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ABSTRACT

Cryptographic protocols are useful for trust engineeringhieb
transactions. The Cryptographic Protocol Programmingguage

(cppPL) provides a model wherein trust management annotations are

attached to protocol actions, and are used to constrainethavior
of a protocol participant to be compatible with its own trpsticy.
The first implementation of PPLgenerated stand-alone, single-
session servers, making it unsuitable for deploying patoon
the Web. We describe a new compiler that uses a constraseidba
analysis to produce multi-session server programs. Thdtimes
programs run without persistemtp connections for deployment
on traditional Web servers. Most importantly, the compjlee-
serves existing proofs about the protocols. We present laaneed
version of thecppPL language, discuss the generation and use of
constraints, show their use in the compiler, formalize theser-
vation of properties, present subtleties, and outline @mgntation
details.

Categories and Subject Descriptors
C.2 [Network Protocols]: Protocol Verification

General Terms
Performance, Security, Languages, Theory, Verification

Keywords
CPPL, Cryptographic Protocols, HTTP, Sessions

1. PROBLEM AND MOTIVATION

A growing array of services, such as third-party creditddzan-
dling as offered by several banks, is now offered via Weletlas
protocols. These services need to be reliable in severad:w@y
they must be cryptographically trustworthy, (b) their iemlenta-
tions must be sound, and (c) their implementations musescal
handle high customer loads.

As the number of custom protocols increases, there is inerea
ing interest in domain-specific programming languages éfinihg
cryptographic protocols. A good representative exampbe =L[4],
which makes protocol specification relatively easy (coragatio
writing the definition in a regular programming languagey ahich
automatically compiles to trustworthy cryptographic dikes to
avoid programmer errors in their selection and use. By algs s
porting effective rely-guarantee proof techniques fosogeng about
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security properties [SkPpLdischarges reliability requirements (a)
and (b). For instance;PPL has successfully described almost all
of the protocols in thesPORE[10] repository.

The compiler forcppL, unfortunately, does not produce scal-
able implementations. It generates executables that oppec
ified TCP port and keep it open while handling one protocol run
(or “session”). While this is sufficient for demonstrationrposes,
this reliance on open ports and on single sessions makesithe c
rentcPPLimplementation untenable for scalable deployment over
the statelessiTTP Web protocol, which has been a cornerstone of
the Web.

Compiling to handle multiple sessions atapTp is not trivial.

It requires being able tanambiguouslydetermine which session
should receive an incoming message; faulty identificatians
the actual recipient may get into an inconsistent state en éxak
information, while the intended session will starve. As fagper
explains, precise definition of the “right” session, andmfgress of
a session, is quite subtle, especially in the presence pfagyaphy
(Sec. 5.3).

This work presents a static analysis that generates cartstra
from a protocol description and compiles them into an extelruk-
scription of the protocol (Sec. 4). A generic dispatchepldgable
on a stock Web server, employs the embedded constraintsit® ro
each incoming protocol message to the correct session Epec.
We also briefly describe the compiler that implements thixess
(Sec. 6).

Not all protocols have sufficient constraints to make thesi di
patchable (Sec. 3). It can be tempting to modify protocolsirto
cumvent this problem, but this is not always acceptable. i-Obv
ously, it can be difficult to modify deployed Web service nlie
More importantly, the protocols have already been subgeptadof,
and changes to them can potentially invalidate these preafsl
as experience has shown, protocols are already quite sutatlare
sensitive to small changes. Our analysis neverthelessspmithe
source of weakness in the protocol to suggest places whevald
be modified (Sec. 6).

Though this is a practical paper, it must perforce presehee-t
retical account. This theory is to qualify and prove thatkE) com-
pilation process preserves the existing proofs albb@#t. programs
and (2) the dispatcher never delivers a message to the wessps
(Sec. 4.5 and Sec. 5.3). These proofs are necessary to deatens
that we have preserved criteria (a) and (b) while enablihg (c

Reciprocating the benefits that Web technology confersrar,
there are benefits thatppL offers the Web. As increasingly im-
portant applications reside on the Web and as security cosice
correspondingly grow, programmers would benefit from emplo
ing secure protocols to establish trust between client @ndes
Systems likecPPLprovide a way of describing and analyzing such



protocols. This work takes a step toward making the fruitsuzth
analysis accessible to Web programmers. Web programmérs wi
eventually be able to analyze the protocols they currentipley
atopssLandAJAX communication, as they must do.

SsL by itself only authenticates the server to the client, net th
other way around. CliergésL does authenticate clients to servers.
Unfortunately clientssL is often not enabled. Even if it is, how-
ever, it does not help in the case where a client wants toritiata
multiple distinct sessions of a service, as when runningjdisses-
sions in different tabs of a Web browser. Thus, even clgsitis
insufficient to provide the key criterion that we cditinguishabil-
ity, which we define and show how to implement in Section 5.

2. INTRODUCTION TO CPPL

cPpPLis a domain specific language for expressing cryptographic
protocols with trust annotations. It matches the level atigztion
of the Dolev-Yao model [2], in the sense that the programraer r
gards the cryptographic primitives as black boxes, andamtnates
on the structural aspects of the protocokrLallows the program-
mer to control protocol actions using trust constraints §8)] that
an action such as transmitting a message will occur only when
indicated trust constraint is satisfied.

Semantic Interpretation. The cPPLsemantics identifies a set of
strands[11] annotated with trust formulas as the meaning of a role
in a protocol. A strand merely specifies what messages atasén
received. The representation does not specify to whom mgessa
sent or from whence they are received. This corresponds taelm
that allows an adversary to have maximal power to manipufete
protocol by modifying, redirecting, and generating messag ni-
hilo. This ensures that proofs built on the semantics are senure i
face of a powerful adversary.

A strand as the meaning of a protocollégal in the sense that
it describes what one principBldoes. It says nothing about how
messages are routed on a network; nothing about what ampther
cipal P’ does with messages received frétnnothing about how
another principaP’ created the messages tiateceives; etc. In
essence, it describes only a single principal executingglesiun.

We must specify how to combine strands to fully reason about
cppLprograms. Thiglobal semantics has been provided by ear-
lier work [4]. It defines a regular strand—a strand that camfoto
the semantic interpretation of some protocol. It then eérplhow
we may reason that multiple regular strands must be commtinic
ing, given the values they share. We may then reason abotherhe
secrecy and other protocol goals are reached. Howevergtadsd
of all this are not important for our purposes, because tlugkw
focuses on preserving the local semantics under a diffémguie-
mentation, rather than developing a new global semantics.

p — procfy*Wc
c — return®x*
| letx=new inc
| letx = acceptinc
| letx = channelyin c
| (sbY) | (xrb*) | (cb")
| (xmb)
sb — senddxmc
rb — recvmWec
mb — matchmc
cb — caldfx*y*Wc
m — x | mm | rm
m | [mlx | {m}x

Figure 1: cPPLy Language

match between the description a designer uses to show sessdn
and thecppLprogram that implements the protocol.

The Core Language. The syntax of thecppLy, core language is
presented in Figure 1. ThePPLcore language has procedure dec-
larations and seven types of code statements. A minor egteob

the language¢cPPLy, introduces one more code statement. There-
fore, everycpPPL program is syntactically @PpPLy, program, al-
though we often distinguish between the two languages ihalg.

The previous work did not describe match statements, becaus
they do not induce message transmission or require messege r
tion. They were therefore left out of the earlier semangdtfiough
they were included in the earlier implementation. We désctiem
because they play an important role in our work. In addittbey
are essential to building useful protocols.

Programming language identifiers are indicateckiaydy, lists
of identifiers byx*, message tags (such ldsggh) by r, and proce-
dure names by. When used to concatenate message patterns, the
comma operator is right associative, and tagging bindstigisgy
than comma. The language has syntax for guarantees ans+elie
by convention we write guarantees@sind relies a¥—which are
finite lists of trust management formulas. We use finite listsich
we interpret conjunctively.

A procedure declaration specifies the nafraf the procedure, a
list (y*) of formal parameters, and a list of preconditidfsin-
volving the formal parameters. The body of the procedure is a
code statemert. A code statement may be: a return instruction,
which specifies a list of postconditior®8 and return parameters
(x*); a let-statement; or a list of send branches, receive besnch
call branches, or match branches. An identifiés either a low-

Trust Management. The sender of a message must guarantee the ercase identifier d, or else an identifier with typing information

formula associated with sending the message, by showinfpthe
mula is a consequence of its local theory. The receiver ofssage
relies on a formula associated with receiving the messagelthiyng
the formula to its local theory for use in later deductionglyihg
on a formula is justified when the protocol is sound.

A protocol is sound if in every execution, whenever a message
is received and its formula is relied upon, there were cpoed-
ing message transmissions with guaranteed formulas tlost l
to be deduced. A protocol designer is responsible for detrains
ing a protocol is sound. A sound protocol is easily impleradnt
usingcPPL The language is designed around a few simple con-
cepts: branching on incoming and outgoing messages, asditon
ing a trust management engine [5] during messaging. Theg#esi
concepts are natural to the designer of cryptographic potgand
proof authors. This is beneficial because there is no impediauis-

id:type. We writeide(X) for the set of identifiers used in the
phraseX. We write Free(Z, X) for the set of identifiers free iX,
whereX represents bound identifiers.

A well-formed code statemermt with two return statements at
different locations must have the same postconditibrasd return
parameters®.

The Runtime Environment. The language is organized around

a specific view of protocol behavior. In this view, as a pnadi
executes a single local run of a protocaol, it builds ugawironment

that binds identifiers to values encountered. These bisdang
commitments, never to be updated; once a value has been bound
to an identifier, future occurrences of that identifier muatch the
value or else execution of this run aborts. In particularemwla
known value is expected in an incoming message, any othee val
will prevent execution of this run from continuing.



Informal Execution Semantics. To explain how procedures exe-
cute, we first introduce an auxiliary notioguaranteeingormulas

@ in a runtime environment. This means asking the runtime trus
management system to attempt to ascertain the fornauldsgen-
tifiers in @ already bound in the runtime environment are instanti-
ated to the associated values. ldentifiers not yet boundeimuth-
time environment are instantiated by the trust managenysiers,

if possible, to values that make the formutgrue. The runtime
environment extended with these new bindings is the re$slio
cessfully guaranteeing@. If the runtime trust management system
fails to establish an instance @fthe guarantee fails.

To execute aeturn statement, we attempt to guarantee the for-
mulas®. If successful, we select from the resulting environment
the values of each of the return parametérsthese values are re-
turned to the caller. If the attempt to guarantedails, execution
terminates abnormally, and the caller is informed of thieifai The
caller receives no parameter values in case of failure.

To execute a list obend branches the runtime trust manage-
ment system selects a branch within which it can succeggjubir-
antee the formula®. The message pattem specified on this
branch, instantiated using the values in the resultingneiee run-
time environment, is then transmitted. Execution procedtisthe
continuatioft ¢ embedded within this send branch in the extended
environment. If the runtime trust management system faitgiar-
antee the formula® on any send branch, then execution terminates
abnormally, and the caller is informed of the failure.

To execute a list ofeceive brancheswith identifier x, the run-
time environment is consulted for the value bound.t@his value
should be a channel. When a message is received over thisethan
the message is matched against the pattermsthin the receive
branches. In a successful match, the message must agrethavith
runtime environment for identifiers imthat are already associated
with a value. Other identifiers im will be bound to the values
observed in the incoming message, yielding an extendeéhrent
environment. If at least one receive branch has a successfch,
one such branch is selected. The formMasre instantiated us-
ing the extended runtime environment, and supplied to theme
trust management system as additional premises. Exequitien
ceeds with the continuatiomembedded within this receive branch
in the extended environment. If no receive branch has a seece
ful match, then execution terminates abnormally, and ttierca
informed of the failure.

To execute a list otall branches the system treats the call
branches as sends followed by receives. The system actshes if
principal sends the message® after guaranteeing the formulds
thenrecvs the messagg* and relies on the formula®. That is,
the the runtime trust management system selects a brantttin wi
which it can successfully guarantee the formulas It calls the
associated subprotocol proceddrgvith the parameters* instan-
tiated using the values in the resulting extended runtinvir@m-
ment. This procedure may return normally, in which case it su
plies values for the parametey$; execution continues with the
embedded continuatian using the extended runtime environment.
The instances of the formulag are supplied to the runtime trust
management system as additional premises during exeaiftion
If the f does not return normally, then execution may continue with
a different call branch; execution proceeds in the origamaliron-

1Some readers may be unfamiliar with or scared of this term. A
continuation is simply “what remains to be done” in a computa
tion. Notice thatcPPLy, contains no sequencing operation; instead,
what computation occurs after any given statement is spdaifi-
rectly as part of that statement, by tbat the end. Each is that
statement’s continuation.

ment, without any extension from the abnormally terminatel
branch.

To execute a list afnatch brancheswith identifierx, the runtime
environment is consulted for the value boundxtoThis value is
matched against the pattemsvithin the match branches. Ina suc-
cessful match, the value must agree with the runtime enviesr
for identifiers inm that are already associated with a value. Other
identifiers inmwill be bound to the values contained in the value of
X, yielding an extended runtime environment. If at least om¢cim
branch has a successful match, one such branch is selegtml-E
tion proceeds with the continuatianembedded within this match
branch in the extended environment. If no match branch has-a s
cessful match, then execution terminates abnormally, leendaller
is informed of the failure.

3. INFORMAL SOLUTION

Having summarized&PPLy, we return to the problem of the pa-
per: deploying protocols on the Web. On the Web, a singlesserv
usually runs several sessions of a protocol. The essenbe ofet
ployment problem is thus determining which (if any) of maeg-s
sions of a protocol should receive an incoming message. What
formation does a message contain that can help a dispatoier,
how can we use it?

Our strategy is to inspect the protocol encoded in ¢ Ly,
program and determine whether, at each message recept®n, t
message’s content is sufficient for uniquely identifyingeasson.
Besides message structure, this largely boils down to findie-
tinguishing values in the message that are visible at that.po

The set of distinguishing values is not fixed. Many applmasi
may manifest such values specific to that application, sscthe
user’s identity. In all applications, however, nonces dabaglly
unique, and therefore distinguish the session that gextethem.
In this work, we will therefore provide the most conservatanal-
ysis by treating only locally-originating nonces as digtiishing
values. Our solution, however, easily generalizes to pthelud-
ing application-specific, notions of distinction. We noteexe such
values can be used as we describe our analysis.

These distinguishing values are assumed to be unique and
forgeable, like nonces in the Dolev-Yao [2] model, and tfene
not vulnerable to duplication by attackers. This is essétti the
correctness of our analysis.

We will refer to a message that contains a distinguishingeval
asdispatchablebecause the destination session is identifiable. We
will also call a code phrase dispatchable if all messagesived
within it are dispatchable.

We may be tempted to simply inspect each branch of eech
statement and ensure that the message pattern contairendfied
bound to a distinguishing value, but this will reject pragsathat
should be accepted, as shown belomatch statements contain
additional information that will allow moreecv statements to be
considered dispatchable. This fact will complicate ourlysis,
but will produce a more useful answér.

For example, the following procedure clearly containgeav
statement that contains a distinguishing value and thereé$adis-
patchable:

non

1 proc exanplel (chnl, v) _
2 let n=newin

2still more information could be extracted from the trust mge-
ment logic database. We could pursue this angle, but do not to
avoid creating dependencies on the particular trust mamage
logic, thereby enabling users to employ whichever one istimps
propriate for their setting.



3 (send _chnl n Ho— T [ToF
4 (chnl recv n _ | X~m;p [MATCH]
5 return _ v)) | By [OR]
| ax*.u [EXISTS]
The message received on line 4 is exactly the nonce
However, the following procedumppeargo contain aecv state-
ment that does not contain a distinguishing value and thexe$ Figure 2: Constraint Language Syntax

not dispatchable:

1 proc exanple2 (chnl, v) _

2 let n=newin Solution Overview. Our system consumesc®PLy, file, generates
3 (send _chnl n all the constraints on incoming messages imposed by theofest
4 (chnl Trecv m the program, checks that the incoming messages all cordaie s
5 (m mat ch n distinguishing vglue, then prodLices an executabie. Tidsmi?le
6 return _ v))) uses a runtime library t_hat p_rovndes cryptographic comimtm_in
- and checks for the satisfaction of the computed constraifitss
The message received on line 4 is a completely new bindirapnd executable is combined with a server that consumes mesaages
therefore not identifiable directly as the nomceHowever, on line dispatches them to sessions.
5 of the program, that value is checked agamsso the program The server can use a very naive dispatching algorithm. When
will succeedonly if m=n. Thus, we should consider this program ever it receives a message, it can attempt to deliver it seakions,
as being dispatchable. stopping when one session has accepted the message. Isianses
This last example demonstrates a general aspeatodh state- accepts the message, then it can attempt to create a nearsfssi
ments: they impose constraints on messages that are réegive the message. Only if this final step fails is the messagetegjec
lier in the program. Irexanpl e2, thematch on line 5 imposes the The analysis of this paper makes such a dispatching algorith
constraint that the message received on lingy4nust match the sufficient. In the absence of such an analysis, the algonitioid
patternn, i.e., must equai. be doubly erroneous: it might deliver messages to the wresg s
The following pattern, common toommitmentprotocols [3], sion, i.e., one intended for sessi@might resume sessid®, caus-
demonstrates a more complicated constraint imposition: ing bothB to incorrectly resume andl to incorrectly starve. Sec. 5

describes the algorithm formally and justifies our claimt tihas

1 proc commit (chnl) _ not susceptible to such errors.

2 (chnl recv payload _

3 o

4 (chnl recv key _ 4. CONSTRAINTS

5 (payl oad match {objective} key The heart of this section show how constraints are generated

6 return _ objective))) from cppLy phrases (Sec. 4.2). To support this, we describe the
) o . language of constraints (Sec. 4.1) and give their semanficee

In this protocol, one participants receives an encrypteylopal we have generated constraints, we show how to anncteien

(line 2), performs some further work and communicationdi programs with them by translation to an intermediate laggua

in line 3), then receives a commitment from the other pavtiot CPPLn+c in Sec. 4.3. As a final bookkeeping step, we present the

in the form of a key (line 4), to the data sent earlier (linevéllich semantics of this annotated language in Sec. 4.4. With sérsan

contains the objective (line 6). In this example, thetch on line in hand, we then show that properties proved about tramstateL

5 imposes the .constraint on the message received on linet 2 thaprograms are maintained, satisfying one of our primarygoal
“There must exist some valkey which decryptgayl oad”.

Another kind of constraint is introduced by branching in ldre- 4.1 Constraint Language

guage. Consider the following contrived example: Fig. 2 specifies the syntax of the constraint language. & thi
syntax, the ; and- operators are right-associative, andbinds less
tightly than ;. The language is best explained through argegm
of the informal execution semantics. This semantics depenca
runtime environment binding identifiers to values, coroggfing to
the runtime environment of therpPLy, program at the point where
constraint satisfaction occurs.
To check a DP constraint of the fornT, nothing need be done,
In this example, thenatch beginning on line 3 imposes the con-  as this constraint is always satisfied.
straint on the message received on line 2 tipab must match To check a MTCH constraint of the fornx ~ m; , the runtime
eitherl eft orright.” environment is consulted for the value boundxtoThis value is
Neither of these examples is dispatchable, as neither ttee me matched against the pattem For the match to be successful
sage patterns nor the constraints imply that the messadeitsn match, the value must agree with the runtime environmeritiéor-

1 proc exanple3 (chnl, left, right) _
2 (chnl recv prod _

(prod match left

4 return _ left

5 match right

6 return _ right))

w

a distinguishing value. However, more complicated pro®ugth tifiers in mthat are already associated with a value. Other values
similar constraints are dispatchable. In Sec. 5.1 we dpvabw to in mwill be bound to the values contained in the valugofield-
make this judgment. ing an extended runtime environment. If the match is sudakss
Workflow. A protocol engineer uses our tool to turnc®prLy constraint checking continues with the constraiiti the extended
source program into an executable that can be used to dém@oy t  runtime environment. Ifiis satisfied in this environment, then this
protocol. If the protocol passes our analysis, the engindehave constraint is satisfied.

a deployable binary. If not, they see an error indicatinghiessage An example of a MTCH constraint is the constraint on thecv

of the protocol that does not contain a distinguishing value statement on line 4 iexanpl €2 in Sec. 3:m~ n; T. In this con-
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Figure 3: Constraint Satisfaction

straintmis the message received on linends the pattern used in
thematch statement on line 5, and tAeconstraint comes from the
continuation of thisnatch, i.e., thereturn on line 6.

To check an @ constraint of the fornpi+- ¢, the two sub-constraints
are checked independently, i.e., the runtime environneobpied
in each branch. If one of the sub-constraints is satisfiesd,cin-
straint is satisfied and the other need not be consulted.

To check an EISTS constraint of the forntix*.y, the runtime
environment is extended with values o, if possible, that make
the constrainfi satisfied. If there is no assignment of the identifiers
X* to values for whichu may be satisfied, then this constraint is not
satisfied.

The formal semantics of constraint satisfaction is giveRi 3.
The judgments have the form:

OFH

where the runtime environment is representedobgnd the con-
straint is represented hy
Runtime Implementation. The semantics does not explicitly state
how to generate values for the identifiers bound kidE's con-
straints during satisfaction checking. An implementatiorst solve
this problem. The obvious solution is to use unification @it
fiers with cPPLy, values and identifiers imatch patterns. Identi-
fiers introduced by these constraints are initially unboutdén-
tifiers are bound by their first comparison in aaMcH constraint.
After an identifier has been bound, a failure to unify with éuea
in a MATCH constraint is a failure of the ESTS constraint that
introduced the identifier.

There are some subtleties, however, due to the use of cryptog
raphy. For example, the following constraint can be satisfiéh
unification:

[x— (0,0)] = Jyx~ (v.y); T
The following, however, cannot:
0 =3 KM~ {x}i;x~V; T

because it refers to the contents of an encryption for wiietkey,

k, is unknown. We can, however, still perform some checking of
this constraint. Specificallyyl can be checked to ensure that it is
long enough (in bits) to be decrypted toxathat is as long (in bits)

as the value of.

Our compiler also optimizes some constraints at compifeti
Informally, if the identifier introduced in an@s TS constraint does
not appear in any of the message patterns in the sub-carsthan
the ExISTS constraint can be removed. This allows the constraint-
solver to short-circuit the unification mechanism in mangesa

This optimization could be incorporated into the constrgen-
eration phase of our analysis, but to do so would complicate o
analysis and shift attention from the essence of the prablem

4.2 Constraint Generation

This section discusses how to generate constraints fremy,
phrases.

For eachrecv branch, we must find the constraints imposed on
the message by the continuation. Each code statement inrkia-c
uation of the receive statement can refer to identifiers ddoyrthe
message. For example, in themi t protocol (Sec. 3) the continu-
ation starting on line 3 imposes constraints on the messagéved
in line 2 through the use of the identifigryl oad. Although in that
example this is the only identifier bound by the pattern oa #nin
general a receive pattern may bind any number of identifiers.

Therefore, our constraint generation analysis is definel rek
spect to (a) the identifiers bound by the message, (b) alldmlen-
tifiers, to decide what identifiers are introduced by the rmgssand
(c) a code statement, initially the continuation of thev.

The phrase “bound by the message” is quite subtle. The mes-
sage binds identifiers in thecv branch message patteamd in
anymatch pattern where the variable being matched was bound by
the message. For example, in th@mit protocol, the message
received on line 2 introducgmy| oad on line 2 andbbj ecti ve on
line 5.

We will now present the analysis. The judgments are of thafor

SN Ec:u

whereX represents the set of bound identifiers &hdepresents a
set of identifiers bound by the message. These judgmentsecan b
roughly categorized into a few cases based on the code statem

e Statements without continuatiorssich aseturn, that gener-
ate a Topconstraint.

e Statements that introduce bindingsjch adet, recv, send,
and call statements that generate arI&Ts constraint for
each of the identifiers they bind.

e Statements that represent branchisgch asecv branches,
send branches, aneéhatch branches, that introducercron-
straints for each branch.

Examples of each of these categories are presented in Fig. 4.
However,match statements do not fit into any of these categories.
The judgments for them are shown in Fig. 5.

If the identifier being matched, is in M, then thismatch repre-
sents further use of the original message. Therefore, amfifters
bound by thismatch must be incorporated into tHeé used to an-
alyze the continuation. Furthermore, the pattern used tohrthae
identifier must be incorporated into the constraints via artvH
constraint. If the identifier being matchedrnst in M, then this
match is treated like any other statement that introduces birgding

In Fig. 6 we present an example of constraint generatiorirfes|
4 through 6 of the commit protocol example. In this derivatiove
use< i > to represent the continuation beginning on liref the
source.

4.3 Translation

Having generated these constraints, we still need to shaw ho
to incorporate them into an analysis that checks for theemes of
distinguishing values. We provide these constraints tatraysis
by translatingcPpPLy, phrases into another language that contains
these constraints as annotationséetv statements.



{payl oad,key,obj ective},{payl oad,obj ective} = <6> : T

payl oad € {payl oad}

{payl oad,key},{payl oad} = <5>

: payl oad ~ {objective} key; T

{payl oad},{payl oad} = < 4> : Jkey.payl oad ~ {objective} key; T

Figure 6: cpPPLy Example Constraint Generation

RETURN
5N = retun®x* @ T

SEND
{y'}=Freez,®) SuU{y'}NEc:p
N E sendd®xmc: 3y .u

SEND BRANCH
Z7|_| |:Sb):uo Z7|'| ‘:Sh']:un
N = (sky ... shh) @ (Mo+---+Hn)

Figure 4: cppPLy Constraint Generation Examples

MATCH (X IN 1)
{y*} = Freg(Z,m)
Sufyhbnu{y't Ec:p xel
M E xmatchmc: x~m; n

MATCH (X NOT IN IT)
{y'}=Freezm ZU{y}N|c:p
M = xmatchmc: 3y*.u

x¢ M

Figure 5: cPPLy Constraint Generation: Matching

We will refer to this new language @PLn+c. We specify the
syntax below as a modification twPpPLy,. The syntax is identical,
except that an annotation has been added tedhebranch case:
the constrainty, imposed on this statement by its continuation.

rb — recvmpuWece

The form of translation judgments is:
Skcw

whereX is a set of bound identifiers,is acPpPLy program state-
ment, andc’ is the CPPLy+c program statement produced by the
translation and eventually run in the server.

Except for the judgment dealing witlkecv statements, all the
judgments are obvious and only carry along information altosi
introduction of identifiers. Therefore, they are not in@ddn this
short presentation. The judgment fetv statements is:

RECEIVE
Mo = Freg(Z,m)
ZUnoFCWC, ZU|_|0,|-|0|:CZU

Sk reevmWc ~ recvmpWc

The identifiers initially bound by the message pattern aesl s
the initial set of identifiers bound by the messafg)(in the con-
straint generation process (Sec. 4.2) that analyzes th#ugation

of the recv statement. The generated constrajntis used in the
resulting translated program statement.

MATCH AND RELY
o[X] matchesn

01=0®0d  dom(d’) Cide(m)
o;l'= (x match m c rl)

o, FE c:sv
1 SU

MATCH ALTERNATIVE
ol (x mb) :svu

o;l'+= (x mtch m ¢ mb)

1SU

Figure 8: Semantics ofmatch

4.4 CPPL,.. Local Semantics

In keeping with previouscPpL work [4], we give the seman-
tics of CPPLm+c procedures and code statements by describing the
strandsthat specify their possible behavior. Each strand is a se-
guence of transmissions and receptions that is possible foin-
cipal executing thiPPLm+c phrase faithfully. As mentioned in
Sec. 2, this describes the local nature of protocol exegutio

Our local semantics is identical to previous work [4], exdep
the RECEIVE AND RELY, RECEIVE ALTERNATIVE MATCH AND
RELY, and MATCH ALTERNATIVE cases.

The semantics of a receive statement (Fig. 7) is identicti¢o
earlier semantics, except that the extended runtime envieot,

01, is checked against theconstraint according to the constraint
satisfaction semantics in Fig. 3. (And, for technical reasihe se-
mantics of RECEIVE ALTERNATIVE must be modified for the new
syntax.)

The semantics of a match statement (Fig. 8) is very closesto th
semantics of a receive statement, except: (a) there is neages
reception or transmission, and (b) we must explicitly sth&t the
value bound tx in the runtime environment, matches the mes-
sage patternn. This is normally implicit in the description of the
strand unleashed by a receive statement.

The semantics described in this section is a replacemetidor
local semantics of earlier work [4]. The original work alse-d
scribes a global semantics relating bundles of strandidmiork,
there is no reason to modify the global semantics of thaiezarl
work. We elide it for brevity.

4.5 Preservation of Properties

We would like to show that properties proved abawtPL pro-
grams remain true about the translatethb Ly+c programs.

THEOREM 1. If a cpPLphrase, c, unleashes a strand s by the
earlier semantics [4], then the translation of ¢ unleashizarsd s
by theCcPPLy+c SEMAantics.

PrROOF Consider the changes made betweerLandCPPLy+c.
The two differences are (1) the introductionrefitch statements
and (2) the introduction of constraint satisfactionreév state-
ments. AcPPL program, which by definition does not include
match statements, unleashes the same strand by teq ¢ se-
mantics, after translation, because (1)match statements are in-



RECEIVE AND RELY

01=0®0d o1 M  dom(d') Cide(m)

o, M,Wor - c:su

RECEIVE ALTERNATIVE
ol (x rb*) :su

o;l't (xreecv m puW c rb*) : (—msg(x, mo1, Wo1) = s,u

o;F (xrecv m puW c rb*) :su

Figure 7: Semantics ofrecv

troduced by translation and (2) onhtatch statements generate
constraints that may not be satisfied. Therefore, the stuand
leashed by apPPL phrase is identical to the strand unleashed the
translation of this phrase.[]

This is not anf and only if statement: becauseatch statements
do not cause communication and only reject messages, is&-po
ble for somecPPLn+c program,p, to unleash a stranslwhich is
also unleashed by sonwPPL program,/, such thatp is not the
translation ofp’.

Notice that we have not yet discussed whether our compilatio
of CPPLm+c programs preserves properties, or, more formally, cor-
rectly executes the strand. We have simply shown that thelaa
tion of cPPLtO CPPLn+c does not change the strands unleashed by
CPPLprograms.

5. DISPATCHING

So far we have calculated the constraints imposed on in@pmin
messages, recorded the constraints as annotations in emdest
language, and taken a first step towards proving correctndgs
still must describe how these constraints can be used t@gies
that all messages received by a protocol contain distihingsval-
ues. We must also describe the algorithm used for dispagchin

Sec. 5.1 describes the analysis that is rurteRLy+c programs
to ensure that all received messages contain distinggjiskilues.
Sec. 5.2 presents the algorithm used by the dispatchingrstrat
relies on this analysis. Sec. 5.3 proves correctness piepem
both of these.

5.1 Analyzing CPPL,,. Programs

Given aCPPLy+c program, or more generally@pPLy.+¢ phrase,
we must check that all received messages contain a dissinggi
value. A message may contain such a distinguishing valeettijr
in a message pattern, or indirectly, in the constraints sefdoon
the message by the rest of the program. The analysis to chesé t
conditions is fairly straight-forward, once we understanctly
what we are checking. In particular, we are checkingvisible
distinguishing values.

The notion ofvisibility is somewhat subtle: if a message com-
ponent contains a distinguishing value but is encryptedrbyra
known key, then the distinguishing valuenistvisible. Similarly, if
our language modeled hashing, then a distinguishing vatuddv
be visible if it was hashed together with any number of visitta.
Our definition of visibility is given in Fig. 9.

The majority of the analysis is obvious, merely carryingnglo
information across the structure of the code phrase, aheisfore
not included in this short presentation. The judgments &theo
form:

VEcC

signifying the fact that given the set of distinguishinguesv, all
messages received @rcontain a visible distinguishing value.

The only interesting judgments are on one varianteofstate-
ments recv statements, anehatch statements.

vi s {X"} x u— bool
ViS(v, 1) =Vvis(v,0,p)

vis:{x*} x {X"} x u— bool
vis(v,o,u+ ) =Vvis(v,o,u) Avis(v,o, )
Vi s(v,0,3X".1) =Vvis(v,oU{X"},W)
vis(v,0,T)=fal se
Vi S(V,0,X~ m;l) = Vi s(v,0,m)Vvis(v,o,u)

vis:{X'} x {x*} x m— bool

Vi s(v,0,x) =x€ (Vv—0)
vis(v,0,(mn)) =vis(v,a,m)Vvvis(v,o,n)
vis(v,o0,(rm))=vis
vis(v,0,(m))=vis
vis(v,0,[mx)=vis
vis(v,0,{m}x) =vis

)
v,0,m)
v, 0, m)
V,OMAX¢ O
V,OMAX¢ O

o~~~ o~ o~ o~

Figure 9: Visibility under constraints

LET (NEW)
vuU{x} Fc
V F letx = newinc

This rule simply introduces a new distinguishing value itite set
v. Recall that thenewcase of thdet form generates a globally-
unique, i.e., locally-originating, nonce.

MATCH (ALIASING)
X€Ev vU{y} Fc

V F Xmatchyc

MATCH

Xé¢ v —Jy.m=y vEc

V F Xmatchmc

These rules handlmatch statements. The interesting subtlety is
that pattern matching can introduce aliases for existisgirdjuish-
ing values. When such an alias is detected, i.e., when therpat
is simply an identifiery, then that identifier must be added to the
v set. (Recall that only identifiers may appear on the left side
match, so detecting aliasing is very simple.)

RECEIVE

vEc vCide(m) Vvis(v,u)

VEFreevmpWece

This is the pivotal rule. It checks that either the messaggipaor
the constraint contains a visible distinguishing valueebploying
the definition of visibility given in Fig. 9.

3|f a protocol author has more information about what values a
distinguishing, then custom rules similar to this one camdded
that incorporate identifiers bound to these values intwtbet.



There are a few subtleties we do not formalize here. Fir§t su
protocols invoked by a protocol must themselves be dispateh
Second, these protocols must not have messages that guwertlap
sense discussed in the conclusion. Third, the analysiseseped
will fail on protocols that start with message receptioncdiese
no distinguishing values have been transmitted. Howevercan
relax this restriction, but it requires some uninteresti@chnical
modifications to the analysis.

5.2 The Dispatching Algorithm

5.3 Correctness of Analysis and Dispatching

Our goal is not only to deploy protocols on the Web but also
to show that, in the process of doing so, we have preserved any
properties proven about them. We must therefore show that ou
dispatching algorithm is “correct” in some way. Correcsés
however, difficult to define in this context.

One definition of correctness would be that if a message ig-del
ered to a session, then that session can run to completiaway
of stating this formally is: If a messagd¥y is delivered to a session
s, then if some sequence of messalybs. .., My is subsequently

Having shown an analysis that ensures every expected incom-gelivered tos, then sessios will return.

ing message contains a distinguishing value, we must shaw ho
to build a dispatching server that can correctly dispatcorimng
messages. The fundamental implication of our analysisaisahly

This condition is, however, not easy to prove, and it is nobsb
possible to even check in an actual implementation. For pi@am
consider thecommi t protocol given in Sec. 3. As we mentioned,

one session will accept any given message, because eacag®ess it js not possible to check that sorkey will decrypt pay! oad (in-

contains a distinguishing value. Given this, defining ourveeis
very simple. The server simply attempts to deliver an incani
message to all existing sessions. By the above, at most sa®se
will accept the message.

Before we formally present the dispatching algorithm, wesmu
clarify the notion of a “session”. Aessions, captures the entire
state of a protocol run: the runtime environment, the trustage-
ment database, and the current continuation. A session may b
tialized by a procedure by creating the runtime environment con-
taining bindings fomp’'s arguments, initializing a trust management
database, and using the continuation embeddgd i session is
waiting if its continuation is arecv statement, i.e., it is waiting for
an incoming message. We say that a sessirolvesnto a session
< if executing the continuation afwith the given runtime environ-

deed, cryptographic security relies on this fact). Gives,th is
difficult to imagine a means of realistically implementingrecker
for the above condition for a message received on line 2.

In other words, it is difficult to establish that the dispanchal-
gorithm is “right”, i.e., that it ensurgsrogress Absent this stronger
form of correctness, we should at least try to demonstratalo-
rithm does not do anything “wrong”, i.e., that it exhibjpseser-
vation In particular, it seems clearly wrong to deliver a message
meant for one session to some other session.

Our work adopts this approach, but with a practical restmict
To understand this restriction, consider two sessifrendB, of a
protocol that employs the empty messagas a keep-alive. Under
the strand-space network model, whensamessage is received,
there is no reason why it should be delivered\tather than tdB.

ment and trust management database reduces after somerrafmbe Informally, there is no harm in sending amessage “meant” foh

steps to the sessia If a sessiors evolves to a sessicgt where
the continuation is @&turn statement, then the sessieis said to
havereturned A sessionrs that cannot evolve to any sessisns
said to bestuck We say that welelivera messag#! to a waiting
sessiors when we allows to evolve and receive messalgfeat the
recv statement at the top of the continuation. Notice that if we de
liver a messag®/ to a waiting sessios whereM does not match
the message pattern or constraints in any of the branchbs et
statement at the top gk continuation, themsis stuck.

The server obeys the following algorithm, wikhrepresenting
the CPPLm+c protocol being served.

1. Initialize sessiongo {}.

. Wait for a messagé/.

. Replicatesessionso createmp.

. If tmpis the empty set, then go to step 7. If not, continue.

. Remove a sessios,fromtmp.

o o0~ WN

. Deliver messagh! to s.

(a) If sreturns, remove from sessionsand go to step 2.

(b) If s evolves into a waiting sessiasl, removes from
sessionsadds’ to sessionsnd go to step 2.

(c) If sis stuck, go to step 4.
7. Initialize the protocoP to create a new sessiGgew. Deliver
messag to Shew
(a) If shewreturns, go to step 2.

(b) If sheweVoIVes into a waiting sessiah adds’ to sessions
and go to step 2.

(c) If shewis stuck, reject the message and go to step 2.

to B, providedA eventually receives anmessage. Pragmatically,
however, it is clear that conditions outside the pure strepatce
model—such as timeouts—can cause session abortion.

Our analysis therefore forces every every message to coatai
distinguishing value. This is a property that themessage, in par-
ticular, fails to exhibit. So long as messages containmlisiishing
values that some session accepts but no other sessionseaanw
easily demonstrate that no message will be delivered iactyr
This final analysis is therefore implemented by our compileis
satisfied by a wide range of existing protocols, and alsoigesva
useful guideline for the creation of new ones.

To prove this form of preservation, we first show that we have
correctly formulated a definition of visibility and that canalysis
is correct.

LEmMMA 1. If vi s(v,0,m) for some message pattern m and set
of unknown identifiers, then some identifier m is visible.

PROOF. We proceed by structural induction over the cases.of

Case (1) Assume that = x. If x € v, thenx s visible and is in
v. If x¢ norxis unknown, then is not visible or inv. This our
base case.

Case (2) Assume that = (m',m’). By induction.

Case (3) Assume that = (r m’). By induction.

Case (4) Assume that = (m'). By induction.

Case (5) Assume that = [m']x. We may proceed by induction
provided the signing key is known.

Case (6) Assume that = {m'}x. We may proceed by induction
provided the encrypting keyis known. [

LEMMA 2. If vi s(v,0, ) for some constraint p and set of un-
known identifierss, then some identifier in is visible.

PROOF We proceed by structural induction over the casqs of



Case (1) Assume that= T andvi s(v,o,). This is clearly a
contradiction of our definition.

Case (2) Assume that= p/ +’. This Or constraint repre-
sent two branches of the program. We must ensure that al path
through the program contain distinguishing values. Thasheub-
constraint must contain some identifienof

Case (3) Assume that= 3x*.|{. By induction.

Case (4) Assume that=x ~ m; /. By induction and Lemma 1. []

THEOREM 2. If a CPPLn+c phrase passes the analysis, then
each message it receives contains a distinguishing value.

PROOF We proceed by induction and cases. Clearly the only
interesting case iscv statements.

A recv statement is satisfied only if some distinguishing value,
i.e., a member of the set, n, is in the set of identifiers of the
message pattern, or if it is visible under the constraiptsf the
statement. In the first case, the distinguishing value iarblan

the message. In the second case, we know by Lemma 2 that the

message contains the distinguishing valugl

Now that we have shown our analysis is correct, we can prove
our algorithm is correct by relying on these proofs. We dorso i
two steps.

LEMMA 3. If the dispatching algorithm rejects a message M,
then no session could accept message M.

PROOF Suppose that some sessiecould have accepted mes-

sageM. If the message has been rejected, then it must have beenG,

rejected in step 7c. This implies thggw rejected the message and
that the setmpwas empty (step 4).

Suppose thaimpwas initially {so,...,s}. Fortmpto become
empty, step 5 must be executed for each sesgjdhroughs,. At
step 6, the algorithm must have taken branch 6c, to returtempss
and then 5. The algorithm only takes branch 6c when the sessio
(s) rejects the message.

Thus all sessions have rejectkt] resulting in a contradiction
with the assumption that some sessémxists. [

LEMMA 4. If a session s accepts a message M, then no other
session scould have accepted message M.

PROOF. Assume that some other sessimxists that also ac-
cepts messagd.

If sacceptaM, then it is waiting on some pattemmfor a mes-
sage that satisfies constraipisnd M matchesp and satisfies the
constraintgL

If S acceptaM, then it is waiting on some pattept for a mes-
sage that satisfies constraipfsandM matchesy’ and satisfies the
constraintgr’.

Recall that the code associated wiinds' have passed the anal-
ysis. Thereforg or 1 contains some visible distinguishing value
andp’ or |/ contains some visible distinguishing valole

If M satisfies both patterns and constraints, then it contaitis bo
nandr'. This is a contradiction to our assumptions about distin-
guishing values, and in particular, our Dolev-Yao [2] asptions
about nonces, which are globally unique and non-forgeable.

Thus,s must not exist. []

THEOREM 3. The dispatching algorithm delivers all messages
that can be delivered and does not deliver a message to sessio
that should be delivered to sessidn s

PrROOF By Lemmas 3 and 4. ]
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Figure 10: Typical Benchmark Results

IMPLEMENTATION

We have modified the existingpPLcompiler to support the anal-
ysis described above. This compiler is implemented usingroi€7]
and translates @PPLy source file into OCaml. EaacbPPLy, proce-
dure is translated into an OCaml procedure that takes a nuafibe
CPPLy values as arguments and returns a tuple of results.

Our implementation performs the analysis described infihis
per; if the analysis fails, the compiler displays an errdne Error
message advises the protocol author about which line cantai
recv statement that does not contain a distinguishing value. For
example, an error message would be displayed for line 2 of the
comi t protocol example from Sec. 3. This helps a protocol au-
thor identify where hand soundness proofs must occur orewiner
protocol must be changed for Web deployment.

In our previous implementation, translateelPLsource files were
combined with OCaml source files that set up the environmemt c
rectly and then invoked theppPLprocedures with the proper argu-
ments. Our implementation provides a dispatching serike,d
Web server, written in OCaml that runs tbepLy,, procedures on
incoming messages as described by our algorithm. Our ingiem
tation also records the values returned by each successfid-p
col run, whereas the earlier implementation prints thisrimfation
when the single protocol run completes.

Performance. We have built a benchmarking suite based on a sam-
ple of protocols from thesPORE[10] repository. Fig. 10 shows
results for two protocols which captures the trend acrosstlite.
The horizontal axis shows the number of concurrent cliemtsthe
vertical axis shows the average time to session complefidre
upper lines show the outcome for the previous compiler, &ed t
lower lines show the outcome for our approach.

The reason for this gain is clear. Enabling deploymentmfL
protocol specifications on stock Web servers engendersisattil-
ity (since both deployers and clients can leverage the Wefras-
tructure) and scalability (owing to the Web’s statelesshds par-
ticular, deployments can now leverage the frequent imprzres



being made to Web server performance to handle more sinedltan
ous sessions.

7. RELATED WORK

In the introduction, we alluded to a strawman solution imvol
ing uniform modification of protocols. That approach cop@zds
to past work [8] on compiling sequential interactive pragsainto
programs that run in Web servers. Their compiler consumas co
sole programs that present a prompt and react to what théypesr
into Web applications that present a form and resume when the
user submits a response. The compiler functions by congpatid
storing the continuation at each interaction point, ancbdimg the
computation’s closure in a combination of hidden fieldsatlase
records, and cookies. On response, this continuation ket
with the client’s response and the program continues, inlig/to
the modification. A nonce records which continuation to resat
each form submission.

This solution is inappropriate fappPLprograms for several rea-
sons. FirstcPpLprograms need not follow every send with a re-
ceive. SecondgPPLprograms may involve more than two partici-
pants. A third, essential, reason why this solution is nptapriate
is that it changes the format of the messages by adding tleeledc
continuations. In our environment this corresponds to ghenthe
protocol itself, which makes existing proofs invalid.

There is another reason why that work is inappropriate h&re.
goal of that research is to ensure that continuations maypvoéed
safely multiple times, e.g., that the Web brows&:k button may
be used safely. We expressly do not wish to support this lsecau
would correspond to replay attacks and violate freshnessngs
tions.

One aspect of our work extends*PL to include match state-
ments that perform pattern matching. Other languages émrpm-
ming cryptographic protocols also contain this functistyaHaack
and Jeffrey [6] discuss their pattern-matching systemerctintext
of the Spi-calculus. They also discuss the subtlety we raeriti
Sec. 4.1 regarding whether identifiers introduced Bys& s forms
can be used in an encrypting position in a pattern. Our work is
complementary to theirs in this aspect, as our system iglhasa
strand-space semantics and this feature is not our solgtmatign.

8. CONCLUSION

We have shown howaprpPLy program can be analyzed and com-
piled into a form that allows it to be used in the context of abWe
server. We have argued that the properties proved on thimalrig
protocol are preserved, and we have presented a dispatstiaig
egy that enables multiple sessions to not interfere withaoraher.
We have built an implementation that can be used by protatol e
gineers to produce efficient implementations.

The approach used in this work may be applied to other prob-
lems as well. For example, there is work that produces proto-
cols that guarantee that participants implement sessp@stji, 9].
We could analyze the constraints of existing protocols amslie
that they imply that messages contain the appropriate @gyaphic
forms that enforce the session type property, thereby aitphis
work to be applied to existing protocols.

We would like to extend our language with regular expression
types (to represemtML) and extend our analyses to handle them,
then apply our work toxmL Web service protocols that exist in
the wild. We would also like to optimize the dispatcher dasig
presented here to eliminate many tests when many protoos! ru
share similar constraints and message patterns, by assgdize
shape of incoming messages with existing sessions.

Finally, we would like to generalize our analysis to accordate
multiple protocols simultaneously. This would require aalgsis
of all participating protocols to ensure that there are ngsages
that match receive branches in multiple protocols, i.e erisure
that the messages do not overlap.
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