a particular notation

for a model check returningunknown). When the model checker encounters an evolving propositionp, it evaluates

R(p); non-evolving propositions are evaluated directly. We lift the definition of strengthening and weakening to

interpretations, then present revised verification and preservation steps.

Definition 10 An interpretationR2 strengthensinterpretationR1 iff for each propositionp in the domain ofR1, either

R1(p) = R2(p) or R2(p) strengthensR1(p). If R2 strengthensR1 andR2(p) 6= R1(p) for any propositionp, then we

say thatR2 strictly strengthensR1. We defineweakensandstrictly weakensat the level of interpretations analogously.

Verification step, version 3: Given a propertyϕ to verify of a featureF under an interpretationR, perform version 2

of the verification step three times, each under a different interpretation:

1. A 3-valued check usingR. If this check fails, the property fails to hold and the algorithm stops.

2. A strengthening check (denoted|=ST) in which each evolving propositionp in ϕ is strengthened toR(p) ∧

augmentp for some new propositionaugmentp. If a check fails, recordfalse as the result of verification in the

label sets for that check.

3. A weakening check (denoted|=WK) in which each evolving propositionp in ϕ is weakened toR(p)∨augmentp

for some new propositionaugmentp. If a check fails, recordfalse as the result of verification in the label sets

for that check.
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Each of the different interpretations gives rise to different sets of labels during the verification step. The interfaces

must expand to store all of these labels accordingly, as wellas the core interpretation that was in effect when the

properties were verified.

Definition 11 (Interfaces, version 3) Each interfaceI of a feature or a product contains:

• The control propositions of the product or feature.2

• A mapping from states in the interface to a set of CTL properties true during the optimistic check.

• A mapping from states in the interface to a set of CTL properties true during the pessimistic check.

• A mapping from states in the interface to a set of CTL properties true during the optimistic strengthened check.

• A mapping from states in the interface to a set of CTL properties true during the pessimistic strengthened check.

• A mapping from states in the interface to a set of CTL properties true during the optimistic weakened check.

• A mapping from states in the interface to a set of CTL properties true during the pessimistic weakened check.

Although these interfaces appear to be getting rather complex, it is important to remember that a designer need

supply only the constructive interface and the partition into control and data propositions. All of the labels are gen-

erated and stored automatically. In addition, the sets of labels and the labels themselves will tend to be small, so the

space overhead is not as severe as Definition 11 might suggest.3

In order to complete our formal model, each product and feature must contain an interpretation of its evolving

propositions. In the case of a product, this interpretationevolves as additional features are added to the product. To

formalize this notion, we must define the composition of interpretations. When composing interpretations, the values

from features override those from products, regardless of whether the feature strengthens or weakens the interpretation

in the product. This may seem counterintuitive: a better strategy appears to be to keep the stronger interpretation in

the composition. Such an interpretation, however, would not allow adding a feature to weaken an interpretation within

a product. This situation arises in the case ofanonymous being weakened toanonymous ∨ signed. It would make

no sense to lose this more general interpretation in the overall product, especially since the new interpretation arises

from a composition of features. Having the feature’s interpretation override conflicts in the product captures the idea

that products evolve in accordance with their feature sets.

Definition 12 Let F andP be a feature and a product to compose. LetRF be the interpretation associated withF and

RP be the interpretation associated withP . For all propositionsp in the domain of bothRP andRF , assumeRF (p)

either strengthens or weakensRP (p). We define the compositionRC of RF andRP to be an interpretation where

• For all propositions in the domain ofRP but not in the domain ofRF , RC(p) = RP (p),

• For all other propositions,RC(p) = RF (p).

RC is undefined if there exists a propositionp such thatRF (p) neither strengthens nor weakensRP (p) (this definition

allowsRF (p) = RP (p) since strengthening and weakening can be vacuously satisfied with augment values oftrue
andfalse, respectively).
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Sub-formulas: remail-wantsRemail, anonymous, mail
! remail-wantsRemail, ! anonymous

E ( ! anonymous U mail )

! E ( ! anonymous U mail )

Normalized Form: ! EF ! [ ! remail-wantsRemail V ! E ( ! anonymous U mail ) ]

! remail-wantsRemail V ! E ( ! anonymous U mail )

EF ! [ ! remail-wantsRemail V ! E ( ! anonymous U mail ) ]

! EF  ! [ ! remail-wantsRemail V ! E ( ! anonymous U mail ) ]

! ( ! remail-wantsRemail V ! E ( ! anonymous U mail ) )

Property of Interest:  AG [ remail-wantsRemail -> A ( anonymous R ! mail ) ]

mail

! remail-wantsRemail V ! E ( ! anonymous U mail ), ! EF ! [ ! remail-wantsRemail V ! E ( ! anonymous U mail ) ] 

remail-mail

remail-wantsRemail remail-anonymize

remail-mail

remail-anonymize

remail-outgoing

! remail-wantsRemail

Strengthened results:  anonymous = remail-anonymize AND unknown

property fails

trace:  remail-outgoing -> remail-wantsRemail -> remail-anonymize ->

remail-anonymize, remail-mail -> mail

Weakened results:  anonymous = remail-anonymize OR unknown 

property holds

labels on remail-mail: ! remail-wantsRemail, ! anonymous, E ( ! anonymous U mail ), 

! remail-wantsRemail V ! E ( ! anonymous U mail ), ! EF ! [ ! remail-wantsRemail V ! E ( ! anonymous U mail ) ] 

labels on remail-anonymize, remail-mail:  anonymous, ! remail-wantsRemail, ! E ( ! anonymous U mail ),

Figure 7: Verifying the remailing feature with strengthening and weakening.
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Naturally, the preservation step must also account for strengthening and weakening. Version 2 of the preservation

step performs checks in two directions: one analyzing labels of the product against the feature and one analyzing labels

of the feature against the product. We parameterize the following definition of the preservation step over the one being

analyzed and the one whose labels are being confirmed, with their respective interpretations, the interpretationRA of

the one being analyzed and the interpretationRC of the one whose labels are being confirmed.

Preservation step, version 3: For each check in version 2 of the preservation step, letϕ be the label being confirmed,

A be the feature/product being analyzed and letC be the feature/product whose labels are being confirmed. LetRA

andRC be the interpretations ofA andC, respectively. Choose the labels to copy to the interface states according to

the following algorithm:

• If RA(p) strengthensRC(p) for all evolving propositionsp in ϕ,

– If the optimistic strengthened labels map to false (indicating that the optimistic strengthened check failed),

report an error.4

– Otherwise, perform version 2 of the preservation step usingthe strengthened versions of the (optimistic

and pessimistic) labels. If version 2 reports a concrete answer, return it.

• If RA(p) weakensRC(p) for all evolving propositionsp in ϕ,

– If the optimistic weakened labels map to false (indicating that the optimistic weakened check failed), report

an error.

– Otherwise, perform version 2 of the preservation step usingthe weakened versions of the (optimistic and

pessimistic) labels. If version 2 reports a concrete answer, return it.

• If RA(p) is logically equivalent toRC(p) for all evolving propositionsp in ϕ, follow version 2 of the preserva-

tion step with the regular (non-strengthened or weakened) labels. (Note: if the two interpretations are logically

equivalent, this algorithm would first attempt the strengthened and weakened tests, performing this check only

if neither of those produced a concrete answer. For efficiency, we could modify the conditions for strengthened

and weakened tests to require at least one proposition to strictly strengthen or weaken; this would not affect our

soundness theorems.)

• In all other cases, or if none of the previous cases yields a concrete answer, re-verifyϕ againstC usingRA, then

apply version 2 of the preservation algorithm (with the new labels) to check preservation inA.

5.3 Soundness

The soundness of this methodology arises from a combinationof the soundness of the methodology for verifying

features as closed systems, the soundness of Bruns and Godefroid’s 3-valued checking with optimistic and pessimistic

interpretations, and the logic of strengthening and weakening. Our methodology is not complete due to a combination

of our use of 3-valued logic and strengthening and weakeninginterpretations.

2This set can be an underapproximation without sacrificing soundness.
3Note that each set is at most linear in the size of each property, which itself tends to be quite small.
4Counterexample generation is one of the benefits of model checking. If we want to retain compositional counter-example generation, we

can store the counterexample traces in the interface whenever a strengthened or weakened check produces false; this stored information would be

sufficient to reconstruct a counterexample in the composed model without verifying in the composed model.
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Intuitively, our soundness theorems state that if the compositional methodology reports a particular property label

as being true or false at a state, then model checking the sameproperty on the corresponding state of the composed

system would yield the same result. Our soundness results donot make claims about cases where the compositional

methodology yieldsunknown as the result of a verification. We present the argument as twoseparate theorems, one

concerning labels on states from the feature, and the other concerning labels on states from the product.

Our soundness proofs rely on an argument about the soundnessof preservation checks. We perform preservation

checks by attaching dummy states to a state machine; these dummy states represent the interface states to which the

state machine will be connected during composition. We copyproperty labels from the interface to these dummy

states, and verify properties in this augment state machine. Intuitively, we claim that any property that labels a statein

the augmented machine also labels the corresponding state in the composed machine.

We claim that the labels on the states of the fragment and the dummy initial state are identical to those that

would appear had we verified the property against a composed system. This claim is valid because state labels are

determined by the labels of their successors in CTL model checking, and composition does not add paths from the end

of a fragment back to its initial state. The following lemma formalizes this argument

Lemma 1 (The preservation lemma) LetM be a state machine that will be composed with state machineS via

interfaceI. LetM ′ beM augmented with a dummy state for each state inI, with edges between states ofM and the

new states inM ′ determined by the definition of composition (Definition 6). For all dummy interface states that serve

as sinks ofM ′, copy all labels from the corresponding states inI to the states ofM ′; for dummy interface states that

serve as sources ofM ′, copy all propositional labels from the corresponding states inI to the states ofM ′. Lets be

any state inM ′ and letϕ be a CTL property. Model checkingϕ at states in M ′ returns the same value as model

checkingϕ at the state corresponding tos in the composition ofM andS.

Proof: This lemma follows from the definition of CTL model checking.CTL model checking determines the labels on

a state from the labels of its successor states. Thus, the lemma holds as long as composingM andS cannot affect the

labels on the sink interface states. The labels on the sink interface states can only change if composition changes the

set of states reachable from the interface states. Since ourcomposition model prohibits edges that create new cycles

at composition time, the labels on the sink interface statesmust be preserved upon composition. The lemma therefore

holds.

2

Our results also depend on Bruns and Godefroid’s theorems that any formula that is true under the pessimistic

interpretation is true in the full model and any formula thatis false under the optimistic interpretation is false in a full

model [BG00]. We do not duplicate their theorem statements in this paper.

Lemma 2 Let S be a state machine,ϕ be a CTL formula,s be a state inS, andR1 and R2 be interpretations of

evolving propositions inϕ. AssumeR2 strengthensR1. ThenS, s,R1 |=ST ϕ ≤ S, s,R2 |= ϕ (i.e., the result of

model checkingϕ underR2 is at least as precise as the result of the strengthening model check underR1). If R2

strictly strengthensR1, thenS, s,R1 |=ST ϕ = S, s,R2 |= ϕ.

Proof: Interpretations affect model checking only at the level of propositions because interpretations map propositions

to boolean expressions over other propositions. It is therefore sufficient for us to argue that the theorem holds for all

propositional formulas; the inductive definition of CTL model checking naturally lifts this result to properties in allof

CTL.

The propositional proof breaks into several cases:
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• Assumeϕ is a propositionp. If p is not an evolving proposition, then the theorem holds because the value ofp

ats is determined by the state labeling inS and is not affected byR1 or R2. If p is an evolving proposition, then

its truth value ats is that of the expression thatp maps to under the corresponding interpretation. We therefore

need to consider the relationship betweenR1(p) andR2(p).

• If R1(p) = R2(p), then the strengthening model check will checkR1(p) ∧ augmentp while the regular model

check will confirmR1(p). If R1(p) is false, then both the regular and strengthening model checks will return

false forp ats. If R1(p) is not false (unknown or true), then sinceaugmentp has valueunknown by definition,

the strengthening check will returnunknown while the regular check will returnR1(p). In both cases, the

theorem holds.

• Otherwise,R2(p) = R1(p) ∧ augmentp. In this case, the strengthening model check usedR1(p) ∧ augmentp

in place ofp. This is equivalent toR2(p) up to renaming betweenaugment andaugmentp. Since these

variables are logically equivalent (interpreted asunknown), the result of model checking both expressions ons

is equivalent. The theorem therefore holds in this case.

The only case in which the two model checks did not return the same result was whenR1(p) = R2(p), in which case

R2 does not strictly strengthenR1. The strictly strengthening clause in the theorem therefore holds.

2

Corollary 1 If the model checks performed in Lemma 2 are both pessimistic, thenS, s,R1 |=ST ϕ = S, s,R2 |= ϕ

regardless of whetherR2 strengthens or strictly strengthensR1.

Proof: This follows immediately from the argument in the proof of Lemma 2.

2

Lemma 3 Let S be a state machine,ϕ be a CTL formula,s be a state inS, andR1 and R2 be interpretations of

evolving propositions inϕ. AssumeR2 weakensR1. ThenS, s,R1 |=WK ϕ ≤ S, s,R2 |= ϕ (i.e., the result of model

checkingϕ underR2 is at least as precise as the result of the weakening model check underR1). If R2 strictly weakens

R1, thenS, s,R1 |=WK ϕ = S, s,R2 |= ϕ.

Proof: The proof is analogous to that for Lemma 2.

2

Corollary 2 If the model checks performed in Lemma 3 are both optimistic,thenS, s,R1 |=WK ϕ = S, s,R2 |= ϕ

whetherR2 weakens or strictly weakensR1.

Lemma 4 LetRF andRP be interpretations and letRC be the composition ofRF andRP . If RF strengthens (resp.

weakens)RP for all propositions in the domain of bothRF andRP , thenRC strengthens (resp. weakens)RF for all

propositions in the domain ofRF .

Proof: This follows trivially from the definition ofRC , sinceRC(p) = RF (p) for all propositionsp in the domain of

RF .

2

Lemma 5 LetRF andRP be interpretations and letRC be the composition ofRF andRP . If RF strengthens (resp.

weakens)RP for all propositions in the domain of bothRF andRP , thenRC strengthens (resp. weakens)RP for all

propositions in the domain ofRP .
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Proof: By Lemma 4,RC strengthens (weakens)RF for all propositions in the domain ofRF . RC therefore strength-

ens (weakens)RP for all propositions in the domain of bothRF andRP by transitivity. For all propositionsp in the

domain ofRP and not in the domain ofRF , RC(p) = RP (p), so the result holds trivially.

2

We now present the main soundness result as two separate theorems. Version 1 of the preservation step consists

of two main subparts: one for determining whether the product interferes with the properties of the feature, and one

for determining whether the feature interferes with the properties of the product. We handle each case in a separate

soundness theorem.

Theorem 1 Let P be a product andF be a feature. LetPC be the composition ofP and F via interfaceI =

〈Soutgoing, Sconnect〉. Let sf be a state inSincoming of F and letϕ be a CTL formula that labelssf (in one of the

various sets of interface labels). LetRF be the interpretation in use whenϕ was verified againstF . Let RP be the

interpretation forP and letRC be the composition ofRF andRP . If the preservation step reports thatϕ is preserved

when composingP andF via I (i.e. thatP does not interfere with properties ofF—part 1 of the preservation step,

version 1), thenPC , sf , RC |= ϕ. If the preservation step reports thatϕ is violated when composingP andF via I,

thenPC , sf , RC 6|= ϕ.

Proof: By Definition 12,RP neither strengthens nor weakensRF . Two cases therefore exist:

• RP andRF are logically equivalent on all propositions inϕ. According to the preservation step algorithm (ver-

sion 3), we use the non-strengthened or weakened labels and apply version 2 of the preservation step. Version

2 reportsϕ as holding (failing) if it holds (fails) in the pessimistic (optimistic) interpretations. Our theorem

therefore reduces to the soundness of using pessimistic (optimistic) models to determine truth (falsehood) in a

3-valued model. Bruns and Godefroid’s theorem establishesthis soundness.

• The previous case did not hold, in which case we re-verifyP usingRF and then use version 2 of the preservation

step to checkϕ. Following reverification, this case reduces to the previous one, in whichRP and RF are

logically equivalent on all propositions inϕ.

2

Theorem 2 Let P be a product andF be a feature. LetPC be the composition ofP and F via interfaceI =

〈Soutgoing, Sconnect〉. Let sp be a state inSoutgoing of P and letϕ be a CTL formula that labelssp (in one of the

various sets of interface labels). LetRP be the interpretation fromP , RF be the interpretation fromF , andRC the

composition ofRP andRF . If the preservation step reports thatϕ is preserved when composingP andF via I (i.e.

that F does not interfere with properties ofP—part 2 of the preservation step, version 1), thenPC , sp, RC |= ϕ. If

the preservation step reports thatϕ is violated when composingP andF via I, thenPC , sp, RC 6|= ϕ.

Proof: If statesp does not reach any state fromF in PC , then the theorem holds trivially because CTL model checking

determines property labels from the properties of its successors. Ifsp reaches any state inF , then it must reach a state

in the interfaceSincoming of F . By the preservation lemma (Lemma 1), the theorem holds forsp if every label on

every statesi in Sincoming of F during the preservation check is a valid label onsi in PC . Another application of the

preservation lemma reduces this to proving that all labels on statesse in Sexit of F during the preservation step are

still valid onse in PC . We therefore consider the statement only for these states.
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Let se be a state inSexit and letψ be a label onse in F ′. We must prove thatψ labelsse in PC . As this theorem

concerns the preservation step (version 3), the proof breaks into cases depending upon the relationship betweenRF

andRP . In this theorem,F is the system being analyzed (calledA in the preservation step) andP is the system being

confirmed (calledC in the preservation step).

• If RF strengthensRP for all evolving propositions inψ and the optimistic strengthened labels map to false, then

the algorithm reports thatψ does not hold in the composed system. The soundness of this step follows from the

soundness of false results under optimistic models predicting false results in full 3-valued models. Bruns and

Godefroid’s theorem completes the proof in this case.

A similar argument covers the case when the optimistic weakened labels map to false.

• AssumeRF strengthensRP for all evolving propositions inψ but the optimistic strengthened labels do not

map to false. The algorithm performs version 2 of the preservation step using the strengthened versions of the

labels. Assume version 2 reports thatF ′, se, RF |= ψ; by definition of the preservation step, this check used

the pessimistic labels. Bruns and Godefroid’s theorem therefore implies thatF ′, se, RF |= ψ using the regular

3-valued interpretation (neither optimistic nor pessimistic). The truth value ofψ at se in PC depends on the

labels copied to the dummy interface states thatse reaches inF ′. If we can argue that those labels remain valid

on the actual interface states inPC , then this case of the soundness proof holds.

By assumption,RF strengthensRP (Definition 12). Lemma 5 implies thatRC strengthensRP for all propo-

sitions inψ. Based on this relationship betweenRC andRP , Lemma 2 guarantees that for all propertiesφ

and statess in P , P, s,RP |=ST φ ≤ P, s,RC |= φ (i.e. that a strengthening model check inP is no more

precise than the corresponding regular model check inP ). For each statesc in Sconnect, P, sc, RC |= φ implies

PC , sc, RC |= φ since the set of states reachable fromsc in PC is the same as the set of states reachable from

P . This establishes this case of the theorem.

If the preservation algorithm reportsψ as failing based on the check in the optimistic model, the result holds by

a similar line of reasoning (replacing uses of pessimistic with optimistic).

• AssumeRF weakensRP for all evolving propositions inψ but the optimistic weakened labels do not map to

false. Then the proof follows that for the previous case, substituting the corresponding lemmas on weakened

interpretations for those on strengthened interpretations.

• In the remaining cases (RP andRF are logically equivalent, or no prior case produces concrete results), the

proofs are analogous to the proofs for these cases from Theorem 1.

2

6 Case Study Results

Our interfaces are only effective if they enable us to perform most preservation checks compositionally. To evaluate

the effectiveness of our interfaces, we searched for feature interaction errors in the email application described in

Section 2. We used the case study to determine

• whether our interfaces and methodology can detect the feature interaction errors compositionally,
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• the extent to which each aspect of our methodology (originalfeature-oriented model checking, 3-valued model

checking, and evolving propositions) contributed to detecting actual interactions, and

• whether interactions can be detected through combining small numbers of features.

Our experiments use a model checker that we built specifically for handling our feature-oriented verification

methodology. We do not present performance figures here in part because because the state machines for these models

are too small to generate meaningful performance figures, and because the emphasis in developing the model checker

has been to support the methodology rather than provide highperformance. Similarly, we don’t provide a compari-

son against model checking the entire system because our intent is to validate our modular verification methodology;

in general, the number of combinations of systems in a product line makes whole-system verification prohibitively

expensive.

We manually extracted the ten properties described in Section 2 from the interactions that Hall reported in his

study [Hal00]. Hall detected twenty-six interactions, of which we detected sixteen.5 Of Hall’s remaining ten interac-

tions, three were too simple to detect at our level of model (we would have had to artificially design a model to reflect

the interactions, and the detection would have then been trivial). Two arose from properties that could be expressed in

LTL, but not in CTL. One involved forking a message down two delivery paths, which really depends on features being

modeled as alternating automata. Three interactions involved human concepts such as rudeness that didn’t translate

well into logical formulas. Finally, one required a remailer with different behavior than the one we had designed based

on the remainder of the study.

Each of the properties from Section 2 held when verified against the feature that was mainly responsible for

implementing it, but failed upon composition with other features.6 Tables 1 and 2 summarize the feature interactions

that we detected using our modeling and verification methodology. Each row describes the property (from Section 2)

whose violation led to the undesired interaction, the (ordered) composition of features with which we detected the

interaction, a description of the undesirable interaction, and a statement of which techniques detected the interaction.

The values in the table for the last column indicate one of three techniques: the original compositional methodology,

3-valued checks, and strengthened/weakened comparisons.

The tables show several results. First, seven of the sixteeninteractions required only the original methodology. The

remaining interactions required some combination of the enhancements. In general, using the original methodology

in the context of unknown propositions is unsound because traditional (2-valued) model checking assumes that a

proposition that doesn’t appear in a feature is false. It is also unsound to reuse interface labels that were generated

with the assumption that propositions do not evolve. These two nuances made our original methodology inappropriate

for identifying the remaining nine interactions.

Our methodology detected the five interactions marked with “pessimistic strengthened” based solely on the infor-

mation in the interfaces; no additional model checking runswere performed during the preservation step. In these

cases, the verification step determined that strengtheningthe evolving propositions would lead to a violation of the

property and recorded this fact in the interface. When the violation did occur, the model checker extracted the counter-

example already stored in the interface.

We detected two interactions using evolving propositions sans 3-valued model checking; these are marked with

“Original” in the techniques column and a non-empty Re-Interpretation column. In these cases, the preservation step

required model checking, but only for 2-valued logic. Finding the remaining two interactions required both 3-valued

5Our tables of results show only fifteen rows because the first of the property 7 entries captures two related interactions from Hall’s study.
6For the rest of this section, we will implicitly assume that features are composed with the basic mail delivery feature prior to verification; this

defines the propositionsmail anddeliver.
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model checking and evolving propositions; in these cases, the information stored about weakening and strengthening

was not enough to indicate a violation, so the preservation step ran the 3-valued model checker, using the extended

interpretation listed in the table. In no case did we have to verify the full composition of the listed features in order to

detect an interaction.

In nine of the sixteen interactions, the propositions evolved at composition time. In all of these cases, the new

interpretations always either strictly strengthened or strictly weakened their earlier interpretations; because ofour

stored interface information in these cases, we never needed to re-verify a property already proven of a feature after

re-interpretation. This clearly shows that any methodology for verifying feature-oriented designs must accommodate

evolving propositions. The propositions do, fortunately,seem to evolve predictably, which verification techniques

should exploit.

The distinction between control and data propositions was necessary to handle four of the interactions, specifi-

cally, the ones that violated properties 1 and 4. Each of these compositional checks would have failed if the control

propositions had been interpreted asunknown, rather than asfalse, during model checking.

This case study suggests that our enriched methodology is crucial for detecting many interactions. Our original

technique could not find several of the feature interaction problems in this suite. In fact, our original modeling tech-

nique could not even model the suite accurately due to the lack of support for evolving propositions. This case study

therefore demonstrates the utility and effectiveness of the results presented in this paper.

An Interesting Interaction

Property 4, which requires an encrypted message to never be decrypted and then mailed without first being re-

encrypted, led to some interesting results during this study. The interactions arising from this property does not

occur in our model with fewer than three features:

• The property holds of the encryption feature alone.

• The property holds when the decryption feature is composed with encryption because the decryption feature

does not itself mail anything.

• The property holds when encryption is composed onto either autorespond or forward because the message stays

encrypted until mailed.

• The property fails when autorespond or forward is composed with encryption followed by decryption because

this composition introduces a path from a state where the message is clear (and stays clear) to mail. A 3-valued

check exposes this.

• The property also fails when decryption follows either encryption and autorespond or encryption and forward.

The propositionclear is weakened fromfalse to false ∨ decrypt-successful. A pessimistic weakened check

onencrypt-autorespond or encrypt-forward exposes this.

This property differs from the others that yielded undesirable interactions because multiple orders of composition

among the features expose the interaction; furthermore, different techniques (3-valued checks versus evolving propo-

sitions) exposed the interaction depending upon the composition order.
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Property
Features
Involved

Problem Description Re-Interpretation
Verification
Techniques

1 sign, forward
The sender field of a signed message

can be altered by a forwarding feature,

and then mailed out.

sender-unchanged strength-

ened fromtrue to¬forward
Original

1 sign, remail
The remailer changes the sender field

of a signed message.

sender-unchanged
strengthened from true to

¬anonymize

Original

2 sign, remail

Signing a message gives away the iden-

tity irrespective of whether the sender

field is changed.

anonymous strength-

ened from anonymize to

anonymize ∧¬signed

Pessimistic

Strengthened

3 encrypt, verify
If a message is signed and then en-

crypted, the encryption defeats signa-

ture verification.

verifiable strengthened from

true to¬encrypted

Pessimistic

Strengthened

4
encrypt, decrypt,

forward

A message can be encrypted, mailed

out, decrypted, and then forwarded in

the clear.

decrypted weakened from

false to decrypt-successful
3-valued

check

4
encrypt, decrypt,

auto-respond

A message can be encrypted, mailed

out, decrypted, and then auto-

responded such that the auto-response

contains the original text of the

message.

decrypted weakened from

false to decrypt-successful
3-valued

check

5 encrypt, remail

A message intended to be remailed

cannot be processed by the remailer if

the message is originally encrypted.

in-remailer-format strength-

ened fromtrue to¬encrypted

Pessimistic

Strengthened

6
auto-respond, fil-

ter

The filter feature can potentially dis-

card messages generated by the auto-

responder.

Original

Table 1: Each feature interaction is listed with the property it violates, the interpretation of propositions it requires,

and the verification techniques used to expose the problem. (Part 1)
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Property
Features
Involved

Problem Description Re-Interpretation
Verification
Techniques

7 forward, remail

If a user establishes a pseudonym

on a remailer and forwards to that

pseudonym, then any message sent to

the user will be forwarded to the re-

mailer, sent to the user, forwarded to

the remailer, etc.

Original

7 forward

A user can provision a forward mes-

sages back to himself, thus creating an

infinite loop.

Original

7 forward, mailhost

If forwarding is setup to a non-existent

user, then the mailhost generates error

messages that are then forwarded back

to the non-existent user, resulting in

longer and longer error responses from

the mailhost.

Original

8 forward, filter
The filter feature can potentially dis-

card forwarded messages.
Original

9
auto-respond, de-

crypt, encrypt

An encrypted message can fail decryp-

tion and thus be given to the auto-

responder in which it cannot read the

subject line.

clear strengthened fromtrue
to¬encrypted

Pessimistic

Strengthened

10 remail, sign

The remailer will alter the body of a

signed message if the user wants re-

mailing.

body-unchanged strength-

ened from true to

¬anonymize

Pessimistic

Strengthened

11 filter, mailhost

If a user sends a message to an un-

known recipient at a mailhost, then er-

ror messages from that mailhost can be

discarded by the filter.

Original

Table 2: Each feature interaction is listed with the property it violates, the interpretation of propositions it requires,

and the verification techniques used to expose the problem. (Part 2)
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7 Perspective on Verification

Identifying verification techniques that provide good support for feature-oriented verification is an interesting and

important open problem. Both our previous work and the work reported here use model checking as the underlying

verification technology. Model checking is a reasonable first choice: its automated nature allows us to prototype

methodologies quickly and easily, and its low-level naturehas forced us to identify fine-grained details about the

feature interfaces needed to support compositional verification. Although model checking is not necessarily a natural

choice for software verification, many research efforts arenow exploring how well it applies to this domain.

Our choice of model checking has clearly affected our modelsof features and their interfaces: in particular, inter-

faces would likely not associate labels with states were we not using state machine models and CTL model checking.

Nonetheless, our experiences using model checking in the context encourage us to reflect on how viable model check-

ing will be as a foundation for feature-oriented verification.

First, the amount of interface information that compositional model checking of features seems to require is an

immediate concern. We currently store labels on several interface states for checks under both strengthening and

weakening of evolving propositions. This information becomes less useful as the number of evolving propositions

in a property increases. We also store partitions into control and data variables. Multi-actor features require even

more interface information in the form of a subgraph, as explained in prior work [FK01]. Although the interface

information has not proven excessive in this study, it couldbecome so in a larger application that contains hundreds

of features spanning multiple actors. Additional case studies are required to determine when the overhead of our

interfaces outweighs the benefits of compositional featureverification.

Next, features interact implicitly through data. A viable model of feature interaction therefore must support model-

ing and reasoning about data. Model checkers’ limitations in reasoning about data are well known: the main problem

is the combinatorial explosion in propositions needed to encode data values as booleans. Many model checking

efforts handle this problem through a combination of abstraction and cone-of-influence reduction. Given the deep

co-mingling of control and data in both the models and properties of some feature-oriented systems, we are unsure

whether these approaches will be useful in this context. In many cases, the design methodology inherently performs a

partial abstraction because a feature only contains the propositions that are relevant to it.

We believe that the real problem lies in the need to arguably overspecify data in most state-based specifications.

For data-intensive domains such as this one, declarative specifications (as employed by Alloy [Jac00]) are likely more

viable in the long term. Effective integration of declarative specifications into model checking or other feature-oriented

verification techniques remains an open problem.

Finally, our work has heavily exploited the state-labelingalgorithm of CTL model checking. It is unclear how to

reformulate this work in the context of LTL, which operates at the level of full traces. This reopens the question of

whether LTL is better suited to compositional reasoning [Var01]. This departure reflects the difference in composi-

tion semantics between our work, which supports a form of sequential composition, and most compositional model

checking, which supports parallel composition.

8 Other Related Work

Compositional verification has a long history dating back atleast to Abadi and Lamport’s work on assume-guarantee

reasoning [AL95]. In this framework, a designer states manually-developed constraints (assumptions) on the behavior

of a module as part of its interface; this framework was designed to support separate development of components.

Proof rules govern when a composition of modules is valid according to the assumptions, and dictate when safety
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properties hold of a composition of modules.

Pnueli [Pnu84], McMillan [McM97], and others have developed proof rules for compositional model checking;

these frameworks capture module constraints through temporal logic formulas. These works, however, are really about

decompositionalverification, in which the whole system is available at the same time, but is verified piecewise for

tractability. Having the whole system specification enables designers to derive assumptions about the behaviors of the

surrounding system. Our modules, in contrast, are developed independently of their eventual deployment context. We

can, nevertheless, exploit the sequential composition in our framework to automatically derive temporal logic interface

constraints that must hold at composition time. de Alfaro and Henzinger capture interfaces through automata [dAH01]

for parallel composition contexts.

Houdini infers annotations for modular checking in ESC/Java [FL01]. The framework infers candidate annotations

through static analysis, then uses ESC/Java to check whether the annotations satisfy the program; if so, the annotations

can become part of the program’s interface. Our approach differs in several ways. First, we infer properties during

individual feature verification. Second, our interfaces capture sufficient information to preserve properties upon com-

position; Houdini’s annotations are not property-driven,and thus may not be useful for a given property. Finally, our

approach is truly modular in that we do not require information about the modules we may compose with in order

to derive our interfaces; Houdini requires some assumptions on the remainder of the program to perform its modular

analysis.

Our case study uses modular model checking to detect certainfeature interactions. Feature interaction problems

have received substantial attention in the software engineering literature [KK98, Zav97]. Our emphasis here is on

modular verification, not on model checking as a tool for detecting feature interaction. Several researchers have

attempted the latter in non-modular settings [ABdR00, BA94, JZ98, KK98]. While we appreciate that model checking

has limitations in detecting feature interaction, we believe our work enhances the options for using it when applicable

in this domain.

Our email example uses a pipe-and-filter model of feature composition; this model resembles Zave and Jackson’s

Distributed Feature Composition [JZ98]. Our work differs because our full methodology supports features that span

multiple actors; we do not cover multiple actors in this paper as they are orthogonal to our discussion of module

interfaces. Our work also differs in that its focus is on verification rather than architecture and specification.

Other verification researchers have discussed methodologies for reasoning under sequential composition [AGM00,

AY98, CH00, LG98]. These efforts differ from ours in many ways: none handle open systems, none were created

towards supporting cross-cutting design methodologies, and all arise in a decompositional verification context rather

than a modular design one. Our interfaces and verification methodology are designed to support modularity at the

design level.

9 Conclusions

The automated verification of modern software systems requires effort in two directions. First, it must address the

structure of modern software: as a third-party compositionof independently-produced components that, increasingly,

encapsulate software features (as in a product line). Second, it must realize that, even as this style of software could

greatly benefit from sophisticated verification techniques, programmers are unwilling and sometimes even unable to

write the specifications necessary for verification tools. Automatically synthesizing a suitable alternative to these

specifications is a critical software engineering challenge.

The verification technique used in this paper is model checking, restricted to a modular context. Modular verifica-

tion is critical in this domain for several reasons. Most important of all, there is usually no clear notion of a “whole”
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program, since independent fragments may be produced by several different developers. In addition, the sizes of whole

programs can easily defeat the various techniques model checkers deploy to combat state explosion.

This paper’s contributions are twofold. First, it presentsa series of definitions of interfaces that support modular

verification in this component-based programming universe. The definitions grow to handle both the nature of the

software itself, and the needs of the verification methodology. Second, it presents a study of verifying a suite of email

features. Our technique identifies most of the feature-interaction problems previously found manually in this case

study, thus validating the utility of our interfaces.

This work does suffer from the problem that a feature developer may not know which particular features to verify

together to detect errors. This is not a problem for a client,who presumably handles only a particular composition

(though dynamic loading does complicate this even at the client’s end). Even a producer can, however, exploit our

methodology to identify potential problems. As Section 6 showed, a failed pessimistic strengthened test stores a

counter-example in the interface. Thus, any other feature that strengthens a feature’s propositions is guaranteed to

raise an error: the developer can detect thiswithout even verifying the second feature. This (and, dually, optimistic

weakening) should provide a useful diagnostic for a featuredeveloper.

There are numerous directions for future work. Naturally, we need to conduct more case studies to identify other

weaknesses in our interfaces. Second, we need experience with a broader user base to determine the true usability of

our tools. More significantly, we intend to explore other kinds of verification tools, such as declarative specification

solvers, that might better support the incomplete information that we currently model with 3-valued logic.
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