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ABSTRACT 
We posit that functional programmers employ a notion called 
expression integrity to understand programs. We attempt to study 
the extent to which both novices and experts use this notion as 
they program, discuss the difficulties that arise in measuring this, 
and offer some observational findings. 

Categories and Subject Descriptors 
D.1.1 [Programming Techniques]: Applicative Programming; 
H.5.2 [User Interfaces]: Evaluation/methodology 

General Terms 
Design, Human Factors, Languages. 

Keywords 
Programming for novices. Structured editing. 

1. Programming with Values 
Some people advocate the use of functional programming in 
computer science education, especially at the introductory level.  
Others oppose it on the grounds that it is not merely outside the 
mainstream but may even be unnatural (perhaps suggesting the 
latter as an explanation for the former). Unfortunately, this long 
debate has seen more heat than light. We believe curricula would 
be better served by rigorous studies that examine the purported 
advantages and weaknesses claimed by each side. 
First, let us review the basic structure of functional programs. The 
central idea is that programs exist to consume and produce values, 
akin to functions in algebra. Most introductory books completely 
eschew side-effects in the student’s programs (even though they 
can be described with some effort even in traditionally functional 
languages). As a result, students do not see statements, only 
expressions. A program is simply a series of definitions, each of 
which has an expression body. Each expression may, recursively, 
have many nested sub-expressions.  The actual computation is 
triggered by one or more expressions presented either in the 
program source or in an interactive evaluator (sometimes 
colloquially called an “interpreter”, even though the underlying 
implementation may employ a compiler, JIT, or other strategy). 
 

The functional style raises many questions (as does its more 
traditional counterparts). For instance, one might ask how students 
relate to the decomposition of computation by statements versus 
expressions; how much the problems caused for program 
reasoning by side-effects are offset by benefits; at what depth of 
nesting students start to have difficulties; and so on. A broader set 
of issues is whether functional programming is indeed “natural” 
or not. If it is not, then perhaps it is unsuitable in education 
(though we must also then ask the same question about algebra 
itself, and understand how the answers relate). If it is, then 
perhaps some of the complaints about it stem more from instructor 
prejudice than from student behavior and perception. 
To investigate such questions, we feel it is critical to first ask 
more foundational ones about students’ ability to even relate to 
how functional programs compute. This paper reports on a first 
such investigation. From extensive discussions with experienced 
functional programmers, we find (anecdotally) that when reading, 
reviewing, and editing programs they understand programs as 
trees of expressions, not as a sequence of characters. We use the 
term expression integrity to capture this notion of understanding 
programs, and examine it in more detail. This concept is 
especially important in functional programs because everything 
other than a definition is an expression, even the control 
operations. We suspect, but don’t study here, that this concept 
also applies to imperative programs that have shallow expressions 
but do have statements that can nest several levels (e.g., an 
assignment inside a conditional inside a loop inside a function). 
Observe that “understand” has two senses: syntactic and semantic. 
Syntax is what users write (and hence it is what they have 
primary, direct control over), while semantics is what happens 
when the program runs (and hence reflects whether or not it met 
the user’s goal). Computer scientists have long understood the 
tension between these two aspects of a language, and indeed 
movements such as structured programming grew precisely out of 
a direct desire to reduce the gap between the two. Thus, our 
investigation of functional programming should employ both 
syntactic and semantic angles. 
This paper is about questions more than answers. It combines 
position (the importance of expression integrity) and discussion 
(how we might measure it). 

2. Syntactic Studies 
Expression integrity is presented in terms of how programmers 
understand programs. Of course, we cannot directly observe 
“understanding”; instead we must operationalize it. At a syntactic 
level, we postulate that there are certain behaviors we expect from 
programmers employing expression integrity, such as: 

• They finish working with one expression before switching 
to another (for nested expressions, they may provide the 
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highest-level syntactic structure first, then fill in the sub-
expressions, or they may complete sub-expressions in 
depth-first order). For languages with parenthetical syntax, 
they also maintain (relatively) balanced parentheses as 
they edit programs. 

• They move and copy whole expressions. 
These statements apply both to writing new code and to 
modifying existing code.  For example, we would expect an 
expression-aware programmer to modify existing code by making 
edits as needed to a single (possibly nested) expression and 
restoring the surrounding expression structure (including 
parentheses) before moving on to another expression. 
Additionally, when modifying code, we would expect that 

• They prefer reusing expressions to typing new code, even 
if the number of keystrokes is similar in each case. 

Until a programmer has developed a sense of expression integrity, 
we would expect them to prefer edit paths with fewer keystrokes, 
and to apply edits without regard to the program’s tree structure. 
(We observe in passing that these criteria are not limited to 
functional programs. A similar notion of integrity surely applies to 
statements also, though the rules are more complex.) 
In other words, even when their editor permits character-wise 
editing (as most modern editors do), programmers with a sense of 
expression integrity conceptualize the syntax in terms of 
expression trees, and sometimes even avail of editor operations 
that atomically handle entire expressions at a time. These 
expression-oriented operations effectively endow programmers 
with the benefits of structured editing even in an unstructured 
editor, thereby avoiding the notorious inflexibility of fully-
structured editors [1] without giving up their benefits. 
Naturally, these are just claims (though based heavily on 
experience and anecdote). We set out to study these ideas in two 
populations: rank beginners, and experts. We first discuss our 
setup (Section 2.2), and our results for beginners (Section 2.3); 
then we step back and ask how our findings compare against 
expert behavior (Section 2.4). Before we get into these studies, 
however, it is worth examining the structure of expressions, since 
this affects what we can measure. 

2.1 The Structure of Expressions 
Observe that in a handful of languages (unlike Java, C, etc., where 
a program either parses or doesn’t) there are multiple levels of 
“expression-ness”. In XML, for instance, the levels are called 
well-formedness and validity. Well-formedness simply means that 
the basic rules of XML (pointy brackets, appropriate quotation of 
certain characters) are being followed, and that the opening and 
closing tags match and nest properly. However, a particular XML 
language will have additional rules. For instance, in XHTML (a 
version of HTML built atop XML), only certain tags are allowed, 
only some tags can nest within others, only certain attributes are 
legal, and so forth. This latter level of conformance is called 
validity. Thus all valid documents are well-formed, but not all 
well-formed documents are valid. Krishnamurthi [2] refers to 

languages with such a two-level structure as bicameral, since they 
mimic the bicameral legislatures of many countries. 
Another language family famous for bicameral rules is Lisp. 
Well-formed terms (known as s-expressions) meet tokenization 
rules and have balanced parentheses, while valid terms are those 
that actually parse. In the Racket dialect, for instance, the term (+ 
1 2) is both well-formed and valid, but (lambda x) is well-
formed but not valid: it survives the “reader” (which converts a 
token stream into an s-expression) but fails to parse. 
Our studies are conducted with students learning Racket. This 
gives us freedom to study programs at either level. While our 
tools support both, we chose to study well-formedness (which 
largely translates to whether programs are properly parenthesized) 
for two reasons: 

1. It more closely corresponds to the level at which we 
believe beginning students think: they very quickly 
understand that programs must be properly parenthesized 
even though they do not understand the finer rules of 
grammar. Put differently, to beginners, balancing 
parentheses probably is what they imagine to be the 
primary form of validity. 

2. When we study how student performance evolves over the 
course of the semester, it is valuable to quantify their 
progress. This requires that we can measure the degree of 
mis-parsedness of a program. This would presumably be 
based on the edit-distance to a properly parsed program, 
which is extremely sensitive to the editing operations 
available, and thus may be difficult for even experts to 
agree upon. In contrast, the degree of parenthetical 
imbalance (which, too, must deal with the fact that Racket 
programs have both parentheses and brackets) is a much 
more objective metric.  

It is important to observe that, because every valid program is 
well-formed, a program that is not even well-formed is certainly 
not valid. Thus, any studies based on well-formedness would 
yield a lower-bound on what we would find by studying validity.  
Of course, we must be careful when interpreting measurements. It 
is sometimes impossible to make edits without temporarily 
altering the validity—or even well-formedness—of a program. 
This can happen when fixing a typographical error. There are also 
edits whose entire point is to alter the way a program parses; in 
the process, it may be very difficult (or even impossible, given the 
structure of the language!) to make sure every intermediate state 
parses properly. We conjecture that programmers can easily 
tolerate such mal-formed intermediate programs provided they are 
not distracted during edits. Just as humans easily cope with poor 
spelling and grammar, a small amount of mis-parsedness seems 
entirely reasonable and perhaps cognitively preferable than trying 
to preserve parsability at all times. 
More broadly, because most other programming languages do not 
have a bicameral structure, to generalize our results we must 
eventually examine validity also. Naturally, we should also study 
languages without a bicameral structure, to avoid confounding 
factors introduced by “lots of irritating, silly parentheses”. 



2.2 Experimental Setup 
We conducted our experiments in DrRacket, a modern (but 
intentionally spartan) interactive development environment. Three 
characteristics of DrRacket are noteworthy in this paper: 

1. DrRacket runs identically (other than default key bindings) 
and as a native application on Windows, Mac, and Unix. 
Thus users can apply all the edit operations that they are 
comfortable with for the platform. 

2. Whenever a cursor is placed (by mouse or keyboard) over 
a parenthesis, the environment highlights the entire 
parenthetical expression that begins or ends at that 
parenthesis. (If the parenthesis is mis-matched or dangling, 
DrRacket instead colors it pink.) This highlighting 
happens automatically without the need for a mode setting, 
as is necessary in some other editors. 

3. Users can enable keystrokes for manipulating entire s-
expressions, imitating those built into Emacs. Most of the 
advanced programmers described in this paper know these 
keystrokes, but none of the beginners were shown them 
(they are not easy to find without reading the manual, so 
most students never discover them).  

Each user in our studies enabled logging software in DrRacket. 
This software logged all key and mouse events in the environment 
and could replay them, so we could study the precise evolution of 
the program source and watch a user’s editing as a “movie”. (The 
logger is a DrRacket plugin, so it does not capture any interaction 
outside the environment such as passwords, etc.). 

2.3 Analysis of Student Data 
In spring 2010 we collected detailed logs of students’ interactions 
with DrRacket during the lab sessions of an introductory 
programming course.  Each lab ran for 50 minutes.  There were 
six lab sessions (one per week) over the duration of the course. 
Sixty students out of 120 consented to provide data. 
Using these data, we asked three initial questions about students:  

1. What is the pattern of well-formedness of their programs? 
Do they keep their parentheses mostly balanced, or are 
there wild fluctuations of imbalance? 

2. When modifying existing code, as opposed to creating 
new code, is their behavior any different? For instance, is 
there a significant difference in their edits after error 

messages as opposed to edits after the successful passage 
of tests (which suggests they have completed a task and 
are moving on to new code)? 

3. Do these behaviors change over the course of the semester, 
as they (a) become familiar with the language syntax, (b) 
acquire greater skill with the programming environment, 
and (c) realize (from experts such as professors and TAs) 
that letting programs become significantly imbalanced is 
likely to lead to more errors and make it harder to find and 
fix them? 

To observe the extent of unbalancing over the course of a lab, we 
computed the amount of unbalancing after each change to the 
parenthetical structure. We used an A* search with alpha-beta 
pruning to compute the shortest edit distance to a balanced buffer. 
The search could either add a parenthesis to match a dangling one, 
remove a dangling parenthesis, or turn a parenthesis into a 
different kind (from round to bracket or vice versa). 
Figure 1 shows the behavior of three students in the third lab. The 
label (A, B, C) reflects their final course grade. All three start with 
a balanced buffer (because it’s empty), then compose some code. 
While doing so, the buffer becomes momentarily unbalanced. The 
students differ in how they manage this imbalance. Student A 
seems to have developed a habit of frequently returning to a 
balanced buffer; she also frequently compiles her code, possibly 
to confirm its well-formedness before going further. Student B 
also frequently restores the buffer’s balance, but does not compile 
as often.  Student C spends almost the entire second half of the lab 
with a deeply unbalanced buffer. Afterwards, he has to make four 
compilation attempts before returning to a valid program. 
We sought to summarize these behaviors with a metric so that we 
could make aggregate comparisons across students, across time, 
and so forth. A natural first metric is: 

1. Area under the curve: We could simply sum the total 
extent of imbalance the student’s program demonstrates 
during an editing session. 

This metric does not, however, capture whether or not a student 
regularly brought the buffer back into complete balance. Instead, 
we might want to measure: 

2. Average length of runs between zeroes: On the premise 
that a long imbalanced edit is worse than a short one (since 

(A)   
 

(B)   
 

(C)   
 
Figure 1. Different behaviors towards the maintenance of well-formedness and validity. The y-axes shows the amount of imbalance in 
the third lab (50 minutes) for an A-student, a B-student, and a C-student, respectively (same scale for all three). The highest peak is 9. 
Filled rectangles represent successful compilation attempts; x-ed rectangles are compilations that produced an error message. 



the student must concentrate longer), we could emphasize 
the duration of imbalances over their size. 

But this fails to capture our intuition that the more imbalanced a 
buffer is the greater the cognitive burden borne by the student 
(e.g., having to be conscious of the nesting depth). The summary 
measure we finally settled on combines the two previous metrics: 

3. The mean of the areas under the curve between zeroes: 
Split at each point where the buffer returns to a balanced 
state; compute the area of each; average these areas. 

This enables us to handle what might appear to be confounding 
data. For instance, suppose a student begins a program thus 
(where the arrow represents the cursor position): 
 (define (len l) 
  (cond 
   [(empty? l↑ 
The program has a nesting depth of four. It is unclear at this point 
whether the student will eventually balance everything. In 
contrast, a different student may always close every parenthesis 
they open right away, writing the above example as follows: 
(define (len l) 
  (cond 
   [(empty? l↑)])) 
By looking at sequences of edits, our metric lets us focus on the 
entire editing behavior, rather than trying to guess from an 
intermediate state what the final state will be. 

Before analyzing the data, it is worth considering different styles 
of editing activity. In particular, writing new code is potentially 
quite different from changing existing code, since the former can 
much more easily be structural while the latter may necessitate 
non-structural changes. Thus, we choose to partition edits into 
those yielding new code versus those that were fixes to errors. 
To classify edits, we assume (in line with prior work [3]) that 
edits after a successful compilation—until the next compilation—
consist of new code. The one exception is when a compile returns 
a parenthesis error; in this case, we continue rather than terminate 
the edit sequence. Thus, new code sequences begin with a 
successful compilation, continue through any number of 
compilation attempts signaling a parenthesis error, and end on 
either another successful compilation or a non-parenthesis error. 
We classify all other edit sequences—starting at a non-
parenthetical error—as fixing errors. We considered only edit 
sequences which added or removed at least one parenthesis.  
Given this proposed operationalization of expression integrity, 
and our assumption that successful development of expression 
integrity is essential for student success in this programming 
course, we can then ask whether our metric correlates with the 
final course grade (unfortunately, individual lab assignments were 
not graded). We thus computed this correlation across the set of 
students who provided data for at least four labs during the course. 
Figure 2 shows the result of the correlation. For episodes of 
writing new code (in (a)), the linear fit is statistically significant  
(p=0.032 albeit with an R2 of 0.18). When fixing errors (b) it was 
not significant. 
One might wonder whether this relationship occurs because better 
students make fewer parenthesis errors overall. But this is not the 
case. Figure 3 shows there is a slight correlation between the 
number of parenthesis errors and the final course grade, but this 
relationship is not statistically significant. We could also ask 
whether students’ score on the metric improves over time. 
Unfortunately, because the difference in difficulty between labs is 
neither uniform nor monotonic, the between-task variability 
would mask any effects of learning. Indeed, we are not able to 
find any significant improvement effects across the term.  

2.4 A Study of Experts 
We believe that the buffer imbalance of experts can serve as a 
useful baseline for our expectations of students. We were able to 
conduct a small study of experts at the annual Racket user 
conference. Our study participants build large systems in Racket, 

(a) 

  
 

  
 
(b) 

  

  
Figure 2. Correlation between the amount of imbalance  
(x-axis) and course grade (y-axis) when (a) writing new code 
(significant), and (b) fixing existing code (not significant). 

  
 

  
Figure 3. Correlation between the number of parenthesis 
errors and the final course grade (not significant). 



ranging across academia, government, and industry. Some of 
them indeed use DrRacket on a daily basis. 
Due to the limited availability of their time, instead of asking 
them to write full programs, we instead gave them a small correct, 
working program, and asked them to refactor it to remove some 
operations and use others instead; the change did not alter the 
program’s behavior, only its syntax. All 10 participants 
successfully completed the task. 
In designing the task, we ensured that the edit could be performed 
purely with the s-expression operations, so that it would be 
possible to never change the parenthetical balance of the program 
(and, in particular, keep the imbalance at zero). Some experts did 
strive to keep their buffer’s parentheses balanced, and some 
seemed to use the compiler to confirm well-formedness of their 
program at intermediate points. Figure 4 shows the distribution of 
the metric for both students and experts (with experts in (c)). The 
students do score higher, but the difference could be attributable 
to the fact that students were creating new (and buggy) programs, 
not merely refactoring existing code. 
In particular, our logging information suggested the experts made 
almost no use of the s-expression editing commands. As a follow-
up, we conducted a survey to ask them whether 

1. this was indeed true; if so, 
2. whether their behavior in this study was representative of 

their usual DrRacket programming style; and, if so, 
3. whether they mentally still viewed the program as a 

collection of trees or whether they viewed it as a sequence 
of characters. 

All the participants confirmed that our observation of their 
behavior was correct. They stated that in general they made little 
to no use of the s-expression editing commands, though a few 
used the traversal commands. Despite this, they confirmed that 
they absolutely do view the program in terms of trees of 
expressions independent of which editor they are using, though 
some participants added that they sometimes also viewed the 
program in terms of lines (rather than characters), especially when 
they need to perform block edits. (We conjecture that so do the 
others, even though they did not say so explicitly.) 

3. Semantic Studies 
Different languages employ different computational models, 
which in turn rely on expression integrity in different ways. In 
functional programming, even control operators are expressions 
that return values to the surrounding computation.  Each node in 
the “tree of expressions” corresponds to a value which substitutes 
for the node while reducing a program to a result. In imperative 
programming, expressions interleave with statements that store 

values in memory or specify control structure. The “tree of 
expressions” is insufficient for modeling semantics, in exchange 
for relying less on the tree model to explain computation. 
In our functional programming context, then, we expect that 
students who lack expression integrity would struggle to 
understand how programs yield results. Operationally, we expect 
that students with a basic semantic sense of expression integrity 

• Can explain how different expression types (arithmetic, 
data creation, control operators) reduce to values. 

• Can explain what an individual expression contributes to a 
function’s result.  

A student with a strong sense of expression integrity should also 
reflect the following skills for maintaining and editing programs:   

• They can identify the expressions whose values might 
change as a result of editing a particular expression.   

• They can identify which sub-expressions need to be edited 
(and how) in order to change the result of an expression.  

The metrics about the impact of edits point to a fundamental 
difference between functional and imperative programming. In the 
functional setting, all of our semantic metrics have an implicit 
frame condition [4]: if an expression changes, the values of its 
sibling expressions do not change. This is not true in an 
imperative setting, because the changed expression could have a 
side-effect that causes an unedited expression to produce a 
different answer. Put differently, in functional programming, the 
syntactic building block (the expression) corresponds directly to 
the semantic building block (the value). We would expect this 
difference to manifest itself in semantic studies of expression 
integrity within each programming style. However, space 
precludes us from discussing these issues more. 

4. Related Work 
Several works have sought to identify the component skills that 
novice programmers must learn. Mead et al. has an extensive 
survey of the topic [5], and identifies dependencies between skills. 
PROUST uses their skill decomposition to automatically detect 
which subgoals were intended to be met by a student’s code [6].  
Projects that attempt to operationalize the skills they identified are 
less common. Anderson and Reiser’s LISP Tutor models the fine-
grained goal-setting done by novices through 500 production rules 
[7]. These rules are then used to trigger automatic feedback, to 
select exercise sequences for the student, and to predict quiz 
performance.  
Expression integrity (thinking of code as a tree) is an instance of 
chunking. Both Adelson [8] and Shneiderman et al. [9] find 
multiple lines of evidence that novice programmers transition 

 (a) (b) (c) 

 
Figure 4. Histograms of the values of the metric of unbalancing for (a) students writing new code, (b) students fixing code, and 
(c) professionals during a refactoring exercise. 



from syntactical chunking to some form of semantic chunking, but 
neither pinpoints the details. Fix, et al. give empirical support for 
five characteristics of how experts chunk the relationship between 
the functions and variables of a program, and to its goal [10]. We 
are not aware of any previous attempt to operationalize expression 
integrity specifically. 
Some researchers have looked for patterns in beginners’ editing 
behaviors. Rodrigo, et al.’s error quotient metric [3] summarizes 
the kinds and locations of errors a student makes, along with the 
locations edited in response. Like our metric of unbalancing, the 
error quotient correlates with final grades, but the two metrics 
satisfy different goals. The error quotient aims to detect where 
students struggle regardless of the conceptual cause, whereas we 
focus on the impact of expression integrity. 
Dyke’s work counts students’ use of IDE features such as the 
multi-tab interface, breakpoints, and code auto-completion [11], 
and finds that these too correlate with final grades. In addition, the 
work finds that usage of more advanced features correlates with 
the rank difference between two members of a homework pair. 
Ko, et al.’s study [12] of the editing behavior of expert Java 
programmers found patterns similar to those in Section 2.4: 
experts regularly pass through invalid buffer states while editing, 
but quickly repair the code and avoid prolonging the invalidity. 

5. Perspective and Context 
This paper outlines a research agenda centered around expression 
integrity, which in turn focuses on how students understand the 
structure of programs.  We believe that understanding program 
structure, both syntactically and semantically, is a core skill in 
effective programming. We offer one preliminary (and language-
sensitive) operationalization of expression integrity at the 
syntactic level. Naturally, we must address other syntaxes, study 
this concept at the semantic level, and correlate it with skills in 
debugging, maintenance, code reviews, etc. 
Our preliminary findings, if borne out by more detailed studies, 
raise questions of what designers of programming environments 
should do in terms of syntax manipulation operations. On the one 
hand, fully-structured editors such as that of Scratch [13] are 
clearly popular and successful; indeed, the Scratch editor makes it 
impossible to create ill-formed programs. On the other hand, we 
are not aware of validation of the Scratch editor principle for large 
programs; any such studies would need to be reconciled with 
known data on structured editing [14]. What does seem apparent 
is that, given a free-form text interface, at least some experts 
employ this over structured commands. Whether it would still be 
worth teaching these commands to beginners to instill a notion of 
expression integrity needs further study. 
Longer-term, expression integrity gives a foundation for studying 
the relative merits of functional and imperative programming for 
beginning students. Syntactically, programs correspond to trees in 
both styles. Semantically, the role of this tree differs significantly. 
By aligning the syntactic and semantic models through the tree 
structure, functional programming asks students to work with only 
a single mental model of programs. Imperative languages reduce 
semantic reliance on the tree model at the cost of introducing a 
second model with no framing condition. Understanding the cost-
benefit tradeoffs of these models to each of program construction, 

debugging, and maintenance could provide significant input to the 
debate about suitable programming methods for novices. 
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