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1. Designing Web Programs

Nowadays, many Web pages are generated on demand. One page may need
the current time and date; another page may include results from a database
query; a third page may display the current status of the server. Since such
programs compute small amounts of information and produce not much more
than a single Web page, people call themscripts.

Following a long-standing tradition in computing, Web scripting has
grown up. These scripts have now turned into serious, maintained programs
that sometimes represent theraison d’être of a commercial establishment.
Consumers can find on-line stores, e-mail clients, interactive games, and
more implemented with a Web interface. In other words, instead of writing
Web scripts, programmers now design, implement, and maintain interactive
Webprograms with complex and multi-layered interface protocols. Thus, all
the usual software engineering concerns about evolving maintainable code to
match growing requirement specifications apply.

Furthermore, the designers of complex, interactive server-side Web pro-
grams face an additional software engineering problem when using existing
technology. Most dialogs consist of many interactions, where each interac-
tion presents a form and processes the user’s response. However, Common
Gateway Interface (CGI) [33] programs halt after processing a single form.
Similarly, Java servlets [12] and Java Server Pages [39] must respond with
a single page and then terminate, in response to a single interaction with
the user. That is, all widely used Web technologies suffer from the same
problem: the program’s control information is erased between interactions
with the user.

To force the interactive nature of programs into the Web programming
mold, an interaction is implemented by having a script deliver a Web page,
wait for the consumer to submit a response, and then process that response
with a(nother) script. Complicating matters even more, the Web programs
must accommodate consumers who backtrack in their interactions, clone their
browser windows, re-submit the same or different answers for any given
form, and so on. In short, a Web program and a consumer make up a pair
of coroutines where each interaction point can be resumedarbitrarily often.
However, due to the lack of these multiply-resumable coroutines or simi-
lar constructs in common Web programming languages, the designer cannot
match the structure of the interaction with the structure of the program. In-
deed, maintaining control information properly is a general problem when the
interface to a program is a Web browser. It results in programmers setting up
ad hoc mechanisms to save and restore control state that are difficult to de-
velop, maintain, or explain to colleagues. Even session-management features
built in to various languages designed for generating Web pages only solve
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the easier half of the problem, automatically saving variable bindings but not
control state.

In this paper, we show that Web programmers can use existing software
engineering methods to develop interactive programs and that well-known,
algorithmic transformations can generate standard CGI scripts from these
programs. Specifically, we extend a programming language with a primi-
tive for Web interactions and show how this extension simplifies the design,
development, and maintenance of interactive Web programs; how it allows
programmers to migrate legacy programs to the Web; how the resulting pro-
grams manage the two kinds of information flows found in Web programs;
and how we can adapt existing programming environments in support of this
development style.

The remainder of this paper is organized as follows. The second section
of this paper is a brief introduction to conventional Web programming. The
third section presents the central ideas of the paper: the new construct, its
implementation for a minimal core Scheme [31] dialect, and how to use
the same implementation technique in languages without Scheme’s advanced
control constructs. The fourth section illustrates that when Web programs are
just interactive programs, programmers can develop, test, and debug them
in ordinary programming environments, enriched with a small run-time ex-
tension. The fifth section outlines how we have implemented our ideas in
PLT Scheme [19], so that we can test each development stage. The sixth
section discusses related work. In the seventh and last section we conclude
and discuss a few areas of future research.

2. Interactive CGI Programs

;; prompt-read : String � Value
;; read a Scheme value
(define (prompt-read question) ;; defines the functionprompt-read

(display question)
(read))

;; main

( display
3

(� (prompt-read "Enter the first number to add:")
1

(prompt-read "Enter the second number to add:")
2
))

Figure 1. An Interactive Addition Program
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;; produce-html : String String (listof Value) � void
;; effect: to write a CGI HTTP header and HTML Web form
(define (produce-html question mark free-values) . . . ) ;; body uninteresting

(define FIRST-STOP "first number done")
(define SECOND-STOP "second number done")

(define bindings (get-bindings)) ;; the name=value pairs submitted on this invocation;
;; access is viaextract-bindings/single

;; main
(cond ;; each bracketed clause is a question-answer pair;

;; in this instance, all answer expressions are boxed.
[(empty-bindings? bindings) ; user submitted no bindings

(produce-html "Enter the first number to add:" FIRST-STOP ’())
1
]

[(string�? (extract-binding/single ’continue-at bindings) FIRST-STOP)
;; ’continue-at is asymbol, a string optimized for equality
;; comparison

(produce-html "Enter the second number to add: " SECOND-STOP
(list (list ’first-number (extract-binding/single ’ response bindings))))

2
]

[(string�? (extract-binding/single ’continue-at bindings) SECOND-STOP)

(display (� (string� number (extract-binding/single ’first-number bindings))
(string� number (extract-binding/single ’ response bindings))))

3
])

Figure 2. Scheme CGI Versions of Figure 1

A typical interactive program performs a series of computations interspersed
with interactions with the user. Each interaction requests information using
HTTP’s GET or POST methods [15] and waits for the user’s response. Af-
ter the last interaction, the program produces the final result. This section
demonstrates how programmers port interactive applications to the Web, first
via conventional means and then in a more direct manner.

For concreteness, we focus on CGI script programming for the rest of
this paper, but these techniques apply to any Web technology that erases the
control context between interactions with the user.

2.1. CONVENTIONAL CGI PROGRAMS

Figure 1 presents a trivial interactive Scheme program that requests two num-
bers, adds them, and displays the result. The footnoted boxes exist only for
explanation purposes; they are not part of the program text. Converting even
this simple program to function as a Web script complicates the code tremen-
dously. According to the CGI standard, every time the program sends an
HTML form to the consumer’s browser, the CGI program terminates. When
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�?
function extract_binding($name) � . . .�
function produce_html($question, $mark, $freevars) � ?� . . .�? �

function display($ans) � ?�
�HTML�
�BODY�The answer is �?� $ans ?�.�/BODY�

�/HTML� �?�

$FIRST_STOP� "first number done";
$SECOND_STOP � "second number done";

$stop � extract_binding("continue_at");
if (!isset($stop)) �

produce_html("Enter the first number to add:", $FIRST_STOP, array());
� else if ($stop ��� $FIRST_STOP) �

produce_html("Enter the second number to add:",
$SECOND_STOP,
array("first_number" �� extract_binding("response")));

� else if ($stop ��� $SECOND_STOP) �
display(extract_binding("first_number") � extract_binding("response"));

�
?�

Figure 3. PHP CGI Versions of Figure 1

the user submits a response to the form, the server starts the CGI script that
the form specified as its processor. That is, if an interactive program contains
a single input request, its equivalent CGI script consists of two separate frag-
ments. The problem is, however, even more complex than that because the
consumer may use the back-button to return to a page and may re-submit
the same or different answers. Worse, using the new window functionality
to clone a browser, the consumer can submit two responses to a single form
(more or less) simultaneously.

To accommodate these uses, a programmer must—at least conceptually—
turn an interactive program into a coroutine; the consumer plays the role of
the second coroutine. This is complicated by the consumer’s ability to use
the back button, clone the window, or bookmark and return multiple times,
thus becoming not just a second coroutine but a third, fourth, fifth, or any
arbitrary number of coroutines all interacting with the same script. One way
to accomplish this is to separate the program into several fragments, one per
interaction and one for the last step. When a fragment has finished its task,
the execution stops. All information from one program fragment required by
some later fragment must be communicated explicitly. All the methods for
communicating with the next fragment marshal the data into a string and
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transmit it in a hidden HTML field, in a cookie, or save it in a file on the
server.

Figure 2 shows the addition program converted into a CGI program.
Because the original addition program contains two interactions, the cor-
responding CGI version consists of three fragments, re-integrated into a
single program via a conditional. The invocation ofget-bindings extracts the
bindings from the Web form, which the CGI program then tests for three
conditions:

1. If there are no bindings, the program starts from the beginning. It creates
a Web page with a question, a hidden field that specifies the resumption
point, and the list of values that are supposed to be hidden in the Web
page.

2. If the program can extractFIRST-STOP for ’continue-at, then it was
invoked with a first input. It produces a second form and queries the
consumer for another number.

3. Finally, if the program extractsSECOND-STOP for ’continue-at, it has
obtained both numbers and can produce the sum.

As the computation unfolds, all necessary values are passed explicitly from
one stage to the next as in a bucket brigade.

Even PHP [7], a programming language designed for web scripting, suf-
fers from the same problems. Figure 3 shows the same adder program, this
time written in PHP.

Clearly, the structure of the CGI program radically differs from that of the
original version—indeed, it is basically inverted1—yet their behavior per se is
identical. The inverted structure of the second program is necessary because
of the constraints of the CGI standard and the capabilities of the browsers. In
particular, a consumer can create a “curried adder”2 using the back button to
re-enter different values for the second argument. The situation only grows
more grim as the number of interactions increases. In general, the program
may loop, requesting an arbitrary number of inputs. This necessitates con-
structing a single branch that handles many responses, remembering the state
of the iteration and an unbounded number of intermediate values.

Performing this restructuring manually easily leads to errors. For exam-
ple, one of the authors renewed two Internet domain name registrations. The

1 M. Jackson recognized a similar structural problem in the early 1970s. When COBOL
programs consume tree-shaped data in one file and produce a different tree-shaped form of
data in another file, it is best to think of the program as two coroutines. Since COBOL doesn’t
support coroutines, he inventedprogram inversion [29], a technique for providing simple
coroutine-like procedures in programs that don’t support such forms of control.

2 A curried function accepts some prefix of its arguments and returns a new function that
accepts the remaining arguments.
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penultimate page of the registration program indicated that the user should
wait for the server to finish processing the renewal request. After a moment,
it automatically proceeded to the final page, confirmed the renewal, and billed
the author’s credit card. Accidentally hitting the back button returned to the
processing page, which billed the credit card again, renewing the domain
names for a second year.

In principle, the CGI programs are systematically related to the “direct
style” interactive programs that use plain input and output primitives. While
CGI programmers currently structure each script independently, we propose
that the software construction process should take advantage of this rela-
tionship. The following sections demonstrate how to automatically transform
a direct-style program into a CGI program, with no intervention from the
programmer. While the transformation we describe relies on ideas taken
from functional programming and compilers for functional languages, it can
be used on programs written in languages that do not support any special
functional-programming constructs, as we will demonstrate.

2.2. DIRECT-STYLE CGI PROGRAMS

Software engineers have learned how to develop and maintain sequential in-
teractive programs. Hence, if they could develop interactive programs and use
them as CGI scripts, they could reuse the software engineering techniques for
interactive programs to develop Web programs.

Since CGI programs run in the context of a Web server, it is possible
to write a custom server that allows CGI programs to behave as though
they were interactive: it can provide CGI programs with re-implementations
of primitives such asdisplay or prompt-read, using a specialized version
of prompt-read that uses Scheme’scall/cc construct to capture the current
control state as a continuation [40] value3. The server can associate this con-
tinuation with a new URL that accepts the inputs from a Web form and then
store it for later resumption.

When the consumer submits a response to this Web form, the browser
issues a request for the URL associated with a continuation. This request and
all future requests for the URL resume the continuation with the data from
the Web form. In particular, because a Scheme continuation can be invoked
an arbitrary number of times, the consumer can respond to the same Web form
a multiple number of times and thus resume the script as often as desired.

Prior work [26, 35] implements this approach and demonstrates its ad-
vantages. In addition to facilitating program construction, the modified Web

3 A continuation value can be thought of as a function that when created captures the
current list of computations left to perform before the program is complete, and when applied
performs them.
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server yields superior speed for CGI scripts compared to several existing
methods.

Unfortunately, the approach has two severe problems. First, it requires
a server written in a language with advanced control features such as con-
tinuations. Second, the URLs for continuations act as persistent references
to storage within the server. This results in a distributed garbage collection
problem with no support from the browser.

In theory, garbage collectors only reclaim memory that provably will never
affect the rest of the computation. In practice, many languages provide weak
references [37] (i.e., references the collector ignores when determining reach-
ability) so programmers can allow the collector to reclaim space sooner. The
collector “proves” that values referred to only by weak references will never
be used again by adjusting all the remaining weak references to some default
value (e.g.false or NULL) indicating the value is gone.

Similarly, the Web server treats the URL references to continuations as
somewhat weak. They are weak in the sense that the server will reclaim
space sooner than the referring URLs disappear by redirecting those URL
references to some default value—a Web page indicating the continuation is
gone. The process differs from the usual notion of weak references by the
criteria for breaking off the references. Instead of waiting until only weak
references remain (which would eliminate the continuations immediately),
the server relies on other criteria: timeouts.

Unfortunately, timeouts don’t solve the problem. If a timeout is too large,
the server consumes too much memory. If it is too short, it forces consumers
to restart computations from the beginning too often. It also makes the con-
sumer depend on the reliability of the server, which may restart due to power
failures or software upgrades.

Several months of actual experience using the server for an outreach
project’s Web sites [1, 2] revealed that problems with timeouts matter in
practice.4

� One of the sites contains a workshop registration form with a timeout
of 24 hours. This sufficed for most respondents; a few, however, had
to request an extension due to a snow-storm that interfered with their
Internet access. Unfortunately, because the garbage collector had already
reclaimed the continuation, not even the site operator could grant an
extension.

� On another occasion, one of the authors copied the first page generated
by the registration program to a different file. Initial testing suggested

4 Also, because the generated URLs encode enough information to identify the instance
of the program, its continuation, and a random key, they are too long for some email clients,
which mangled them. Some users reported problems copying the URLs because of this.
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that the copied page functioned correctly, yet the page stopped function-
ing a day later. The generated page had contained a link to the second
page of a script (it should have re-started the script), so the bug only
manifested itself when the timeout expired and the continuation was
discarded.

3. Generating CGI Programs

The theoretical and practical problems with the server-based approach forced
us to consider an alternative implementation technique. To simplify the pre-
sentation, we first demonstrate this technique on programs written in a purely
functional subset of Scheme. In section 3.2, we extend it to support programs
with state and mutation, and in section 3.3 we show how to apply the same
technique to other languages without Scheme’s advanced flow-control.

3.1. FUNCTIONAL CGI PROGRAMS

Removing timeouts would eliminate many of the problems encountered with
our custom Web server. If the server could send the continuations to the
clients, then the clients could decide how long to hold onto each continuation,
eliminating the need for the server to cache the continuations and enforce a
timeout policy. Accordingly, if we can marshal and unmarshal continuations
into printable data, the server can send the marshalled continuations to clients
(in a hidden field on the Web page) and the clients can send the marshalled
continuations back to the server.

We employ three well-known transformations to enable the server to
marshal the continuations. While these transformations were developed as
techniques for compiling functional programs, they can be applied even to
languages without the advanced features functional languages have, as we
will see in section 3.3.

Continuation Passing Style (CPS) represents a program in such a way that
at each point in its execution there is an explicit representation of every-
thing still to be done before the program is complete [24]. In particular,
each function of the program now consumes one additional argument:
another function representing the continuation. In this style, a function
that saves or manipulates continuations can simply refer to this new ar-
gument; in our case, a re-implementation ofprompt-read can turn its new
argument into a resumption point from which an external multiplexer
can resume the program in response to a form submission.
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(define-struct closure (code env))
;; Closure � (make-closure Int Env)
;; Env � (listof Value)

(define c0
(lambda () ;; the environment (in this case, empty)

(lambda (response1) ;; the argument
(prompt-read-k "Enter the second number to add:"

(make-closure 1 (list response1))))))

(define c1
(lambda (response1) ;; the environment (in this case, holds

;; the previous argument)
(lambda (response2) ;; the argument

(display (� response1 response2)))))

;; the converted functions and continuations
(define closures (vector c0 c1))

;; apply-closure : Closure (listof Value) � � Value
(define (apply-closure f . args)

(apply ;; supplies the arguments
(apply ;; supplies the environment

(vector-ref closures (closure-code f ))
(closure-env f ))

args))

;; prompt-read-k : String Closure � void
(define (prompt-read-k s k)

(display s)
(apply-closure k (read)))

;; main
(prompt-read-k "Enter the first number to add:" (make-closure 0 ’()))

Figure 4. The Compiled Version of Figure 1

Lambda lifting turns the resumption points into independent functions that
can be moved to the top level, making them accessible to the code
handling the next interaction [30].

Defunctionalization changes the representation of higher-order data, such
as closures5 and continuations, into a first-order form [38]. By choosing

5 A closure can be thought of as an object with only one method:apply.
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(define-struct closure (code env))

(define (apply-closure f . args)
(apply ;; supplies the arguments

(apply ;; supplies the environment
(vector-ref closures (closure-code f ))
(closure-env f ))

args))

;; the converted functions and continuations
(define closures

(vector
(lambda () ;; the environment (in this case, empty)

(lambda (response1) ;; the argument
(prompt-read-k "Enter the second number to add:"

(make-closure 1 (list response1)))))

(lambda (response1) ;; the environment (in this case, holds the
;; previous argument)

(lambda (response2) ;; the argument
(display (� response1 response2))))))

(define (prompt-read-k s k)
(display s)
(apply-closure k (read)))

;; main
(prompt-read-k "Enter the first number to add:" (make-closure 0 empty))

Figure 5. The CGI Version of Figure 4 (Compare with Figure 2)

portable concrete representations (in this case, vectors), we can correctly
marshal these kinds of higher-order data. Using defunctionalization, the
script writes the continuation into a hidden field of a Web form and uses
it later to restart its computation.

These three phases are part of a standard technique for compiling func-
tional languages ([24], [4]) first described by Reynolds [38]. CPS-converting,
lambda lifting, and defunctionalizing partitions a program into separate inter-
active steps, so computation can halt conveniently between them and small
changes then convert the program into a standard CGI script.

We explain the process with the trivial but illustrative example from fig-
ure 1. The result of these three automated translation steps is shown in
figure 4. This interactive program requires one final step to become a CGI
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program. The revision in figure 5 demonstrates the result of systematically
transforming the compiled version into a CGI script. The result is structurally
almost identical to the hand-coded version of figure 2.

The details of the process are as follows. The first step produces a CPS-
converted version of the program. Here is our running example:

(prompt-read-k "Enter the first number to add:"
;; lambda declares anonymous, first-class functions
(lambda (res1)

(prompt-read-k "Enter the second number to add:"
(lambda (res2)

(display (� res1 res2))))))

where

;; prompt-read-k :
;; String (Value � Value) � Value
(define (prompt-read-k s k)

(display s)
(k (read)))

The CPS converter must supply alternate implementations of primitives.
CPS-converted versions of higher-order primitives that accept (or return) call-
backs must supply a continuation to their argument, since the callbacks may
contain resumption points. External modules that accept function arguments
must be transformed as well.

Lambda lifting turns anonymous functions into globally defined functions.
It thus allows the compiled CGI program to resume a continuation with a call
to a global function. Each expression of the form

(lambda �args� �body� . . . )

is replaced with

((lambda �free-vars�
(lambda �args� �body� . . . ))

�free-vars�)

where�free-vars� is the list of free variables in�body� . . . .This new function
is closed, so it can be safely lifted to the outermost lexical scope.

For our running example, this step yields
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(define closure1
(lambda ()

(lambda (res1)
(prompt-read-k "Enter ... second ...:"

(closure2 res1)))))

(define closure2
(lambda (res1)

(lambda (res2)
(display (� res1 res2)))))

(prompt-read-k "Enter ... first ...:" (closure1))

Usingclosure1 andclosure2 we can now run the program from different
resumption points, turning the original program into a curried adder just as
the back button on a Web browser does.

Figure 4 shows the result of the final compilation step, namely of con-
verting closures into structures;apply-closure performs function applications.
The step is necessary for two reasons. First, Web forms must refer to a specific
resumption point (closure) within a program, but Web forms can only contain
strings. A unique symbolic code, such as an index into a vector of closures,
satisfies this requirement. Second, some closures may survive an interaction
with the consumer, which means that their environment must be marshalled
into strings for hidden fields and unmarshalled upon resumption. Since all
closures have been converted into first-order closure structures, a function
such asprompt-read can write a closure into the hidden field of a Web
form and the CGI program can read this closure and apply it. Specifically,
the code pointer of the continuation describes what subprogram to invoke
next. The continuation’s environment captures any values needed by the next
subprogram instead of explicitly passing them in hidden fields.

Up to this point, the transformation produced a semantically equivalent
program, so the result is a normal interactive program. To produce a CGI
program, we replace two fragments of the defunctionalized program. The
definition of prompt-read changes and now marshals the continuation into a
Web form, prompts the user with a form, and then exits. The main program
changes to the text of figure 5. In other words, the program first checks the
form bindings for the continuation fromprompt-read. If it exists, the contin-
uation is resumed via a closure application. If not, the invocation starts from
the beginning.

paper.tex; 11/01/2004; 11:06; p.13



SECURITY

Recording the continuation in the client and retrieving it introduces two se-
curity issues. First, malicious users can alter the continuation, resulting in
unexpected behavior. Second, curious users can inspect the continuation’s
free variables, possibly revealing confidential information.

Existing cryptographic solutions remedy both these problems without
introducing more than a fixed amount of server-side state. Appending the
marshalled continuation with a keyed hash [3] would allow the unmarshaller
on the server to verify the continuation’s integrity. Encrypting the contin-
uation using a block cipher with a random key kept only on the server
would prevent users from inspecting the continuation. The system could gen-
erate the necessary keys on a system wide or per-program basis, avoiding
excess server-side state. One mode of the proposed Advanced Encryption
Standard [13] simultaneously does block encryption as well as message
authentication in one (highly parallelizable) operation.

A drawback of this approach is that once a server starts any session us-
ing a particular secret encryption key, it cannot ever stop accepting sessions
encrypted with that key without invalidating them. This flaw could make the
security penalty for a compromised secret key worse.

3.2. COMPILING STATEFUL CGI PROGRAMS

(define box-0 (box 0))
(define box-1 (box 0))
;; main
(begin

(set-box! box-0 (prompt-read "Enter the first number to add: "))
(set-box! box-1 (prompt-read "Enter the second number to add: "))
(show (� (unbox box-0) (unbox box-1))))

Figure 6. A Stateful Interactive Program

While generating CGI programs from interactive functional programs is
almost a routine task with functional compilation techniques,internal6 as-
signments in the interactive program pose an interesting challenge. The first
problem is due to plain variable assignments—set! in Scheme—because
lambda lifting assumes that copying bindings is acceptable. We must there-
fore eliminate all assignment statements with a transformation that replaces
mutable variables by boxes,7 assignments to variables with assignments to

6 We ignore modifications of data inexternal entities, say the server file system or a
database, because this topic is well-understood.

7 Boxes are Scheme’s mutable cells.
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(define-struct closure (code env))
;; Closure � (make-closure Int Env)
;; Env � (listof Value)

;; apply-closure : Closure (listof Value) � � Value
(define apply-closure . . . ) ; as infigure 4
(define closures (vector . . . ))

;; similar to figure 5
(define (prompt-read-k s k)

(produce-html s (closure-code k) (closure-env k)))

;; added:
;; produce-html : String String (listof Value) � void
;; effect: to write a CGI HTTP header and HTML Web form
;; including a cookie containingthe-boxes
(define (produce-html question mark free-values) . . . (write-boxes-to-cookie the-boxes). . . )

(define bindings (get-bindings))

;; the-boxes : (vectorof Value), the current store
(define the-boxes

(if (empty-bindings? bindings)
(initialize-the-boxes)
(read-boxes-from-cookie)))

;; initialize-the-boxes : � (vectorof Value)
;; create a new store plus a sequence number

;; read-boxes-from-cookie : � (vectorof Value)
;; turn a cookie into a store, check sequence number using a lock file

;; write-boxes-to-cookie : (vectorof Value) � void
;; turn a store into a cookie, increment sequence number using a lock file

;; main
(cond [(empty-bindings? bindings)

(apply-closure (make-closure 0 empty) (box 0))]
[else
(apply-closure

(make-closure
(string� number (extract-bindings/single ’continue-at bindings))
(create-env-from-strings (extract-bindings/single ’env bindings)))

(extract-binding/single ’ response bindings))])

Figure 7. CGI Version of Figure 6
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boxes, and references to such variables with dereferences of boxes. Fur-
thermore, the CGI program generator must know all boxes that the original
program uses (or implicitly introduces). Figure 6 contains an imperative
version of our example converted to use Scheme boxes.

The second problem is much more severe. Semantically, assignments
introduce an additional element: the store. Roughly speaking, the store is
threaded through the program, independently of the control state. In particu-
lar, when a Scheme program invokes the same continuation twice, the store of
the second invocation reflects all the store updates since the first invocation.
Modifications of the store survive continuation capture and invocation.

A consumer who invokes the same continuation twice via a Web form
should also see that the store modifications of the first invocation survive
when the second invocation is launched. This requirement implies that a CGI
program must deal with the store differently than with the environment of a
closure. In particular, it is wrong to place the current store into a hidden field
of a Web form. After all, if the consumer cloned the page, the browser would
also copy the store, and two submissions of the form would submit the same
store twice.

Still, we must choose where to remember the current store when we sus-
pend a CGI program. We could either place the store on the server or on the
client machine. As we already know from the discussion of the placement
of continuations, the server is ill-suited for this purpose.8 Hence, we must
turn the store into a datum that is sent to, and then stored on, the consumer’s
machine—but not inside the Web page.

This reasoning leaves us with the single choice of turning the store into
a browser “cookie” and placing this marshalled form into the consumer’s
cookie file. Unlike hidden fields, they are independent from any particular
page, so changing continuations via the back button does not affect the store.
Figure 7 sketches the cookie-based translation of figure 6.

Although this naïve cookie solution sounds straightforward, it has three
imperfections. The first one, which is minor, is the restriction that Web
browsers have a limit of 80kB of storage for cookies per host name [32]. In
principle, a limit like this is no different than a limit on heap space for a con-
ventional program, but the small size of the limit will be problematic for some
programs. As security research improves, we expect cookies or some other
mechanism to mature enough to lift these simplistic restrictions. A second
minor problem is that modern browsers include many cookie-management
facilities that expect Web sites to use cookies in very rudimentary ways,
and some users disable cookies entirely as a security and privacy measure.
This problem will presumably be minor, since users can always enable basic

8 Avoiding server-side state also facilitates replicating the server across several ma-
chines. Although outside the scope of this paper, replication improves industrial servers’ load
balancing and fault resistance.
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cookie management and refrain from manipulating cookies if they know they
are interacting with a program that requires them. The third, more impor-
tant one arises because browsers transmit cookies at the time they submit
the Web request. If the user submits simultaneous requests, the second re-
quest processed by the server will contain an out-of-date cookie. A naïve
implementation may thus lose updates to the store.

Our solution is to include a sequence number [36] with the cookie store.
A sequence number allows the CGI program to detect race conditions. More
specifically, the CGI stub code stores a sequence number for each original
invocation (“session”) of a CGI program and uses this sequence number to
manage access to the store. If it ever obtains a store with a sequence number
less than the current one, it asks the consumer to resubmit the Web form.
Unfortunately, the use of sequence numbers re-introduces the server side
storage management problem, though because the storage needs for numbers
are small, the problem is negligible.

In summary, the inventors of browsers created two mechanisms for
threading information through Web computations. The two mechanisms are
analogous to the two ways information flows in a programming language
semantics: stores that accumulate over time and continuations with envi-
ronments that grow and shrink. Our CGI compiler can therefore use the
browsers’ mechanisms to implement the separate storage requirements for
continuations and stores in a systematic manner.

3.3. APPLYING THE TECHNIQUE TOOTHER LANGUAGES

The technique described in section 3.1 borrows heavily from techniques
used to compile functional languages to machine code, but does not rely
on the source or target language having any unusual features of functional
programming languages: in particular, it does not requirecall/cc or other
continuation-manipulation primitives and it does not require closures or first-
class functions to be available; it requires only that the target language
provide basic functions or a goto-like construct.

This may seem strange given that all phases of our technique refer to
higher-order functions and at least CPS-conversion appears to rely on them.
However, while the output of the compiler shown in figure 4 uses a few
features of functional languages, it does not rely on them. To demonstrate
this, we have provided an example of the same output as it might appear in C
in figure 8.

Notice the similarity between figure 4 and figure 8. Other than a slightly
more verbose syntax and a different format for the functions stored in the
closure table (the Scheme version using curried environments, the C version
taking environment and arguments at once) the programs strongly resemble
one another.
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#include�stdio.h�
typedef struct � int code ; void �env ; � closure;
typedef void (�closuretype)(void �, void �);

closure �make_closure(int, void �);
void c0(void �, void �); void c1(void �, void �);
void apply_closure (closure �, void �);
void prompt_read_k(char �, closure �);

closure �make_closure(int code, void �env) �
closure �k � (closure �) malloc(sizeof(closure));
k� code � code, k� env � env;
return k;

�
void c0(void �env, void �response1) �

closure �k � make_closure(1, response1);
prompt_read_k("Enter the second number to add: ", k);

�
void c1(void �response1, void �response2) �

printf("%d�n", (int) response1� (int) response2);
�

closuretype closures[] � �c0,c1�;
void apply_closure (closure �f , void �args) �

(�(closures[f� code]))(f� env, args);
�

void prompt_read_k(char �s, closure �k) �
char input[10];
int i;
printf("%s", s);
fgets(input,10,stdin);
i � atoi(input);
apply_closure(k,(void �) i);

�

int main() �
closure �k � make_closure(0, (void �) 0);
prompt_read_k("Enter the first number to add: ", k);
return 0;

�

Figure 8. The C version of Figure 4
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void apply_closure(closure �clo, void �args) �
int code � clo� code;
void �env� clo� env;
free(clo);
(�(closures[code]))(env,args);

�

Figure 9. Modification of Figure 8 to reclaim continuation frame memory

MEMORY MANAGEMENT

Figure 8 mirrors figure 4 closely, but has one important difference: be-
cause C requires programmers to manage memory manually while Scheme
reclaims memory automatically, the memory allocated for closures using
make_closure in the C program is never reclaimed. This is easy to fix: since
closures are only ever introduced to this program by the CPS-conversion
phase and are never live after their first use, we can simply free them when
we apply them by adding a call tofree to apply_closure, as shown in figure 9.

Freeing closures at this point will work with any C program compiled with
our compiler since source C programs will never create first-class closures of
their own.

ELIMINATING malloc

The previous section demonstrated that the memory our compiler allocates
for continuation frames can be freed reliably, but programmers concerned
with efficiency may object to using the heavyweightmalloc andfree method
of allocating closures for something as fundamental as managing stack
frames.malloc is a very slow procedure compared to a stack push andfree
is slow compared to a stack pop, so large programs might suffer greatly from
using them. Happily, since allocation and deallocation of continuations in this
program (and any program generated from C source using this technique) will
occur in a strict stack, we can rewritemake_closure to avoid usingmalloc and
free entirely, instead usingpush andpop (figure 10).

ELIMINATING STACK-BASED MEMORY LEAKS

Unlike Scheme, C is not properly tail-recursive [11], meaning that when a
function calls another function as the last operation it performs, such asc0
does in figure 8. C does not reclaim the memory allocated to its stack frame
until the function it called in tail position returns, so in the instance ofc0 its
stack frame will not be collected untilprompt_read_k returns, even though in
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int curr;
closure stack[MAX_STACK_SIZE];

closure �push(int code, void �env) �
closure �ret � &stack[curr];

ret.code� code;
ret.env � env;

��curr;
return ret;

�

void pop() �
��curr;

�

Figure 10. Modification of Figure 9 for faster stack behavior

principle that memory contributes nothing to the computation afterc0 calls
prompt_read_k.

In many C programs following normal C programming style, this limita-
tion does not pose a serious problem; C programmers simply avoid making
long chains of tail-calls. However, the efficiency of continuation-passing style
relies on efficient tail calls, so we have yet another memory-related problem
to solve.

Fortunately, there are many ready solutions. The easiest in C would be
to add two additional global variables,closure �clo_reg andvoid �args_reg,
rewrite all continuation functions to be labelled code segments, and usegoto
instead of tail calls entirely, maintaining a stack only when necessary to de-
termine where a futuregoto will lead. But this technique, which in fact takes
the program most of the way to assembly code, seems too specific to C to
convince the skeptic reader that our technique applies to languages without
special features; and besides, other simple techniques are available.

One such simple technique is calledtrampolining.9 In this method, rather
than callingapply_closure directly, each closure allows an outer “trampoline”
loop sitting at the bottom of the stack to do so. To implement trampolining,
we would again addclosure �clo_reg void �args_reg. Then, we would rewrite

9 We choose trampolines here because they are easy to implement and have reasonable
performance characteristics. Those interested in implementing a direct-style CGI compiler for
C should see [6] for an alternative technique that reuses stack frames as live memory.
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void prompt_read_k(char �str, closure �k) �
char input[10];

/� . . .other code as before �/

i � atoi(input);
clo_reg� k;
args_reg� (void �) input;
return;

�

int main() �
/� . . .as before . . .�/

while (1) � apply_closure(clo_reg, args_reg); �
�

Figure 11. Using trampolining to avoid stack explosion

each call toapply_closure as we have withprompt_read_k and augment our
main function to finish with a trampoline loop, as shown in figure 11.

With that, we can finally eliminate all our memory difficulties and have an
automatically-restructured C program compile to an efficient executable that
only needs boilerplate as in figure 5 to be a full-fledged CGI program.

ELIMINATING FUNCTION POINTERS

We used the C example above to make the argument that our technique would
work with any language that supported functions, but in that example we
made use of C function pointers, a language feature specific to C. While
languages that have no provision for any kind of calculated jump (e.g., func-
tion pointers, closures, or objects) are rare, our technique does not require
calculated jumps at all. To eliminate them from our C example, we could
simply mergeapply_closure and theclosures table into a single function:

void apply_closure (closure �clo, void �args) �
switch (clo� code) �

case 0: c0(clo� env, args); break;
case 1: c1(clo� env, args); break;

�
�
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That modification would eliminate all uses of function pointers, making the
code entirely free of calculated jumps; translation to other languages or
assembly code from this point is straightforward.

TRANSLATION PHASES

The output, then, can be expressed in languages without functional program-
ming features. The translation phases can also be applied to languages that do
not support those features: though our intermediate phases make heavy use of
higher-order functions, the intermediate representation of the program being
transformed does not need to be directly executable. So, were we transform-
ing C or another language without closures, the CPS-conversion phase could
produce its output in C augmented with closures, knowing that every closure
we introduced in this phase would be eliminated in the defunctionalization
phase thus making the compiler’s final output a legal C program. The idea
that a CPS transformation followed by closure conversion, lambda lifting and
defunctionalization can be combined into a simpler transformation was first
noticed in [18].

4. Developing CGI Scripts

Developing a conventional CGI program in standard programming environ-
ments is difficult. To debug the program properly, the developer should run
the program as a CGI script and interact with it through a browser. This is,
however, a poor interaction environment. Instead of a proper error message,
the programmer sees responses such as

Internal Server Error....More information about this
error may be available in the server error log.

The server’s error log contains a corresponding report:
Premature end of script headers

followed by the name of the program. The programmer can infer from this
that the CGI program didn’t output a valid response before terminating, but
little more.

Our compilation process introduces the additional problem that the code
that is executed as a CGI script is not the direct-style code that the program-
mer wrote. Instead, the programmer’s code is first transformed and then run
under the server’s control.

We can overcome both problems with a minor modification of ex-
isting programming environments. The idea is to provide a library that
re-implements primitives such asprompt-read so that the execution of the
direct-style program functions as if the CGI script were run. In particular, the
primitive communicates the given Web page to a browser, and the browser
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Figure 12. CGI Error Reporting

communicates the submission of a Web form to these primitives. Further-
more, the new library keeps track of the continuations ofprompt-read so that
the developer can truly simulate a consumer’s actions on the browser.

To demonstrate this idea, we wrote a library (technically, a Teach-
pack [16]) of interaction functions for DrScheme, our programming envi-
ronment [16] for Scheme. The re-implementedprompt-read primitive uses
a more general primitive that accepts HTML pages (with forms); it grabs
the current continuation, stores it, and manages the communication with
the browser. By switching Teachpacks, legacy software can run either as a
command line program or as a Web application.

All of DrScheme’s tools are now available to the developer of a CGI
script. For example, DrScheme’s error reporting works properly. Suppose the
developer forgets to deal with illegal inputs explicitly and instead relies on
Scheme’s primitives to read the submitted strings (all Web inputs are strings)
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Figure 13. CGI Stepping

as numbers. Then the program raises an exception for ill-formed inputs, and
DrScheme highlights the place where the program raised the exception as
if the program were an ordinary interactive program. See figure 12 for an
illustration.

Consider the more complex example of DrScheme’s single-step debug-
ger [10]. The tool reduces Scheme programs according to Scheme’s reduction
semantics [14]. A developer may wish to use the stepper to understand the
actions on a step-by-step basis. The stepper already accounts for library
calls as atomic function calls, so that it properly displays transitions of CGI
programs—including input and output steps. See figure 13 for an illustration
of this capability.

In general, our methodology for developing CGI programs permits the use
of conventional software engineering methods for interactive programs and
the use of systematically enriched programming environments. We believe
that our ideas thus bring rigorous order to the world of CGI programming.
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5. Implementation Status

We first developed a prototype CGI compiler that operates on core Scheme
programs. The compiler accepted a single expression, typically aletrec ex-
pression prefixed with (uncompiled) PLT Scheme library specifications. We
used the prototype to test the feasibility of the compiler with a number of
examples, plus one full-fledged application: the teacher enrollment dialog for
our TeachScheme! outreach project.

Our effort to turn the prototype compiler into a full-fledged compiler for
all of MzScheme [19] is ongoing.

MzScheme extends the Scheme R5RS [31] standard with several fea-
tures, including continuation marks [10], units [21], mixins [17, 23], and
modules [20]. Many of these extensions, including units and mixins, are al-
ready compiled to a coreλ-based language by MzScheme’s front end. Others,
notably modules, are not, since there is no equivalent for them in the coreλ-
based language. Accordingly, our compiler must be able to CPS convert these
forms, without re-implementing them. In general, this is not possible, but we
have been able to extend MzScheme in simple ways to cope with all of its
extensions.

MODULES

Once MzScheme’s front end has processed a module, that module consists of
a series of function definitions and expressions plus declarations about which
other modules it imports and which identifiers it exports to other modules.
To CPS-convert it, we transform the module so that it exports one additional
function: init. This new function accepts no arguments and performs all of
the initialization code from the original module, including calling theinit
functions from imported modules. Since the transformed module only has
function definitions, we can CPS convert the entire module by CPS converting
each definition.10 To make this transformation work properly, we had to add
a new renaming mechanism to the module system.

OPERATING SYSTEM RESOURCES

MzScheme lets programs access several operating system resources such as
TCP/IP connections and files. When aprompt-read occurs, since the Web

10 This technique is sufficient for most languages, but since our compiler is written for
Scheme, we go further. In Scheme, functions definitions are just like variable definitions
initially bound to aλ expression, and recursive binding constructs are semantically identical to
non-recursive binders, initialized to a dummy value, followed by a series of assignments [31].
Accordingly, our compiler pushes the initializations of all of the module’s definitions into the
init function and then CPS converts it.
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server will terminate MzScheme and thus force it to relinquish these re-
sources, we must decide what will happen to them. While we would like to
preserve them so that programmers could treat Web interaction as any other
kind of user interaction, this is not possible in the general case. For example,
the resources could be a network connection to an interactive process on an-
other machine that could time out. One can imagine migrating these resources
to the client machine and back, but rather than try that, we elect to implement
the simpler strategy of just releasing all such resources.

Since programs running under the compiler terminate the resources when
prompt-read is called, the program development environment must be able
to mimic this behavior. We use MzScheme’s custodians [22] to close all
open TCP/IP ports and files (as well as all of the other OS resources that
the program may have allocated).

THREADS

While as discussed in the previous section we cannot preserve operating
system resources across Web interaction lines in general, we can preserve
one particular operating system resource: threads of control.11 MzScheme
supports preemptive threads, created by thethread primitive. It accepts a
function of no arguments, creates a new thread and applies the function on the
new thread. As with other features related to operating system resources, this
feature poses a problem for the CGI compiler: a program could start several
threads and then request user input, which due to CGI restrictions shuts down
the entire application including all threads.

To cope with this, we could take the default strategy of the previous section
and shut down all threads. For new applications written specifically for the
Web, that constraint probably would not be a too burdensome most of the
time. However, stopping threads seems like a big problem for maintainers
of legacy software, so we have decided to allow threads to appear to remain
alive across Web interactions by stopping and marshalling all threads when a
prompt-read occurs, and resuming all running threads when the computation
resumes.

To implement this feature, we use a single assignable cell per thread. The
CGI compiler redefines thethread primitive to allocate a new cell. At each
application of a continuation, the transformed program updates the cell for
the current thread with the new continuation. When aprompt-read occurs, we
interrupt each running thread, gather the continuations from all of the cells,
and marshal all of them into the Web page that we send to the browser.

11 Technically, the MzScheme interpreter manages threads itself without relying on the
operating system’s underlying thread-related features. However, the technique for managing
threads would remain unchanged in either case.
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It is worth noting that the resulting datum could potentially be quite large if
the program has many threads active when it callsprompt-read. Also, a legacy
program might be using threads while requesting user input specifically for
the speedup that comes with parallelism, a speedup we will have to deny it.
However, our system imposes no constraints that aren’t inherent to the prob-
lem, and preserves the semantics of threads so developers can quickly migrate
a program to the Web and then incrementally improve its performance.

CONTINUATION FRAMES

The transformation outlined in the paper creates a separate continuation ap-
plication for each subexpression in the program, even those that will never
be split across aprompt-read. This significantly increases the size of the
compiled program and also increases the size of the continuations sent to
the browser.

In principle, our compiler does not need to create a separate continua-
tion for each subexpression, sinceprompt-read only happens at well-defined
points in the evaluation. Instead, we could identify the functions that are
guaranteed not to callprompt-read during their dynamic extent. The bodies
of such functions do not have to be converted to CPS form, since either the
entire function will appear in the continuation or the function will not appear
in the continuation at all.

Unfortunately, this optimization interferes with our strategy for supporting
multithreaded programs described in the previous subsection because that
strategy requires that we be able to interrupt any thread at an arbitrary point
and retrieve its current continuation, which will not generally be available
if we employ this optimization. Negotiating this conflict is an important
direction in our ongoing research.

CALLBACKS FROM PRIMITIVES

Many of MzScheme’s primitive functions are implemented in C, as part of
MzScheme’s runtime system. Several of these C language procedures invoke
arguments that are Scheme procedures, triggering a callback from the C code
to Scheme code. The Scheme standard includes a few of these (map, for-each,
etc) and MzScheme includes several more (andmap, ormap, user-defined
ports, etc).

In order to CPS convert programs that use those primitives, we must CPS
convert the primitives themselves. Since our compiler only consumes and
produces Scheme, we have to either re-implement these primitives or build a
CPS converter for C code. We have chosen to re-implement the primitives in
Scheme. As an example, Scheme’smap is replaced with this function:

(define (map/k f l k)
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(let loop ([l l] [k k])
(cond

[(null? l) (k ’())]
[else (f (car l)

(lambda (hd)
(loop

(cdr l)
(lambda (tl)

(k (cons hd tl))))))])))

MARSHALLING

MzScheme introduces many new kinds of values: hash-tables, structures,
custodians [22], and parameters, to name a few. MzScheme does not pro-
vide marshalling and unmarshalling (i.e., saving values to disk) for most of
these values so, as part of our compiler, we need to provide marshalling and
unmarshalling. For many of the values,e.g., hash-tables, MzScheme already
supports enough operations to implement marshalling and unmarshalling. For
others,e.g., custodians, our compiler must replace all of the operations on the
value with new versions of the primitives that record enough information to
be able to save the values to disk and restore them.

6. Related Work

Programmers building imperative-style programs in purely functional lan-
guages use a technique based on the mathematical theory of monads.
Hughes [27], in developing his theory of arrows, a generalization of monads,
describes how to implement interactive CGI programs using arrows. His key
insight is to provide a mechanism that at each interaction point turns the
current continuation into a datum for the Web page. This requires an oper-
ation on continuations not supported by most languages with continuations.
Similarly, Queinnec [35] advocates usingcall/cc to implement interactions
between Web servers and consumers. His method requires the modification
of a server that can store continuations.

Our research started as an exploration of these two publications. We diag-
nosed the short-comings of these approaches, namely, that the arrow solution
deals with stores improperly and the time-outs, based on our experience, limit
the utility of continuation objects in a Web server. Our solution addresses both
problems and overcomes these difficulties. Furthermore, our work demon-
strates that these ideas are applicable to all kinds of languages, not only
functional languages supporting first-class continuations.
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Graham [25] claims that the success of his Viaweb company, now Ya-
hoo! Store, is due in part to the methodical use of continuation-passing-style
to construct Web applications. If this technique proves helpful when done
manually, using our automated translation must be even better. He does not
explain how his company dealt with mutable stores.

At first glance, a reader might suspect that the FastCGI protocol [34]
solves the problems of engineering CGI programs by explicitly waiting for a
request in the middle of the program. The FastCGI protocol starts a separate
process on the server for each Web program. The server forwards successive
requests to the FastCGI program, which sends the responses back to the
server. Since these programs wait for a request, it appears at first that the
programmer could do more than the typical looping over requests at the start
of the program. One could attempt to construct an interactive program by
waiting for the next request at different points in the computation. However,
this approach only allows the user to proceed forward through each interac-
tion. Cloning windows or using the back button will send the form data to the
wrong point, causing the FastCGI program to either not find fields expected
from the correct form or, even worse, to misinterpret fields that accidentally
coincide.

The <bigwig> system [5, 9] uses this idea of a thread waiting for re-
quests at different points in the code to transparently preserve program state
across interactions. Since previous pages representing old program state are
no longer accessible, users must restart transactions to correct mistakes. Their
experience indicates that users complained about this inability to use the back
button or the browser’s page history.

Java servlets [12] address performance issues in a manner similar to
FastCGI. Aside from the object-oriented interface and libraries for construct-
ing HTTP response headers, servlets provide the same programming model
as standard CGI. Each incoming request invokes adoGet or doPost method
in the servlet from the beginning, leaving the task of restoring the appropri-
ate control context to the programmer. It may appear that servlets can avoid
moving the store into cookies by storing values in the servlet object’s fields.
The Web server, however, has the option of garbage collecting a servlet and
creating a new one at any time. The server also has the option of migrating
the servlet to another virtual machine, so data may not reside in static fields
between interactions either. TheHttpSession class provides a mechanism
for maintaining a dictionary from strings to Objects on the server and stor-
ing a reference to the dictionary in a URL, cookie, or Secure Sockets Layer
session. All the problems with server-side state consuming memory or timing
out remain.

The Java Platform Debugger Architecture [41] enables Java development
environments [8, 28, 42] to attach remotely to the JVM that the Web server
uses to run servlets. Although this reuses existing development environments
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to debug Web applications by setting break points and displaying the source
of exceptions, it does not assist the programmer with the convoluted structure
of interactive servlets.

Thiemann [43] used Hughes’s ideas as a starting point and provides a
monad-based library for constructing Web dialogs. His monads take care of
the “compilation” of Web scripts into a suitable continuation form. Working
with Haskell, Thiemann can now use Haskell’s type system to check the natu-
ral communication invariants between the various portions of a Web program.
Haskell, however, is also a problem because Thiemann must accommodate
effects (interactions with file systems, data bases, etc) in an unnatural man-
ner. Specifically, for each interaction, his CGI scripts are re-executed from
the beginning to the current point of interaction. Even though this avoids
the re-execution of effects, it is indicative of the problems with Thiemann’s
approach.

7. Conclusion

Our paper introduces an automated translation that implements an interac-
tive programming model for Web applications. By helping the programmer
avoid having to manually save and restore control state between interac-
tions, the system not only eases the initial software development, but also
facilitates maintenance, since the CGI programming model now matches the
traditional interactive programming model. The matched models also en-
sures that software engineers can still use familiar programming tools when
doing Web development. As an example, the paper demonstrates how our
technique allows developers to continue using conventional programming
environments.

The automated translation produces CGI-compliant programs using CPS
conversion, box conversion, lambda lifting and defunctionalization, followed
by the generation of a little administrative stub code. The well-understood
formal nature of the first four steps justifies a high degree of confidence in the
translation process. Furthermore, we can implement these transformations for
almost any modern high- or low-level language by either using the language’s
built-in language features for an executable intermediate representation or by
introducing and immediately eliminating closures. Most encouragingly, our
work shows that it is possible to implement our transformation in such a way
that we can preserve most of the semantics of a full-featured programming
language while adding unrestricted ability to interact with Web users.

One important question we leave unresolved is how to decide which values
should go in the store and which should go in the environment. For instance,
in C, loops usually exit when an index variable is destructively updated to a
particular value, but C programmers might be surprised to find that return-
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ing to the middle of a loop does not reset the loop counter to the value it
previously held. Fundamentally, the Web permits new observations on the
behavior of the program that were not possible before. Concretely, a loop
implemented withfor in C that imperatively updates an index variable and
a loop implemented with a recursive function in C12 are indistinguishable in
the traditional interactive model, but are distinguishable with Web programs.
Still, our research strongly suggests that our technique can be used as it is to
automatically restructure programs written in a wide variety of languages.
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