
TeJaS: Retrofitting Type Systems for JavaScript

Benjamin S. Lerner
Brown University

blerner@cs.brown.edu

Joe Gibbs Politz
Brown University

joe@cs.brown.edu

Arjun Guha
UMass Amherst

arjun@cs.umass.edu

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

Abstract
JavaScript programs vary widely in functionality, complex-
ity, and use, and analyses of these programs must accom-
modate such variations. Type-based analyses are typically
the simplest such analyses, but due to the language’s subtle
idioms and many application-specific needs—such as ensur-
ing general-purpose type correctness, security properties, or
proper library usage—we have found that a single type sys-
tem does not suffice for all purposes. However, these varied
uses still share many reusable common elements.

In this paper we present TeJaS, a framework for build-
ing type systems for JavaScript. TeJaS has been engineered
modularly to encourage experimentation. Its initial type en-
vironment is reified, to admit easy modeling of the various
execution contexts of JavaScript programs, and its type lan-
guage and typing rules are extensible, to enable variations of
the type system to be constructed easily.

The paper presents the base TeJaS type system, which
performs traditional type-checking for JavaScript. Because
JavaScript demands complex types, we explain several de-
sign decisions to improve user ergonomics. We then de-
scribe TeJaS’s modular structure, and illustrate it by recon-
structing the essence of a very different type system for
JavaScript. Systems built from TeJaS have been applied to
several real-world, third-party JavaScript programs.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory—Semantics

Keywords JavaScript, type systems
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1. Retrofitting Type Systems
There is a venerable line of research on retrofitting type sys-
tems onto previously “untyped” languages, with Morris’s
seminal dissertation [11] an early example. In practice, these
languages are not actually free of types; rather, all type
discrimination is performed by primitive operations at run-
time. A common practice for retrofitting type systems has
been to identify the resulting set of run-time errors and try
to eliminate them statically. For instance, Smalltalk type
systems [1, 22] focused on eliminating message-not-found
errors, and Soft Scheme [25] addressed the wide range of
Scheme dynamic errors. Identifying run-time errors and
catching them statically can be viewed as the design prin-
ciple for retrofitted type systems.

Unfortunately, this principle is rather difficult to apply
to JavaScript (JS), because there are so few actual run-time
errors.1 In this, JS inherits the forgiving mentality of the
browser environment where it was born; instead of flagging
errors and halting execution, it simply continues running. As
a result, operations that in other languages might reasonably
be expected to generate errors do not in JS: subtracting one
string from another, accessing an array outside its bounds,
reading and writing non-existent fields, calling functions
with the wrong number of arguments, etc.

Obviously, every one of these operations has a well-
defined semantics in JS (usually, ironically, involving the
value undefined). Therefore, it becomes a purpose-specific
judgment call whether or not these should be considered
static type errors. If the purpose is to enforce a strict, Java-
like programming style, they should probably all be consid-
ered errors. If, in contrast, the goal is to check existing code
for violations that are oblivious to the precise behavior of
these operations, then—to minimize the amount of refactor-
ing needed to pass type-checking—we might want to block
none of them. In practice, we have found our needs (Sec-
tion 2) to fall somewhere in between. For these reasons, it
does not make sense to have just one canonical type system

1 Expert JavaScript readers are encouraged to try to enumerate them all.



for JS; instead, we need a framework that makes it easy to
quickly construct a new one for a given need.

Type Systems for JavaScript In recent years we have built
several type systems to statically analyze JS programs for
different purposes (summarized in Section 2). Our papers
on these systems have focused on the novel features distin-
guishing the variants from the (implicit) base system, with-
out explaining the base system in any detail. As a result
of building these systems we have also created a parameter-
ized framework, called TeJaS, to simplify the construction of
new type systems for JavaScript. Finally, we have also had
to address several ergonomic details necessary to make our
system usable. This is the first paper to present the base sys-
tem as a whole, and the latter two aspects for the first time.
Specifically:

• we present the base type system;
• we explain several forms of syntactic sugar to make types

easier to write;
• we explain the module-level architecture of our imple-

mentation and how it aids developing the aforementioned
variant systems;

• we explain how external type environments allow for
varied guarantees even from a single type system; and,

• we use some of these features to create a new type system
that mimics an essential feature of TypeScript.

Our infrastructure is publicly available at https://github.
com/brownplt/TeJaS.

The rest of this paper is organized as follows. Section 2
describes the various systems we have analyzed using varia-
tions on the type system presented here. Section 3 presents
the type language itself. Section 4 explores several forms
of type-level syntactic sugar, and how they help capture cen-
tral idioms of JS. Section 5 introduces the architecture of
our system, illustrating it via the kernels of three of the type-
system variants described below. Section 6 describes our use
of reified environment files. Section 7 presents related work,
and Section 8 touches on several avenues for future improve-
ments to our system.

2. Theme and Variations:
Uses of our Type Systems
This paper focuses on the engineering details of the TeJaS
type system, but to place our design in context we briefly
describe several projects that have already used it. These
have resulted in papers of their own, so we give only an
overview of each problem and the impact each project had
on the design of the TeJaS system:

ADsafety Politz et al. [15] analyze ADsafe (http://www.
adsafe.org), a sandbox for containing untrusted third-party
scripts in web pages. The sandbox consists of two parts: an
offline tool that searches for banned identifiers and expres-
sions in the target script, and an online library implementing
a reference monitor for the protected resources of the page.

The intended behavior is that together, scripts passing the
offline checks could not access protected resources either di-
rectly or indirectly by subverting the monitor.

To evaluate their system, the authors summarized the of-
fline tool’s behavior as a concise type; extensive testing con-
firmed that scripts passing the tool did indeed have the type,
and conversely that scripts that failed to typecheck could ex-
ploit flaws (that have since been fixed) in the tool. Moreover,
they typechecked the online monitor and thereby showed
that when given well-typed arguments, it cannot leak pro-
tected resources. This both demonstrated the type language’s
expressiveness, in accurately matching the offline tool’s be-
havior, and the type checker’s efficacy, as it could success-
fully check a large program with subtle type invariants.

Violations of Private Browsing in Extensions Lerner
et al. [9] examine Mozilla Firefox extensions for potential
violations of private browsing mode. In this mode, browsers
should not leave on disk any data that relates to the user’s
private browsing session. Browsers have been extensively
audited to implement this properly. However, third-party ex-
tensions may not be so circumspect, and no tool support cur-
rently exists to guide developers (or users) when extensions
behave poorly; instead, Mozilla developers manually audit
extensions before offering them for widespread availability.

The authors evaluated their system by examining twelve
Mozilla-audited extensions, lightly annotated them (but did
not refactor their code), and found four extensions that vio-
lated the private-browsing invariant. This analysis utilized
essentially the same type system as ADsafety, and carefully
managed the type environment to capture the modal nature
of private browsing: writing to disk is acceptable extension
behavior while in non-private mode. The appropriate type
environment here ascribed a particular flag the type True,
rather than Bool, and allowed the type system to perform
a form of dead-code elimination during typechecking.

JQuery Lerner et al. [8] examine web programs written us-
ing the jQuery library. JQuery provides a higher-level A P I
for selecting a set of document elements, navigating from
a current set of elements to a new set, and then uniformly
manipulating those selected elements in various ways. Sev-
eral of jQuery’s A P Is behave subtly differently depending
on how many nodes they are given; additionally not all A P Is
are applicable to all types of elements. Yet jQuery A P Is are
designed to stifle these errors, making it difficult to detect
why a program behaves unexpectedly.

To analyze such queries, the authors extended the TeJaS
type system with constructions for CSS selectors and for “lo-
cal structures” within a document. Moreover, they added
new kinds to the type system to represent the sizes of jQuery
collections, and thereby account for the varying behaviors of
the jQuery A P Is. They evaluated their system by typecheck-
ing several examples culled from online and printed tutorials,
and showed that the system correctly detects when queries
match the declared local document structures.

https://github.com/brownplt/TeJaS
https://github.com/brownplt/TeJaS
http://www.adsafe.org
http://www.adsafe.org


α ∈ Type identifiers
S, T ∈ Typ ::= Num

∣∣ r ∣∣ True ∣∣ False ∣∣ Undef ∣∣ Null∣∣ Ref T
∣∣ SrcT ∣∣ SinkT ∣∣ µα ::K .T

∣∣ α∣∣ ∀α<:T . T
∣∣ T [T, · · · , T ]∣∣ Λα ::K .T
∣∣ T 〈T, · · · , T 〉∣∣ [Tself ]T1 × · · · × Tn → Tret∣∣ [Tself ]T1 × · · · × Tn × Trest... → Tret∣∣ > ∣∣ ⊥ ∣∣ T ∪ T ∣∣ T ∩ T ∣∣ {{f . . .}}

r ∈ Regex 3 "__proto__"
∣∣ "__code__" ∣∣ ε ∣∣ · · ·

K ∈ Kinds ::= ?
∣∣ K→K

f ∈ Fields ::= r :^T
∣∣ r :?T ∣∣ r :!T∣∣ r : Absent

∣∣ r : Hidden

Γ ∈ Env ::= ·
∣∣ Γ, x : T

∣∣ Γ, α = T
∣∣ Γ, α<:T∣∣ Γ, α ::K

∣∣ Γ, l =L T

Figure 1: Abstract syntax of base type language for TeJaS

Since each of these projects largely uses the same base
type system, practical software engineering considerations
led us to re-architect our system: now, each variation can in
fact reuse the implementation of the base type system, with-
out having to directly modify it. We first present the base
type system, and then the architecture that makes support-
ing these and other variations possible. Readers interested
strictly in modularity may find it possible to only skim the
presentation of base types.

3. The Base Type Language
Our base type language, which to us represents the essence
of typing JavaScript, is presented in Fig. 1. Many features
are largely straightforward. It contains primitive types for
numeric, null and undefined values, as well as top and
bottom types. Function types may be fixed-arity or variadic,
with distinguished receiver parameters (the type of this
within the function). (For brevity, when the receiver type is
irrelevant, it may be elided.) To describe mutability precisely,
our language supports read/write, read-only and write-only
reference cells. Additionally, our language supports type-
level functions and (equi-)recursive types.

Typographic conventions The abstract syntax of types (as
presented in Fig. 1) are written in sans serif. JS program
fragments, and the concrete syntax of types (and their syntac-
tic sugar, presented below) are written in typewriter font
with keyword highlighting. As one final clarification, the ab-
stract syntax of object types uses {{doubled braces}}.

Union, Intersection, and Boolean Types On top of this,
we add support for union and intersection types. For in-
stance, True and False are primitive types in our system,
and Bool is the union type (True + False). As a more
complicated example, the addition operator might have type

Γ ` T

W F - T O B J E C T
Γ ` T1, . . . ,Γ ` Tn

∀
1≤i 6=j≤n

ri ∩ rj = ∅
(⋃
1≤i≤n

ri

)
= /.*/

Γ ` {{r1 : T1, · · · , rn : Tn}}

W F - T VA R
α ∈ dom(Γ)

Γ ` α

Figure 2: Well-formedness of types. Other rules for other
types are straightforward.

(Num× Num→Num) ∩ (Str×>→ Str)

which will yield a number when given two numeric argu-
ments, a string when given a string as its first argument, and
otherwise will not apply; this is known as finitary overload-
ing [21]. (Note that this example type is a conservative ap-
proximation and does not capture all of JS’s behavior; for ex-
ample, it does not express JS’s implicit object-to-string con-
versions. Perhaps surprisingly, we have found it sufficient to
typecheck most well-behaved example programs. However,
the whole point of this paper is, you don’t have to agree with
our decision: you’re free to change it!)

Our intersection types are ordered and left-biased. For ex-
ample, we can express the exact type of the logical negation
operator as:

(True→ False) ∩ (False→ True) ∩ (>→Bool)

When the argument is known to be a specific boolean, we
can determine specifically what the result will be; when the
argument is any other value, the result is merely boolean.

String and Object Types Because JS makes such extensive
use of first-class strings as field names in objects, we need
a much richer type than a mere “String” to describe them.
Otherwise, the field-accessing operations would be unable
to distinguish which field is being accessed. However, we
still need a decidable type system. Therefore, we replace
the inexact “String” type with the set Regex of regular ex-
pressions. Using them, string literals have precise singleton
types, while finite and co-finite sets of strings (i.e., “one of
the strings A, B, or C”, or “any string except D or E”) can be
expressed exactly. Additionally, families of strings can be
expressed: for instance, we can express the set “only strings
of the form getX or setX”. Finally, we define Str as an alias
for the regular expression /.*/, i.e., the set of all strings, and
ε for the empty set of strings.

We make extensive use of these regular expression string
types in defining the syntax for object types. For orthogonal-
ity, object types describe immutable records of fields; we de-
fer the mutability decisions to the reference types described
above.2 Because objects may change over the lifetime of the
program, or because multiple different objects may be de-

2 Also see Section 4.2 for further explanation of this design decision.



scribed by a single type, we need a means to describe the
presence of fields on an object. We distinguish five cases:

• aField :! T⇒ definitely present
• aField :? T⇒ possibly present
• aField :^ T⇒ definitely present either on this object or

via the prototype chain
• aField : Absent ⇒ definitely not present on this object,

may or may not be present via the prototype chain
• aField : Hidden⇒ cannot be accessed

To ensure that typechecking for arbitrary fields is both possi-
ble and deterministic, object types must be well-formed: ev-
ery possible field name must be accounted for exactly once.
We formalize the well-formedness of types in Fig. 2.

Presence annotations interact strongly with subtyping re-
lationships (defined in Fig. 7); for example, two object types
cannot be subtypes if they assert different fields as necessar-
ily present or hidden.

We distinguish two special field names: all objects can
have a __proto__ field that stores its prototype, while JS
functions are modeled as objects with a __code__ field that
stores the function’s closure.

We also provide some lightweight, local syntactic sugar
to simplify writing these object types. First, we define the
concrete syntax r : T to mean definite (:!) or possible (:?)
presence, depending on whether r defines a finite or infinite
set of strings, respectively. Second, since field “names”
can be arbitrary regular expressions, it is both tedious and
unnecessary to explicitly describe “all remaining possible
field names”. Instead we support the “catchall” syntax ?,
which computes that expression automatically. Third, by
default we assume all fields are Hidden: any fields not
explicitly mentioned by the programmer (or covered by the
catchall) are presumed Hidden.3 For example, the empty
object type {{}} has no accessible fields.

A complete example All of the features described above
are necessary to define a (simplified) type for homogeneous
arrays. We present the type using the sugar defined above:

1 Array = µ array :: ?→ ? .
2 Λ α :: ? . Ref {{
3 /[0-9]+|\+Infinity|-Infinity|NaN/ : α,
4 __proto__ : Ref {{
5 concat : ∀ β . [array〈β〉]array〈β〉→ array〈β〉
6 }},
7 ? : Absent
8 }}

In words, Array is a recursive type-constructor (of kind
?→ ?) that produces a reference to an object type whose
numeric-like fields (i.e., the infinite set of field names
matched by the regular expression)—if present—are bound
to values of type α, whose __proto__ definitely is present
and is a reference to an object that contains a method concat
that operates on two arrays of the same type to produce a new

3 In a prior exposition on object types [17], we did not assert the total-
coverage requirement, and did not reify Hidden as a possible field type.

l ∈ Locations
opp ∈ Prefix ops 3 !

∣∣ - ∣∣ typeof ∣∣ · · ·
opi ∈ Infix ops 3 +

∣∣ && ∣∣ <= ∣∣ == ∣∣ in ∣∣ · · ·
c ∈ Constants ::= num

∣∣ str
∣∣ bool

∣∣ null
v ∈ Values ::= c

∣∣ func(~x) { e }
∣∣ { −−−→str : v }

e ∈ Expressions ::= c
∣∣ x ∣∣ opp e ∣∣ e opi e ∣∣ func(~x) { e }∣∣ e(e)
∣∣ e ; e

∣∣ if (e) e else e∣∣ let x = e in e
∣∣ letrec −−−→x = e in e∣∣ l: e

∣∣ break l e
∣∣ try e catch(x) e∣∣ try e finally e
∣∣ throw e

∣∣ e:=e∣∣ ref e
∣∣ deref e

∣∣ { −−−→str : e }
∣∣ [ ~e ]∣∣ e[e]

∣∣ e[e=e] ∣∣ delete e[e]
∣∣ e〈e〉∣∣ Λx<:T.e

∣∣ check T e
∣∣ cheat T e

Figure 3: Syntax of λJS

one, and for which all other fields are not accessible (as they
are absent on the array object and hidden on its prototype).

3.1 Typing Rules
This type system is defined relative to the λJS core lan-
guage [6], which offers a concise and tractable version of
(all of) JavaScript. Fig. 3 presents the syntax of λJS that
we type-check, and the typing rules of our system are pre-
sented Figs. 5 to 7. Most of the rules are straightforward; the
complexity comes from dealing with JS’s rules for non-fixed-
arity functions, and defining a sufficiently precise system for
handling objects.

Rules T- A P P - F I X E D and T- A P P - VA R handle function
application, and ensure that if fewer arguments are present
than are expected, they may legitimately have type Undef;
likewise if more arguments are present than expected, and
the function is variadic, that they all match the function
type’s variadic argument type. To support finitary overload-
ing of functions, we include two ordered, specialized rules
for typechecking applications whose first expression has an
intersection type (T- A P P - I N T E R 1 and T- A P P - I N T E R 2).

Typechecking objects is largely delegated to two auxiliary
judgments, Γ ` T ⇐ Tobj@r and Γ ` f1<:f f2. The
former computes the inherited type of a field named r in
the object-type Tobj , with rules to walk the prototype chain
when it is available, a rule to handle Hidden prototypes, and
a rule for all other cases. The latter judgment determines
when one field descriptor is a “subfield” of another. S - O B J

uses both judgments to decide whether two object types
are subtypes: ensuring that every visible field on the upper
bound is inherited by the lower bound at a subtype (i.e.,
width subtyping), and by comparing all pairings of fields for
subfield compatibility (essentially depth subtyping).



3.2 Type Soundness
The type system presented so far is essentially a combina-
tion of the flow-insensitive part of the system used in [7]
and the object-typing system of [17], which have both been
proven sound. However, because TeJaS provides a modular
mechanism for combining type system fragments, we do not
have a single type system, but rather a family of type sys-
tems. Therefore, to prove soundness of each of them, we
would need the ability to demonstrate that the composition
of sound type-system modules into a larger type system is
also sound. However, combining soundness and modularity
is an open problem [10].

More broadly, we believe TeJaS should not be limited to
constructing only sound type systems (provided, of course,
the unsoundness is explicitly advertised). For instance, in
our work on jQuery (Section 2), users are given the choice
of making unsound assumptions—a choice that exploits
TeJaS’s modularity—to reduce the number of type errors
they get. In addition, languages like TypeScript are expressly
unsound, and we want TeJaS to be suitable for creating such
experimental systems; indeed, we reconstruct its essence
in Section 5.2. In addition, given the dynamic nature of
JavaScript, a system that enabled the construction of only
sound type systems would be too restrictive.

4. Ergonomics: Simplifying Writing Types
Without Complicating the Core

Our type system needs to be quite sophisticated to support
most features of JS: because it is essentially an extension of
Fω
<:, type inference is undecidable [13]. Accordingly, we

allow programmers to supply type definitions and type an-
notations in comments, ensuring that the annotated program
both can run in unmodified JS engines and can be analyzed
by our type system:

1 /*:: type myType = ...; */
2 function aFunction(x) /*: myType -> Num */ {...}
3 var x = /*: Bool */true;

However, the precise details of the types that arise in
checking real JS programs are both tiresome and tricky. We
therefore need to pay careful attention to the ergonomics
of the type system, or else it will be effectively unusable.
We focus here on two efforts: applying local type inference
wherever possible, and expressing common patterns of type
constructions as syntactic sugar. We also highlight the sim-
ilarities and differences between class-based and prototype-
based OO types in our language.

Both efforts above aim to lower the annotation burden
on programmers, either by eliding annotations entirely or
by defining customized shorthands applicable to the partic-
ular task. However, the first is general-purpose: it depends
only on types defined by the Base system, and can benefit
all subsequent users of the system. Further, it is non-trivial
to infer types even heuristically in a system as expressive as

ours, and so we choose to implement this inference once and
for all, and incorporate it into the Base type checker. Exten-
sions are free to add additional inference if they so choose.
By contrast, because extensions are free to reinterpret con-
crete written types (via the elaborator, see Section 5), the
meaning of syntactic type sugar necessarily varies between
extensions. We therefore do not implement these idioms in
the Base layer, and leave them to extensions.

4.1 Local Type Inference
We formulate our approach as a bidirectional type sys-
tem [14]: where possible, we propagate type information
inward to subexpressions, and thereby avoid the need for
explicitly annotating them. This effort is motivated by, and
primarily benefits, typechecking function, object and liter-
als.4 Additionally, we attempt to infer types for variables,
but this is surprisingly subtle.

Functions and objects Inferring types for JS functions is
challenging because they do not have an explicit arity: it
is not an error to call a function with more arguments than
it has formal parameters, and when calling functions with
fewer arguments than formal parameters, JS will pad the
remainder with undefined values. Moreover, JS always
makes all arguments available via the arguments array. As a
result, inferring one “best” type for a function is impossible.
However, web programming is full of anonymous functions
defined solely to be used as event listeners: in these cases,
we can easily infer the appropriate type of the handler from
the calling context that installs it.

Likewise, it is impossible to define a “best” type for an
object literal, as later code may add, modify, or remove fields
from that value, and it is impossible from the literal alone
to infer what those fields may be. However, when object
literals are defined and immediately passed as arguments to
functions or assigned into locations of known type, again we
can use the context to infer their appropriate types.

Types for variables It is certainly convenient to type vari-
ables by their initial value, as it avoids many annotations that
are trivially guessable. But doing so presents both an imple-
mentation and a semantic challenge. From an implementa-
tion standpoint, as part of the desugaring of JS to λJS , all
variables are hoisted to the top of their scope and initialized
to undefined; as this is almost never the intended type for
the variable, we detect this pattern and avoid such premature
type ascription.

Semantically, choosing a type based on the initializer usu-
ally suffices, but when the initializer is a boolean, string or
object literal, this choice infers overly-precise types for the
variable: namely, True or False, a singleton string pattern, or
the precise type of that object literal. We might reasonably
try automatically generalizing to Bool or Str (though an ap-

4 Empty array literals, however, provide no information about their con-
tents, and must be annotated with types.



propriate, similarly general object type is less obvious), but
doing so uniformly would cripple the precision of the Pri-
vate Browsing and ADsafety analyses. In practice, the lack
of this generalization has not been too onerous an annotation
burden, but we leave for future work implementing heuristics
to retry typechecking automatically at more general types.

4.2 Syntactic Sugar for Types
Our experiences building several JS type systems have sug-
gested several type idioms, or patterns of types, that occur
frequently and are of fairly general utility. As noted ear-
lier, such idioms are not provided by the Base layer; how-
ever, we suggest that most extensions would do well to adopt
them. We present our basic representation of object types,
then show three idioms here: “with” types for simple type
extension, “thin” arrows for modeling function objects, and
“type trios” for representing JS object-construction patterns.

Objects and references Because JS permits developers to
treat objects as dictionaries, and dynamically add and delete
their fields, λJS models objects as references to immutable
records of values. For example, the code

1 anObj.aNewField = 5;
2 delete anObj.someField;

desugars in essence to5

1 anObj := (deref anObj)[aNewField=5];
2 anObj := delete (deref anObj)[someField];

(An alternate design, directly using mutable dictionaries
of (possibly) mutable fields, was considered but abandoned.
It has considerable difficulty handling these cases composi-
tionally: what is the meaning of anObj.aNewField, prior
to its creation? Moreover, because JS objects are passed by
reference through function calls, at least one level of refer-
encing is inherent in the semantics.)

The type of anObj, therefore, must be a reference to an
object type: Ref {{aNewField :? Num, someField :? T,
?: Absent}} (for some type T). But since practically every
object that JS programmers write will be wrapped in a Ref,
we define syntactic sugar to make writing these types easier.
Specifically, we provide concrete syntax that automatically
supplies the Ref wrapper, as well as syntax for read-only
object types and the uncommon case (but still needed; see
Section 4.3) of a bare object type:

{ fields... } ⇒ Ref{{fields...}}
#{ fields... } ⇒ Src{{fields...}}
{{ fields... }} ⇒ {{fields...}}

“With” Types Due to JS’s prototype-based nature, objects
behave identically to their prototype, except for any fields
which they add or override. Accordingly, we provide a con-
venient syntax for describing the types of these extensions:

5 λJS actually uses an additional layer of (de-)references, to support
aliasing between variables, that is elided here; these references are
inserted automatically and do not impact the types described here.

1 type Base = { a: Num, b: Str }
2 type Derived = { Base with b: Num, c: Bool }
3 // equivalent to
4 type Derived' = { a: Num, b: Num, c: Bool }

Derived’ contains all the fields of Base, plus additional
fields that add to or override same-named fields of Base.

As a technical note, with-types are implemented to com-
mute past recursive types. This allows for easily extending
an object type with new methods:

1 type Foo = mu foo :: * . { f: [foo] Num -> Num }
2 type Bar = { Foo with g : [foo] Str -> Str }
3 // equivalent to
4 type Bar' = mu foo :: * . {
5 f: [foo] Num -> Num,
6 g: [foo] Str -> Str }

“Thin”, “Fat” and Terse Arrow Type Syntax In JS, func-
tions are objects whose prototype chain reaches Function,
which implies functions can (and often do) have extra prop-
erties attached to them. We therefore model functions as ob-
jects with a __code__ field, whose type is a traditional arrow
type. To notate this, we distinguish between “thin arrows”
and “fat arrows”, where the former desugar into the latter:

1 type aToBfun = ([T]A -> B)
2 // equivalent to
3 type aToBfun' = {__code__ : [T]A => B, * : Absent}

Both definitions above specify the type (in abstract syntax):

Ref{{__code__ : [T] A→B, * : Absent}}

(Recall, the [T] denotes the type of this within the body
of the function.) This notation composes neatly with the
previous with-type sugar:

1 type PointConstr = {
2 ([Point] Num * Num -> Point) with
3 prototype : {
4 getX : [Point] -> Num,
5 getY : [Point] -> Num
6 } }
7 // equivalent to
8 type PointConstr' = {
9 __code__ : [Point] Num * Num => Point,

10 prototype : {
11 getX : [Point] -> Num,
12 getY : [Point] -> Num },
13 * : Absent }

Finally, any function not explicitly called with an invo-
cant is supplied with the global object bound to this. To pre-
vent such functions from actually using this, we allow func-
tion types to be written without an explicit invocant type:

1 type noThisFun = (A -> B)
2 // equivalent to
3 type noThisFun' = ([#{* : Hidden}] A -> B)

This read-only object, whose fields are all Hidden, is the su-
pertype of all readable objects; it therefore accepts the global
object, but prevents any inadvertent access to its fields.



Type trios With-type syntax is convenient for concisely
expressing prototype-style extensions of objects. However,
JS programmers often use the available object system to
emulate a class-like hierarchy. When building such class-
like systems in JS, objects fall into one of three roles:

• Constructor functions, used to create new instances;
fields on these functions are akin to static class members
in class-based OO programming;

• Prototype objects, whose members are the methods com-
mon to all instances of a constructor; and

• Instances, created by constructor functions.
These three object types are mutually recursive:

• A constructor’s prototype field points to the prototype
object

• A prototype object’s constructor field points to the
constructor

• An instance’s __proto__ field points to the prototype
object
However, the fact that the __proto__ field is a tangi-

ble, visible field is an unfortunate leaky abstraction: class-
like code should not be examining the __proto__ field di-
rectly, and in fact, the presence of that field substantially
complicates subtyping, and in turn typechecking. Instead,
the appropriate model for the instance type must hide the
__proto__ field, and then include all the fields of its pro-
totype, but at inherited (:^) presence. This duplication is
entirely mechanical, and tedious to construct manually. We
therefore provide sugar for simultaneously defining this trio
of related types:

1 type constructor FooConstr = {
2 [Foo] arguments -> Foo with
3 aSharedConstant : Num, ... }
4 and prototype FooProto = {
5 aSharedMethod : [Foo] Num -> Str, ... }
6 and instance Foo = { field1 : Num, ... }
7 // equivalent to
8 type FooConstr = {
9 __code__ : [Foo] arguments -> Foo,

10 aSharedConstant : Num, ... ,
11 prototype : FooProto }
12 and FooProto = {
13 aSharedMethod : [Foo] Num -> Str, ... ,
14 constructor : FooConstr }
15 and Foo = { field1 : Num, ... ,
16 __proto__ : Absent,
17 aSharedMethod :^ [Foo] Num -> Str }

4.3 Matching Class-like Subtyping with
Prototype Inheritance
It is an appealing but flawed intuition that objects further
down a prototype chain are necessarily subtypes of objects
closer to the chain’s root. For example, nothing prevents a
programmer from writing

1 var base = {x : 5, y : 6};
2 var derived = {__proto__ : base, x : false};

While derived and base contain the same field names, their
types differ; clearly they cannot be used interchangeably, so
their types must not be related by subtyping. But consider
a more class-like object hierarchy, deliberately written with
suggestive syntactic sugar:

1 type constructor BaseConstr = [Base] -> Base
2 and prototype BaseProto = {toString : [Base] -> Str}
3 and instance Base = {x : Num, y : Num}
4

5 type constructor DerivedConstr = [Derived] -> Derived
6 and prototype DerivedProto = {__proto__: BaseProto}
7 and instance Derived = {Base with z : Num}

Every field present in Base is also present in Derived: x
and y are explicitly present, and toString (inherited from
BaseProto) is implicitly present (through DerivedProto’s
__proto__). But Derived is not a subtype of Base: once
desugared, both types are revealed as references to object
types, and hence can only subtype invariantly—and Base is
clearly not a subtype of Derived, as it has fewer fields. (In
fact, even DerivedProto is not a subtype of BaseProto, for
a similar reason.)

Accordingly, even though the following code will run
without error, it will not typecheck as written:

1 /*: Base * Num -> Base */
2 function setX(obj, val) {
3 obj.x = val;
4 return obj;
5 }
6 aDerivedObj = setX(aDerivedObj, 5);

The class-like intuition behind these types, however, is al-
most right: rather than specifically requiring an argument of
type Ref {{x:Num,y:Num}} (which is the definition of Base),
the function setX need only require a reference to any ob-
ject with a numeric x field. With judicious and clever use of
bounded polymorphism, we can write this type precisely:

1 /*: forall a <: {{x:Num}}.ref a * Num->ref a */
2 function setX(obj, val) ...

Here we see the need for bare object types, so that we can
constrain the fields of the object covariantly, without the
interference of the outer Ref type constructor.

While correct, the type above has two shortcomings in
our current system. First, it rapidly becomes unwieldy to de-
fine the types for functions that take multiple instance-typed
arguments. We have not yet implemented syntactic sugar
to simplify the situation, though it should not prove difficult.
The second problem, however, is that type inference for such
bounded-polymorphic functions does not currently work in
the higher-order case (i.e., passing setX and aDerivedObj
to another function). This is not a failure unique to TeJaS; as
mentioned earlier, our type system is essentially that of Sys-
tem Fω

<:, and so type inference is in general undecidable. We
plan to exploit the syntactic sugar for these function types to
guide our inference heuristics (see Section 8).



5. Modularizing the System
The base system is naturally quite large, so building varia-
tions on it is not trivial. Drawing on the experience gained
from our several variations (Section 2), we have therefore
modularized the type system. In particular, we distinguish
the following seven features:
1. the type and kind language, as presented in Fig. 1, and

the binding forms needed for environments;
2. environments over this type language;
3. kind checking over this type language;
4. subtyping over these environments and type language;
5. typechecking over these environments and type language;
6. a decorator for weaving these type annotations into λJS

expressions; and
7. an elaborator for desugaring written type annotations into

this type language.
ML’s functor system allows us to separate these features

into modules and explicitly record the dependencies among
them. Such functorization allows us to, say, independently
vary the concrete syntax recognized by the elaborator (7)
without having to rewrite the type definitions (1), or change
the subtyping rules (4) without affecting the decorator (6).

By themselves, these module boundaries are simply clean
software engineering. But ML also permits mutually recur-
sive functors, and we can exploit this ability to define exten-
sion points for our type system. In particular, we split each
of these seven modules into two layers. The Base layer will
define the base system (as presented in Section 3), leaving
holes in its definitions for an Extension layer to fill. Con-
cretely, the Base types module defines

1 type typ = TRef of typ | TRegex of pat | ...
2 | TEmbed of Ext.typ
3 type kind = KStar | KFunc of kind * kind
4 | KEmbed of Ext.kind

The TEmbed and KEmbed constructors take arguments whose
types are defined by extension-layer modules. Those types
in turn define constructors TBase and KBase that recursively
include base types and kinds, respectively. Each pair of
corresponding modules is instantiated mutually recursively.
The resulting composite system includes all the behaviors
of the Base layer, and can extend or override them without
having to reimplement everything from scratch.

(Note that most extensions may not care about modifying
all seven of these layers; for example, the definition of envi-
ronments is often unchanged. Nevertheless, our functoriza-
tion and ML’s type system together require that skeleton ver-
sions of all seven modules must be written. This ensures con-
sistency: it is impossible to mistakenly mix modules from
multiple type systems.)

The next two sections illustrate the effectiveness of this
functorized approach. To demonstrate the range of expres-
siveness, the rest of this section presents the central type defi-
nitions from three experiments: an empty extension that sim-
ply instantiates the base system, an extension that overrides

function types to implement TypeScript-like semantics, and
an extension that adds new kinds to produce a type system
tailored to analyzing code using the jQuery library. These
extensions mainly use features 1, 4 and 5.

In Section 6, we highlight the flexibility of reified type
environments (made possible by features 2 and 7). In partic-
ular, we show that a single type checker implementation can
yield results of varying precision depending on the environ-
ment, and also show how we can import type descriptions
written without TeJaS in mind into our environments.

Discussion We chose ML’s functor system because our ini-
tial, purpose-built type systems were already implemented in
ML, and it was relatively easy to refactor them into functors.
Our design is not, however, intrinsically tied to ML.

While we have encoded open data types within mutually-
recursive ML functors, the syntactic overhead is non-trivial.
Additionally, module (and function) boundaries make it
tricky to surgically replace, say, just one typing rule. Con-
sequently, a complete re-engineering of our system might
try other languages or take advantage of recent progress in
extensible type system design (see Section 7).

5.1 Example: Base Type System Only
The Bare extension adds nothing to the base type system.
Accordingly, the types-definition module is, in its entirety:

1 module Make : BARE_TYP =
2 functor (BASE : TYPS) -> struct
3 type baseKind = BASE.kind
4 type kind = KBase of baseKind
5 type baseTyp = BASE.typ
6 type typ = TBase of baseTyp
7 type baseBinding = BASE.binding
8 type binding = BBase of baseBinding
9 type env = binding list IdMap.t

10 end

In total, the Bare extension comprises 1,600LOC, though
much of this is formulaic: 400 lines are entirely ML boiler-
plate; 100 lines parse written type annotations; and another
250 lines implement the syntactic sugar defined earlier.

This Bare system alone can typecheck a non-trivial
amount of code. In prior work [7, 18], we examined a
corpus of Google Gadgets, 3,800 lines of interactive, third-
party code. Preparing these programs for analysis required
minor refactoring (e.g., explicitly declaring variables with
var) and adding explicit type annotations; the precise counts
are shown in Fig. 4. Once annotated, all but two lines of
these programs passed the typechecker.6 (The two excep-
tions, in watchimer.js, use typeof tests to distinguish be-
tween undefined and initialized values, and proving these
lines type-safe requires flow typing [7].)

Annotating third-party code with rich types can be la-
borious. Thus, as an orthogonal enhancement to this type

6 Though these experiments were conducted on an earlier implementation
of our system, the type rules are the same.



system—i.e., neither reliant upon nor overly specialized for
the particular type system variant being used—Saftoiu [18]
wrote a JS-to-JS compiler that instrumented each gadget to
record type information. After manually interacting with
each gadget to obtain reasonable code coverage, the recorded
types can then be used as a first approximation of the in-
tended types of the code. (Because this approach necessar-
ily under-approximates program behavior, it generally is not
sufficient. In our case, it is followed by actually running the
type-checker, and the dynamic procedure only provides can-
didate types.) This technique succeeds with over 91% of the
necessary annotations; Fig. 4 gives further details.

5.2 Example: TypeScript’s Covariant Function Calls
As a proof of concept, we have implemented an extension to
provide TypeScript’s semantics for functions. This extension
overrides the TArrow type of our base system, and replaces
it with one that has the new semantics. The types-definition
module is gratifyingly similar to the Bare one: the only
change necessary is adding a single type constructor

1 type typ =
2 | TBase of BASE.typ
3 | TArrow of typ list * typ option * typ

In fact, the entire extension is only 1,860LOC: other than mi-
nor naming-convention differences, the 260-line difference
between the two is precisely that which defines how Type-
Script’s arrow types behave. Furthermore, the developer of
this experimental system inherits the entire, complex base
type system (Section 3), as well as the additional features
like inference described above (Section 4). Indeed, the base
language of TeJaS is richer and more powerful than that of
TypeScript (as we discuss in Section 7), demonstrating the
value of our modular approach.

Using this extended type system, the following example
typechecks, while it fails when using the Bare system:

1 /*:: type subt = #{ x : Num, y : Str }
2 type supert = #{ x : Num } */
3 /*: #(#(supert * Num -> Str) * supert -> Str) */
4 function f2(aFun, obj) { return g2(obj, 5); }
5 /*: #(subt -> Str) */
6 function g2(obj) { return obj.y + "foo"; }
7 f2(g2, { x : 5, y : true });

In this example, the actual type of g2 has a different arity
than that expected for aFun; moreover, its expected argu-
ment is a subtype of the one for aFun. Implementing such
drastically different behavior for arrow types was pleasingly
straightforward, and required only minimal interaction with
the existing typing rules.

5.3 Example: Adding New Kinds
In Section 2 we discuss the application of TeJaS to jQuery
programs. To analyze jQuery client code, we built a type sys-
tem that could describe jQuery collections, and in particular

Filename LOC Changes Annotations Refactorings Inferred
(% of LOC) (% of changes) (% of changes) (% of annotations)

animation.js 70 5 (7.14%) 5 (100.00%) 0 (0.00%) 4 (80.00%)
metronome.js 106 16 (15.09%) 12 (75.00%) 4 (25.00%) 10 (83.33%)
countdown.js 129 8 (6.20%) 4 (50.00%) 4 (50.00%) 4 (100.00%)
catchit.js 165 25 (15.15%) 9 (36.00%) 16 (64.00%) 6 (66.67%)
hashapass.js 257 30 (11.67%) 20 (66.67%) 10 (33.33%) 14 (70.00%)
morse.js 275 25 (9.09%) 12 (48.00%) 13 (52.00%) 12 (100.00%)
rsi.js 328 49 (14.94%) 22 (44.90%) 27 (55.10%) 22 (100.00%)
topten.js 443 85 (19.19%) 18 (21.18%) 67 (78.82%) 18 (100.00%)
text2wav.js 488 50 (10.25%) 41 (82.00%) 9 (18.00%) 38 (92.68%)
resistor.js 591 52 (8.80%) 32 (61.54%) 20 (38.46%) 32 (100.00%)
watchimer.js∗ 947 34 (3.59%) 17 (50.00%) 17 (50.00%) 15 (88.24%)
TOTAL 3,799 379 (9.98%) 192 (50.66%) 187 (49.34%) 175 (91.15%)

Figure 4: Typechecking Google Gadgets, and counts of
necessary refactorings and annotations. ∗Note: watchimer.js
contains two typeof tests that need flow-sensitive typing to
be checked.

that could capture the essential notion of size information.7

For example, rather than typing a non-empty query result as
jQuery〈Element〉, we can more precisely give it the type
jQuery〈1+〈Element〉〉. We implemented this type system
as an extension of TeJaS: the key features of this extension
required defining a new kind, “multiplicities”, to describe
size information (i.e., the 1+〈·〉). Additionally, we overrode
two existing type constructors to enable them to use multi-
plicities. The types-definition module for the JQuery type
system is (see [8] for the meaning of these constructions)

1 module Make : JQUERY_TYP =
2 functor (Css : Css.CSS) ->
3 functor (BASE : TYPS) -> struct
4 type baseKind = BASE.kind
5 type kind =
6 | KBase of baseKind
7 | KMult of kind
8 type baseTyp = BASE.typ
9 type typ =

10 | TBase of BASE.typ
11 (* can quantify or abstract over multiplicities *)
12 | TForall of id * sigma * typ
13 | TLambda of (id * kind) list * typ
14 | TApp of typ * sigma list
15 (* description of partial page structure *)
16 | TDom of ...
17 and multiplicity = ...
18 and sigma = STyp of typ | SMult of multiplicity
19 type baseBinding = BASE.binding
20 type binding = BBase of BASE.binding
21 | BMultBound of multiplicity * kind
22 type env = binding list IdMap.t
23 end

The jQuery type system is approximately 5,770LOC (includ-
ing the 1,600LOC of Bare boilerplate), and includes func-
tionality (e.g., a decision procedure for CSS selectors) that
integrates smoothly into the Base type system. Again, most
Base functionality was directly reused, without any changes.

7 Sized and indexed types have been described before [20, 26]; such
approaches are infeasible for the JS setting [8].



6. Parameterizing the Type Environment
Research on type systems tends to focus on the rules of infer-
ence that characterize the type system. In practice, however,
the type environment—which is rarely discussed in papers—
is just as important. Furthermore, we have found that the
environment represents a powerful point of modularity that
is often exploited at best implicitly in other systems. There-
fore, TeJaS makes this an explicit point of variation.

6.1 Explicit, External Environment Definitions
From an implementation perspective, once given the ability
to parse a written representation of types and desugar them
into the internal type representation (needed for programmer-
supplied annotations, as in Section 4), it is straightforward to
reify the initial type environment as an external file, and to
parse that file accordingly. Exposing the initial environment
has several engineering advantages:

• A single environment file can be used by multiple type-
system variants. This avoids a substantial duplication of
trusted code, with all its attendant benefits. Moreover, by
sharing a concrete syntax, the same environment file can
be reinterpreted by each variant type system: for instance,
the type of a built-in function could be given TeJaS’s bare
semantics or TypeScript’s semantics, just by changing
which type desugarer is applied.

• A single type system can use multiple environments that
define types of varying precision. For instance, consider
two environments that define two possible types for the
plus operator:

1 "JS-like": (Num× Num→Num)∩(>×>→ Str)
2 "Strict" : (Num× Num→Num)∩(Str× Str→ Str)

The former type more closely models JS’s behavior, but
the latter type ensures that, for instance, objects are never
added inadvertently. Such precision may or may not be
needed, depending on the analysis, and the choice need
not be hard-coded into the type system itself. We have
used this flexibility as a form of progressive typing [16],
to provide a set of guarantees of varying precision when
analyzing jQuery programs [8].

• Assigning a type to the global object becomes markedly
easier. Specifically, we can define the type of JS built-ins:

1 type JSGlobal = { Math : ..., JSON : ..., ... }

and then reuse all our type sugar to separately define a
basic type for the global scope of web pages:

1 type Window = mu w :: * . { JSGlobal with
2 window : w,
3 setInterval : [w]([w]->Undef) * Num -> Num,
4 ...
5 }

We could refine it further with more precise information
if needed:

1 type HTMLWindow = { Window with
2 Node : ...,
3 Element : ...,
4 DivElement : ...,
5 ...
6 }

To use any of these types, we simply assign it as the type
of the %global identifier.

6.2 Importing DOM Bindings from WebIDL
Defining every HTML element type manually is tedious, in-
complete and—fortunately—unnecessary. The interfaces
for all these objects are defined in WebIDL [24], a language
similar to C++ header files that defines the types of the meth-
ods and properties of these objects. Modern browsers use
these IDL files to automatically generate the glue code con-
necting their JS runtime to their internal implementation. Ad-
ditionally, Firefox uses IDL further to define its thousands of
extension A P Is.

Beneath the concrete syntax, WebIDL files are essentially
type environments. To exploit this, we have built a parser
for them that translates WebIDL definitions into TeJaS types,
and (using the same with sugar as above) consolidates these
types into the global-object type. As with the variously-
precise environments above, we can vary the IDL-to-TeJaS
translator to provide different encodings of the built-in ob-
jects. We used this facility extensively as we developed our
Private Browsing analysis. For instance, we defined an ana-
logue of with-types for IDL-defined types, so that we could
precisely and easily override the definitions of the specific
types relevant to private browsing.

7. Related Work
Work related to TeJaS broadly falls into two groups: other
modular type system architectures and other type systems
for JS. We briefly survey both groups here.

7.1 Extensible or Modular Type Systems
Creating extensible type systems architectures is a research
field in its own right [10, 12]. Some recent progress [5, 19]
shows how to decompose monolithic languages and meta-
theory into composable modules. These approaches do not
yet support the flexibility of use cases we consider here.

Declarative, extensible type systems TinkerType [10] sup-
ports a feature-based approach to composing type systems.
Individual rules can be written separately, tagged by features,
and then all rules in a given feature set are concatenated to
form the entire type system. Our setting is slightly differ-
ent: in addition to composing (nearly-)orthogonal type sys-
tem features, TeJaS allows for redefining extant type features
(as in TypeScript), for which TinkerType provides no partic-
ular extra support.



Modular Meta-theory Delaware et al. [5] focus on the
modularity and reusability of meta-theoretical results for a
language, and refactor both the representation of expressions
and types as algebras so that their semantics can be com-
posed. Their approach is elegant, but relies crucially on para-
metricity to “hide” recursive calls in their algebras. Con-
cretely, this forbids “deep inspection” of expression forms
(beyond their root symbol), which eliminates some of the ex-
pressiveness that TeJaS provides.

Progressive Types The ADsafety and private browsing
projects [9, 15] used type systems to ensure safety properties
on target programs, but perhaps surprisingly, allowed pro-
grams to typecheck that contained obvious “traditional” type
errors, such as possibly having a non-function in function-
call position. Such errors could not compromise the intended
safety guarantees (as erroneous code would just halt), and so
did not need to be prevented.

This insight led to recognizing another dimension in type
checkers: the ability to parameterize the typed progress guar-
antee with a set of allowable runtime errors [16]. Opera-
tionally, TeJaS implements this idea via typechecker meta-
functions that optimistically select from union types the com-
ponents that do in fact typecheck. Such metafunctions are
not yet TeJaS extension points; that remains future work.

7.2 Other JS Type Systems
Language-modifying approaches AltJS (http://altjs.
org) collects a suite of tools that “enhance JS with static
typing”. More accurately, they define new languages with
new semantics and type systems, and compile the results to
JS. Most of these type systems deliberately eschew many
of the features of JS in favor of more typical object-oriented
schemes. Some of these systems include structural types;
none of them include the support for first-class field names
that is necessary to support punning of objects as dictionar-
ies. Others stay closer to idiomatic JS semantics, but in doing
so deliberately discard type-system soundness.

TypeScript Microsoft recently released TypeScript (http:
//www.typescriptlang.org), a variant of JS that is eas-
ily compilable to standard JS, and that incorporates syntax
and types to make writing class-like object patterns more
pleasant (e.g., interface declarations that are implicitly recur-
sive; defining functions with optional arguments); we could
adopt some of these as syntactic sugar in TeJaS. However,
TypeScript’s type system is substantially simpler than ours:
it does not contain union or intersection types, or refined
string types and their consequent support for first-class field
names. It does support overloading of functions based on
string constants. Concretely, this means it cannot generally
give a precise type to a dictionary-lookup function (as done
in the ADsafe work), but can precisely type it in limited
settings. TypeScript supports defining overloaded types for
methods (essentially a limited form of intersection types for
functions), but oddly does not then check these types.

In fact, by traditional type system standards, and by their
own admission,8 TypeScript’s type system is unsound: code
that passes the typechecker can still produce runtime errors
or unintended (and arguably unintuitive) behavior.

As noted (Section 3.2), TeJaS’s base type system is sound,
and so cannot directly mimic TypeScript’s behavior—but as
Section 5.2 showed, it supports extensions that change the
typing rules for function types, to admit such cases.

7.3 DJS
Dependent JavaScript (DJS) [2] is another type-checker for
JavaScript that uses very different techniques from ours. DJS
supports nested refinements [3], flow-sensitive heap types,
and other novelties, which it uses to type-check idiomatic
JavaScript code. The particular set of idioms it supports are
drawn from JavaScript: The Good Parts [4]. In contrast,
our approach is to support a parameterizable type system,
which doesn’t give precedence to any particular set of idioms
(which, our experiments have shown, numerous real-world
code-bases do not follow anyway). The flexibility afforded
by our design shows in our evaluation: our benchmarks
are significantly larger and more diverse than those of DJS.
Furthermore, the parameterization in TeJaS should make it
relatively easy to build a “Good Parts”-style checker.

8. Future Improvements
There are many directions to further improve TeJaS, includ-
ing the ergonomics of the type language, the expressiveness
of the core type system, and the architecture of TeJaS itself.
We briefly describe possible work in each of these areas.

Additional type sugar Section 4.2 described several forms
of syntactic sugar for types that have been very convenient
in our experiments, but as Section 4.3 highlighted, several
other idioms are still cumbersome to use. Defining class-
like types whose subtyping relation coincides with an OO-
intuition of subclassing is particularly tricky, requiring subtle
use of bounded quantification. Hiding that subtlety with
new type sugar would make it far easier to use, while still
retaining the flexibility of the TeJaS type system to handle
non-class-like types.

Type inference Currently, TeJaS does not attempt any type
inference procedure beyond the bidirectional propagation of
type constraints, largely because the type inference problem
is known to be undecidable. Saftoiu [18] began an effort
at inferring types from execution, but this is capable of con-
structing only a first approximation of a program’s true types.
In our various type system experiments (Section 2), how-
ever, we have found that problem-specific type inference has
been surprisingly effective: for instance, type inference for
the ADsafe and jQuery sublanguages of JS is decidable. We
look to additional problem domains for inspiration in finding
additional practical, useful type inference approaches.

8 https://typescript.codeplex.com/discussions/428572
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https://typescript.codeplex.com/discussions/428572


Improving Type System Expressiveness Guha et al. [7]
developed flow typing, which supports type narrowing as
a consequence of control flow. For instance, the following
code typechecks soundly with such flow-sensitive reasoning:

1 function length(s) /*: (Str + Undef) -> Num*/ {
2 if (s === undefined) return 0;
3 return s.length; // Note: No longer undefined
4 }

However, if that undefined-check were more compli-
cated, and abstracted into some external function, flow typ-
ing cannot verify this code as safe. Such reasoning about
the predicates implied by the return values of functions is
known as occurrence typing [23]. Occurrence typing can
generalize flow typing’s specialized support for the typeof

operator, and can also support reasoning about JS’s various
reflective operators, such as Object.hasOwnProperty.

Extensible Architecture TeJaS grew out of our several
projects to analyze specific JS problems via type systems.
However, as it has grown, each of our experiments has sug-
gested architectural changes to improve its flexibility, and we
expect future projects to encourage still further extension.
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ty(num) = Num ty("s") = s ty(/r/) = RegExp ty(true) = True ty(false) = False ty(null) = Null

ty(undefined) = Undef

T Y P E C H E C K I N G : Γ `⇓ e : T

C - S U B
Γ `⇑ e→ S Γ ` S <:T

Γ `⇓ e : T

C - E X P O S E
Γ ` T  T ′ Γ `⇓ e : T ′

Γ `⇓ e : T

C - L A B E L
Γ `⇑ e→ S Γ ` S <:T

Γ `⇓ l: e : T

C - L E T
Γ `⇑ e1 → S Γ, x :S `⇓ e2 : T

Γ `⇓ let x = e1 in e2 : T

C - I N T E R
Γ `⇓ e : T1 Γ `⇓ e : T2

Γ `⇓ e : T1 ∩ T2

C - U N I O N - L
Γ `⇓ e : T1

Γ `⇓ e : T1 ∪ T2

C - U N I O N - R
Γ `⇓ e : T2

Γ `⇓ e : T1 ∪ T2

C - F U N C - F I X E D∣∣−→Ta

∣∣ = n =
∣∣−→a ∣∣

Γ′ = Γ with labels (i.e., l =L Tl) removed
Γ′, this :Tthis, a1 :Ta1 , · · · , an :Tan `⇓ b : Tret

Γ `⇓ func(−→a ) { b } : [Tthis ]
−→
Ta → Tret

C - F U N C - VA R∣∣−→Ta

∣∣ = n ≤ m =
∣∣−→a ∣∣ Γ ` Undef <:Tvar

Γ′ = Γ with labels (i.e., l =L Tl) removed
Γ′, this :Tthis , a1 :Tt1 , · · · , an :Tan , an+1 :Tvar , · · · , am :Tvar `⇓ b : Tret

Γ `⇓ func(−→a ) { b } : [Tthis ]
−→
Ta × Tvar... → Tret

C - A R R AY
Γ ` T <:Array〈Te〉 ∀i.Γ `⇓ ei : Te

Γ `⇓ [ ~e ] : T

C - O B J

abs = /.*/ \
⋃
i

ni Γ ` Ti ⇐ {{~f}}@ni Γ `⇓ ei : Ti

Γ ` {{abs : Absent,
−−−−→
ni : Ti}}<:{{~f}}

Γ `⇓ { −−→n : e } : {{~f}}

E X P O S I N G T H E T Y P E O F A F I E L D : Γ ` T ⇐ {{~f}}@r

I - P R O T O

To =

{{
hid : Hidden, abs : Absent, __proto__ : Ref Tprot ,−−−−−→
fp :!Tp,

−−−−→
fi :^Ti,

−−−−−−→
fm :?Tm

}}
r ∩ hid = ∅ Γ ` T ′

r ⇐ Tprot@
(
r ∩

(
abs ∪

⋃
fm
))

Tr = T ′
r ∪
( ⋃
i:r∩fpi 6=∅

Tpi

)
∪
( ⋃
i:r∩fmi

6=∅

Tmi

)
∪
( ⋃
i:r∩fii 6=∅

Tii

)
Γ ` Tr ⇐ To@r

I - N O - P R O T O

To =

{{
hid : Hidden, abs : Absent, __proto__ : Null,
−−−−−→
fp :!Tp,

−−−−→
fi :^Ti,

−−−−−−→
fm :?Tm

}}

r ∩ hid = ∅ Tu =

⊥ r ∩
(
abs ∪

⋃
i

fmi

)
= ∅

Undef otherwise

Tr = Tu ∪
( ⋃
i:r∩fpi 6=∅

Tpi

)
∪
( ⋃
i:r∩fmi

6=∅

Tmi

)
∪
( ⋃
i:r∩fii 6=∅

Tii

)
Γ ` Tr ⇐ To@r

I - H I D D E N - P R O T O

To = {{hid : Hidden, abs : Absent,
−−−−−→
fp :!Tp,

−−−−→
fi :^Ti,

−−−−−−→
fm :?Tm}}

__proto__ ⊆ hid r ∩
(
hid ∪ abs ∪

⋃
i

fmi

)
= ∅

Tr =
( ⋃
i:r∩fpi 6=∅

Tpi

)
∪
( ⋃
i:r∩fii 6=∅

Tii

)
Γ ` Tr ⇐ To@r

I - E M P T Y

Γ ` ⊥ ⇐ {{~f}}@ε

E X P O S I N G T Y P E S B E L O W B O U N D S : Γ ` T  T ′

x<:T1 ∈ Γ Γ ` T1 ↘ T2 Γ ` T2  T3

Γ ` x T3

x = T1 ∈ Γ Γ ` T1 ↘ T2 Γ ` T2  T3

Γ ` x T3

Γ ` T ↘ T ′

Γ ` T  T ′

S I M P L I F Y I N G T Y P E S : Γ ` T ↘ T ′

Γ ` T [µx . T/x]↘ T ′

Γ ` µx . T ↘ T ′
T 6= x

Γ ` T ↘ T

Figure 5: Type checking rules, and simplifying types



T Y P E S Y N T H E S I S : Γ `⇑ e→ T

T- I D
x :T ∈ Γ

Γ `⇑ x→ T

T- P R I M

Γ `⇑ c→ ty(c)

T- E X P O S E
Γ `⇑ e→ T Γ ` T  T ′

Γ `⇑ e→ T ′

T- L E T
Γ `⇑ e1 → S Γ, x :S `⇑ e2 → T

Γ `⇑ let x = e1 in e2 → T

T- S E Q -⊥
Γ `⇑ e1 → ⊥

Γ `⇑ e1 ; e2 → ⊥

T- S E Q
Γ `⇑ e1 → T1 Γ `⇑ e2 → T2

Γ `⇑ e1 ; e2 → T2

T- C H E C K
Γ `⇓ e : T

Γ `⇑ check e T → T

T- C H E AT

Γ `⇑ cheat e T → T

T- A R R AY∣∣~e∣∣ > 0 Γ `⇑ ei → Ti

Γ `⇑ [ ~e ]→ Array〈
⋃
Ti〉

T- R E F
Γ `⇑ e→ T

Γ `⇑ ref e→ Ref T

T- D E R E F - 1
Γ `⇑ e→ Ref T

Γ `⇑ deref e→ T

T- D E R E F - 2
Γ `⇑ e→ SrcT

Γ `⇑ deref e→ T

T- S E T R E F - 1
Γ `⇑ e1 → Ref T

Γ `⇓ e2 : T

Γ `⇑ e1:=e2 → T

T- S E T R E F - 2
Γ `⇑ e1 → SinkT

Γ `⇓ e2 : T

Γ `⇑ e1:=e2 → T

T- L A B E L
Γ, l =L Undef `⇓ e : Undef

Γ `⇑ l: e→ Undef

T- B R E A K
l =L T ∈ Γ
Γ `⇓ e : T

Γ `⇑ break l e→ ⊥

T- O B J E C T

abs = /.*/ \
⋃
i

ni ∀i.Γ `⇑ ei → Ti

T = {{abs : Absent,
−−−−→
ni : Ti}}

Γ `⇑ { −−→n : e }→ T

T- B R A C K E T
Γ `⇑ fld→ r

Γ `⇑ obj → {{~f}}
Γ ` T ⇐ {{~f}}@r

Γ `⇑ obj[fld]→ T

T- U P D AT E
Γ `⇑ obj → T Γ `⇑ fld→ r

T = {{hid : Hidden, abs : Absent,
−−−−→
rf : Tf}}

r ∩ (hid ∪ abs) = ∅
∀rf : r ∩ rf 6= ∅.Γ `⇓ e : Tf

Γ `⇑ obj[fld=e]→ T

T- D E L E T E

Γ `⇑ obj → T T =

{{
hid : Hidden, abs : Absent,
−−−−−→
fp :!Tp,

−−−−→
fi :^Ti,

−−−−−−→
fm :?Tm

}}
Γ `⇑ fld→ r r ⊆

(⋃
i

fii

)
Γ `⇑ delete obj[fld]→ T

T- T RY C AT C H
Γ `⇑ e1 → T1 Γ, x :> `⇑ e2 → T2

Γ `⇑ try e1 catch(x) e2 → T1 ∪ T2

T- T RY F I N A L LY
Γ `⇑ e1 → T1 Γ `⇑ e2 → T2

Γ `⇑ try e1 finally e2 → T2

T- T H R O W
Γ `⇑ e→ T

Γ `⇑ throw e→ ⊥

T- A P P - F I X E D

Γ `⇑ f → [Tthis ]
−→
Ta → Tret Γ `⇓ recv : Tthis

∀1 ≤ i ≤ min
(∣∣~a∣∣, ∣∣−→Ta

∣∣).Γ `⇓ ai : Tai

∀
∣∣−→Ta

∣∣ < i ≤
∣∣~a∣∣.Γ ` Undef <:Tai

Γ `⇑ f(recv,~a)→ Tret

T- A P P - VA R

Γ `⇑ f → [Tthis ]
−→
Ta × Tvar... → Tret

Γ `⇓ recv : Tthis ∀1 ≤ i ≤ min
(∣∣−→Ta

∣∣, ∣∣~a∣∣).Γ `⇓ ai : Tai

∀
∣∣−→Ta

∣∣ < i ≤
∣∣~a∣∣.Γ `⇓ ai : Tvar ∀

∣∣~a∣∣ < i ≤
∣∣−→Ta

∣∣.Γ ` Undef <:Tai

Γ `⇑ f(recv,~a)→ Tret

T- I F T R U E
Γ `⇓ c : True Γ `⇑ e1 → T

Γ `⇑ if (c) e1 else e2 → T

T- I F FA L S E
Γ `⇓ c : False Γ `⇑ e2 → T

Γ `⇑ if (c) e1 else e2 → T

T- I F
Γ `⇓ c : Bool Γ `⇑ e1 → T1 Γ `⇑ e2 → T2

Γ `⇑ if (c) e1 else e2 → T1 ∪ T2

T- P R E F I X O P
opp :Te → T ∈ Γ

Γ `⇓ e : Te

Γ `⇑ opp e→ T

T- I N F I X O P
opi :T1 × T2 → T ∈ Γ

Γ `⇓ e1 : T1 Γ `⇓ e2 : T2

Γ `⇑ e1 opi e2 → T

T- B O X - N U M
Γ `⇑ e→ Num

Γ ` Number Ref T

Γ `⇑ e→ T

T- B O X - S T R
Γ `⇑ e→ r

Γ ` String Ref T

Γ `⇑ e→ T

T- A P P - I N T E R 1
Γ `⇑ f → T1 ∩ T2

Γ `⇑ (check f T1)(~a)→ T

Γ `⇑ f(~a)→ T

T- A P P - I N T E R 2
Γ `⇑ f → T1 ∩ T2

Γ `⇑ (check f T2)(~a)→ T
¬∃T ′,Γ `⇓ (check f T1)(~a) : T ′

Γ `⇑ f(~a)→ T

T- R E C
Γ′ = Γ, x1 :T1, · · · , xn :Tn

∀i.Γ′ `⇓ ei : Ti Γ′ `⇑ b→ Tb

Γ `⇑ letrec
−−−−−→
x :T = e in b→ Tb

T- T Y PA B S
Γ, x<:T `⇑ e→ T ′

Γ `⇑ Λx<:T.e→ ∀x<:T . T ′

T- T Y PA P P
Γ `⇑ e→ T Γ ` T  ∀x<:S . T ′ Γ ` U <:S

Γ `⇑ e〈U〉 → T ′[U/x]

Figure 6: Type synthesis rules



S U B T Y P I N G : Γ ` S <:T

S - R E F L

Γ ` T <:T

S ->

Γ ` T <:>

S -⊥

Γ ` ⊥<:T

S - N U L L - S R C

Γ ` Null<:SrcT

S - N U L L - R E F

Γ ` Null<:Ref T

S - N U L L - S N K

Γ ` Null<: SinkT

S - S N K
Γ ` T <:S

Γ ` SinkS <: SinkT

S - R E F S N K
Γ ` T <:S

Γ ` Ref S <: SinkT

S - R E F
Γ ` T <:S ∧ Γ ` S <:T

Γ ` Ref S <:Ref T

S - R E F S R C
Γ ` S <:T

Γ ` Ref S <: SrcT

S - S R C
Γ ` S <:T

Γ ` SrcS <: SrcT

S - U N I O N - L
Γ ` S1<:T ∧ Γ ` S2<:T

Γ ` S1 ∪ S2<:T

S - U N I O N - R
Γ ` S <:T1 ∨ Γ ` S <:T2

Γ ` S <:T1 ∪ T2

S - I N T E R - R
Γ ` S <:T1 ∧ Γ ` S <:T2

Γ ` S <:T1 ∩ T2

S - I N T E R - L
Γ ` S1<:T ∨ Γ ` S2<:T

Γ ` S1 ∩ S2<:T

S - A R R - F I X E D F I X E D∣∣Sa

∣∣ =
∣∣Ta

∣∣ Γ ` Sr <:Tr

(Sthis = Ref St ∨ Sthis = SrcSt)
(Tthis = Ref Tt ∨ Tthis = SrcTt)

Γ ` St<:Tt ∀i.Γ ` Tai <:Sai

Γ ` [Sthis ] ~Sa → Sr <:[Tthis ] ~Ta → Tr

S - A R R - F I X E D VA R∣∣Sa

∣∣ ≥ ∣∣Ta

∣∣ Γ ` Sr <:Tr

(Sthis = Ref St ∨ Sthis = SrcSt)
(Tthis = Ref Tt ∨ Tthis = SrcTt) Γ ` St<:Tt

∀1 ≤ i ≤
∣∣Ta

∣∣.Γ ` Tai <:Sai

∀
∣∣Ta

∣∣ < i ≤
∣∣Sa

∣∣.Γ ` Tv ∪ Undef <:Sai

Γ ` [Sthis ] ~Sa → Sr <:[Tthis ] ~Ta × Tv... → Tr

S - A R R - VA R F I X E D∣∣Sa

∣∣ ≤ ∣∣Ta

∣∣ Γ ` Sr <:Tr

(Sthis = Ref St ∨ Sthis = SrcSt)
(Tthis = Ref Tt ∨ Tthis = SrcTt) Γ ` St<:Tt

∀1 ≤ i ≤
∣∣Sa

∣∣.Γ ` Tai <:Sai

∀
∣∣Sa

∣∣ < i ≤
∣∣Ta

∣∣.Γ ` Tai <:Sv

Γ ` [Sthis ] ~Sa × Sv... → Sr <:[Tthis ] ~Ta → Tr

S - A R R - VA RVA R
(Sthis = Ref St ∨ Sthis = SrcSt)

(Tthis = Ref Tt ∨ Tthis = SrcTt) Γ ` St<:Tt

Γ ` Sr <:Tr ∀1 ≤ i ≤ min
(∣∣Sa

∣∣, ∣∣Ta

∣∣).Γ ` Tai <:Sai

∀
∣∣Sa

∣∣ < i ≤
∣∣Ta

∣∣.Γ ` Tai <:Sv

∀
∣∣Ta

∣∣ < i ≤
∣∣Sa

∣∣.Γ ` Tv ∪ Undef <:Sai

Γ ` [Sthis ] ~Sa × Sv... → Sr <:[Tthis ] ~Ta × Tv... → Tr

S -µ- R
Γ ` S <:T [µα . T/α]

Γ ` S <:µα . T

S -µ- L
Γ ` S[µα . S/α]<:T

Γ ` µα.S <:T

S - T Y VA R
α<:S ∈ Γ Γ ` S <:T

Γ ` α<:T

S - K E R N
Γ, α <: U ` S <:T

Γ ` (∀α<:U . S)<: (∀α<:U . T )

S -Λ
Γ, x<:>, y <:> ` S <:T

Γ ` Λx :: ? . S <: Λy :: ? . T

S - R E G E X
r1 ⊆ r2

Γ ` r1<: r2

S - O B J
∀i, j.Γ ` fSi <:f fTj

∀i : fTi = r :^TT .
(

Γ ` TS ⇐ {{~fS}}@r =⇒ Γ ` TS <:TT

)
Γ ` {{~fS}}<:{{~fT }}

O B J E C T- F I E L D S U B T Y P I N G : Γ ` f1<:f f2

F - P R E S E N T
r1 ∩ r2 6= ∅
Γ ` T1<:T2

Γ ` r1 :!T1<:f r2 :!T2

F - M AY B E
r1 ∩ r2 6= ∅
Γ ` T1<:T2

Γ ` r1 :?T1<:f r2 :?T2

F - I N H E R I T
r1 ∩ r2 6= ∅
Γ ` T1<:T2

Γ ` r1 :^T1<:f r2 :^T2

F - A B S E N T
r1 ∩ r2 6= ∅

Γ ` r1 : Absent<:f r2 : Absent

F - H I D D E N

Γ ` f <:f r2 : Hidden

F - P R E S E N T M AY B E
r1 ∩ r2 6= ∅ Γ ` T1<:T2

Γ ` r1 :!T1<:f r2 :?T2

F - P R E S E N T I N H E R I T
r1 ∩ r2 6= ∅ Γ ` T1<:T2

Γ ` r1 :!T1<:f r2 :^T2

F - A B S E N T M AY B E
r1 ∩ r2 6= ∅

Γ ` r1 : Absent<:f r2 :?T2

F - A B S E N T I N H E R I T
r1 ∩ r2 6= ∅ Γ ` T1<:T2

Γ ` r1 : Absent<:f r2 :^T2

F - D I S J O I N T
r1 ∩ r2 = ∅

Γ ` r1<:f r2

Figure 7: Subtyping rules
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