
Compiling Cryptographic Protocols
for Deployment on the Web

Jay McCarthy
Brown University

Joshua D. Guttman
MITRE Corporation

John D. Ramsdell
MITRE Corporation

Shriram Krishnamurthi
Brown University

ABSTRACT
Cryptographic protocols are useful for trust engineering in Web
transactions. The Cryptographic Protocol Programming Language
(CPPL) provides a model wherein trust management annotations are
attached to protocol actions, and are used to constrain the behavior
of a protocol participant to be compatible with its own trustpolicy.

The first implementation ofCPPLgenerated stand-alone, single-
session servers, making it unsuitable for deploying protocols on
the Web. We describe a new compiler that uses a constraint-based
analysis to produce multi-session server programs. The resulting
programs run without persistentTCP connections for deployment
on traditional Web servers. Most importantly, the compilerpre-
serves existing proofs about the protocols. We present an enhanced
version of theCPPL language, discuss the generation and use of
constraints, show their use in the compiler, formalize the preser-
vation of properties, present subtleties, and outline implementation
details.

Categories and Subject Descriptors
C.2 [Network Protocols]: Protocol Verification

General Terms
Performance, Security, Languages, Theory, Verification

Keywords
CPPL, Cryptographic Protocols, HTTP, Sessions

1. PROBLEM AND MOTIVATION
A growing array of services, such as third-party credit-card han-

dling as offered by several banks, is now offered via Web-based
protocols. These services need to be reliable in several ways: (a)
they must be cryptographically trustworthy, (b) their implementa-
tions must be sound, and (c) their implementations must scale to
handle high customer loads.

As the number of custom protocols increases, there is increas-
ing interest in domain-specific programming languages for defining
cryptographic protocols. A good representative example isCPPL[4],
which makes protocol specification relatively easy (compared to
writing the definition in a regular programming language), and which
automatically compiles to trustworthy cryptographic libraries to
avoid programmer errors in their selection and use. By also sup-
porting effective rely-guarantee proof techniques for reasoning about

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

security properties [5],CPPLdischarges reliability requirements (a)
and (b). For instance,CPPL has successfully described almost all
of the protocols in theSPORE[10] repository.

The compiler forCPPL, unfortunately, does not produce scal-
able implementations. It generates executables that open aspec-
ified TCP port and keep it open while handling one protocol run
(or “session”). While this is sufficient for demonstration purposes,
this reliance on open ports and on single sessions makes the cur-
rent CPPL implementation untenable for scalable deployment over
the statelessHTTP Web protocol, which has been a cornerstone of
the Web.

Compiling to handle multiple sessions atopHTTP is not trivial.
It requires being able tounambiguouslydetermine which session
should receive an incoming message; faulty identification means
the actual recipient may get into an inconsistent state or even leak
information, while the intended session will starve. As thepaper
explains, precise definition of the “right” session, and of progress of
a session, is quite subtle, especially in the presence of cryptography
(Sec. 5.3).

This work presents a static analysis that generates constraints
from a protocol description and compiles them into an extended de-
scription of the protocol (Sec. 4). A generic dispatcher, deployable
on a stock Web server, employs the embedded constraints to route
each incoming protocol message to the correct session (Sec.5).
We also briefly describe the compiler that implements this process
(Sec. 6).

Not all protocols have sufficient constraints to make them dis-
patchable (Sec. 3). It can be tempting to modify protocols tocir-
cumvent this problem, but this is not always acceptable. Obvi-
ously, it can be difficult to modify deployed Web service clients.
More importantly, the protocols have already been subject to proof,
and changes to them can potentially invalidate these proofs—and
as experience has shown, protocols are already quite subtleand are
sensitive to small changes. Our analysis nevertheless points to the
source of weakness in the protocol to suggest places where itcould
be modified (Sec. 6).

Though this is a practical paper, it must perforce present a theo-
retical account. This theory is to qualify and prove that (1)the com-
pilation process preserves the existing proofs aboutCPPLprograms
and (2) the dispatcher never delivers a message to the wrong session
(Sec. 4.5 and Sec. 5.3). These proofs are necessary to demonstrate
that we have preserved criteria (a) and (b) while enabling (c).

Reciprocating the benefits that Web technology confers onCPPL,
there are benefits thatCPPL offers the Web. As increasingly im-
portant applications reside on the Web and as security concerns
correspondingly grow, programmers would benefit from employ-
ing secure protocols to establish trust between client and server.
Systems likeCPPLprovide a way of describing and analyzing such

protocols. This work takes a step toward making the fruits ofsuch
analysis accessible to Web programmers. Web programmers will
eventually be able to analyze the protocols they currently employ
atopSSL andAJAX communication, as they must do.

SSL by itself only authenticates the server to the client, not the
other way around. ClientSSL does authenticate clients to servers.
Unfortunately clientSSL is often not enabled. Even if it is, how-
ever, it does not help in the case where a client wants to instantiate
multiple distinct sessions of a service, as when running distinct ses-
sions in different tabs of a Web browser. Thus, even clientSSL is
insufficient to provide the key criterion that we calldistinguishabil-
ity, which we define and show how to implement in Section 5.

2. INTRODUCTION TO CPPL
CPPLis a domain specific language for expressing cryptographic

protocols with trust annotations. It matches the level of abstraction
of the Dolev-Yao model [2], in the sense that the programmer re-
gards the cryptographic primitives as black boxes, and concentrates
on the structural aspects of the protocol.CPPLallows the program-
mer to control protocol actions using trust constraints [5], so that
an action such as transmitting a message will occur only whenthe
indicated trust constraint is satisfied.
Semantic Interpretation. The CPPL semantics identifies a set of
strands[11] annotated with trust formulas as the meaning of a role
in a protocol. A strand merely specifies what messages are sent and
received. The representation does not specify to whom message are
sent or from whence they are received. This corresponds to a model
that allows an adversary to have maximal power to manipulatethe
protocol by modifying, redirecting, and generating messagesex ni-
hilo. This ensures that proofs built on the semantics are secure in
face of a powerful adversary.

A strand as the meaning of a protocol islocal in the sense that
it describes what one principalP does. It says nothing about how
messages are routed on a network; nothing about what anotherprin-
cipal P′ does with messages received fromP; nothing about how
another principalP′ created the messages thatP receives; etc. In
essence, it describes only a single principal executing a single run.

We must specify how to combine strands to fully reason about
CPPL programs. Thisglobal semantics has been provided by ear-
lier work [4]. It defines a regular strand—a strand that conforms to
the semantic interpretation of some protocol. It then explains how
we may reason that multiple regular strands must be communicat-
ing, given the values they share. We may then reason about whether
secrecy and other protocol goals are reached. However, the details
of all this are not important for our purposes, because this work
focuses on preserving the local semantics under a differentimple-
mentation, rather than developing a new global semantics.
Trust Management. The sender of a message must guarantee the
formula associated with sending the message, by showing thefor-
mula is a consequence of its local theory. The receiver of a message
relies on a formula associated with receiving the message byadding
the formula to its local theory for use in later deductions. Relying
on a formula is justified when the protocol is sound.

A protocol is sound if in every execution, whenever a message
is received and its formula is relied upon, there were correspond-
ing message transmissions with guaranteed formulas that allow it
to be deduced. A protocol designer is responsible for demonstrat-
ing a protocol is sound. A sound protocol is easily implemented
using CPPL. The language is designed around a few simple con-
cepts: branching on incoming and outgoing messages, and consult-
ing a trust management engine [5] during messaging. These simple
concepts are natural to the designer of cryptographic protocols and
proof authors. This is beneficial because there is no impedance mis-

p → proc f y∗ Ψ c
c → returnΦ x∗

| let x = new inc
| let x = accept inc
| let x = channely in c
| (sb∗) | (x rb∗) | (cb∗)
| (x mb∗)

sb → sendΦ x m c
rb → recvmΨ c

mb → matchm c
cb → call Φ f x∗ y∗ Ψ c
m → x | m,m′ | rm

| (m) | [m] x | { m} x

Figure 1: CPPLm Language

match between the description a designer uses to show soundness
and theCPPLprogram that implements the protocol.
The Core Language. The syntax of theCPPLm core language is
presented in Figure 1. TheCPPLcore language has procedure dec-
larations and seven types of code statements. A minor extension of
the language,CPPLm, introduces one more code statement. There-
fore, everyCPPL program is syntactically aCPPLm program, al-
though we often distinguish between the two languages in thebody.

The previous work did not describe match statements, because
they do not induce message transmission or require message recep-
tion. They were therefore left out of the earlier semantics,although
they were included in the earlier implementation. We describe them
because they play an important role in our work. In addition,they
are essential to building useful protocols.

Programming language identifiers are indicated byx andy, lists
of identifiers byx∗, message tags (such asHigh) by r, and proce-
dure names byf . When used to concatenate message patterns, the
comma operator is right associative, and tagging binds lesstightly
than comma. The language has syntax for guarantees and relies—
by convention we write guarantees asΦ and relies asΨ—which are
finite lists of trust management formulas. We use finite lists, which
we interpret conjunctively.

A procedure declaration specifies the namef of the procedure, a
list (y∗) of formal parameters, and a list of preconditionsΨ in-
volving the formal parameters. The body of the procedure is a
code statementc. A code statement may be: a return instruction,
which specifies a list of postconditionsΦ and return parameters
(x∗); a let-statement; or a list of send branches, receive branches,
call branches, or match branches. An identifierx is either a low-
ercase identifierid, or else an identifier with typing information
id:type. We write ide(X) for the set of identifiers used in the
phraseX. We writeFree(Σ,X) for the set of identifiers free inX,
whereΣ represents bound identifiers.

A well-formed code statementc with two return statements at
different locations must have the same postconditionsΦ and return
parametersx∗.
The Runtime Environment. The language is organized around
a specific view of protocol behavior. In this view, as a principal
executes a single local run of a protocol, it builds up anenvironment
that binds identifiers to values encountered. These bindings are
commitments, never to be updated; once a value has been bound
to an identifier, future occurrences of that identifier must match the
value or else execution of this run aborts. In particular, when a
known value is expected in an incoming message, any other value
will prevent execution of this run from continuing.

Informal Execution Semantics. To explain how procedures exe-
cute, we first introduce an auxiliary notion:guaranteeingformulas
Φ in a runtime environment. This means asking the runtime trust
management system to attempt to ascertain the formulasΦ. Iden-
tifiers in Φ already bound in the runtime environment are instanti-
ated to the associated values. Identifiers not yet bound in the run-
time environment are instantiated by the trust management system,
if possible, to values that make the formulasΦ true. The runtime
environment extended with these new bindings is the result of suc-
cessfully guaranteeingΦ. If the runtime trust management system
fails to establish an instance ofΦ the guarantee fails.

To execute areturn statement, we attempt to guarantee the for-
mulasΦ. If successful, we select from the resulting environment
the values of each of the return parametersx∗; these values are re-
turned to the caller. If the attempt to guaranteeΦ fails, execution
terminates abnormally, and the caller is informed of the failure. The
caller receives no parameter values in case of failure.

To execute a list ofsend branches, the runtime trust manage-
ment system selects a branch within which it can successfully guar-
antee the formulasΦ. The message patternm specified on this
branch, instantiated using the values in the resulting extended run-
time environment, is then transmitted. Execution proceedswith the
continuation1 c embedded within this send branch in the extended
environment. If the runtime trust management system fails to guar-
antee the formulasΦ on any send branch, then execution terminates
abnormally, and the caller is informed of the failure.

To execute a list ofreceive brancheswith identifier x, the run-
time environment is consulted for the value bound tox. This value
should be a channel. When a message is received over this channel,
the message is matched against the patternsm within the receive
branches. In a successful match, the message must agree withthe
runtime environment for identifiers inm that are already associated
with a value. Other identifiers inm will be bound to the values
observed in the incoming message, yielding an extended runtime
environment. If at least one receive branch has a successfulmatch,
one such branch is selected. The formulasΨ are instantiated us-
ing the extended runtime environment, and supplied to the runtime
trust management system as additional premises. Executionpro-
ceeds with the continuationc embedded within this receive branch
in the extended environment. If no receive branch has a success-
ful match, then execution terminates abnormally, and the caller is
informed of the failure.

To execute a list ofcall branches, the system treats the call
branches as sends followed by receives. The system acts as ifthe
principal sends the messagex∗ after guaranteeing the formulasΦ,
then recvs the messagey∗ and relies on the formulasΨ. That is,
the the runtime trust management system selects a branch, within
which it can successfully guarantee the formulasΦ. It calls the
associated subprotocol proceduref with the parametersx∗ instan-
tiated using the values in the resulting extended runtime environ-
ment. This procedure may return normally, in which case it sup-
plies values for the parametersy∗; execution continues with the
embedded continuationc, using the extended runtime environment.
The instances of the formulasΨ are supplied to the runtime trust
management system as additional premises during executionof c.
If the f does not return normally, then execution may continue with
a different call branch; execution proceeds in the originalenviron-

1Some readers may be unfamiliar with or scared of this term. A
continuation is simply “what remains to be done” in a computa-
tion. Notice thatCPPLm contains no sequencing operation; instead,
what computation occurs after any given statement is specified di-
rectly as part of that statement, by thec at the end. Eachc is that
statement’s continuation.

ment, without any extension from the abnormally terminatedcall
branch.

To execute a list ofmatch brancheswith identifierx, the runtime
environment is consulted for the value bound tox. This value is
matched against the patternsmwithin the match branches. In a suc-
cessful match, the value must agree with the runtime environment
for identifiers inm that are already associated with a value. Other
identifiers inmwill be bound to the values contained in the value of
x, yielding an extended runtime environment. If at least one match
branch has a successful match, one such branch is selected. Execu-
tion proceeds with the continuationc embedded within this match
branch in the extended environment. If no match branch has a suc-
cessful match, then execution terminates abnormally, and the caller
is informed of the failure.

3. INFORMAL SOLUTION
Having summarizedCPPLm, we return to the problem of the pa-

per: deploying protocols on the Web. On the Web, a single server
usually runs several sessions of a protocol. The essence of the de-
ployment problem is thus determining which (if any) of many ses-
sions of a protocol should receive an incoming message. Whatin-
formation does a message contain that can help a dispatcher,and
how can we use it?

Our strategy is to inspect the protocol encoded in theCPPLm
program and determine whether, at each message reception, the
message’s content is sufficient for uniquely identifying a session.
Besides message structure, this largely boils down to finding dis-
tinguishing values in the message that are visible at that point.

The set of distinguishing values is not fixed. Many applications
may manifest such values specific to that application, such as the
user’s identity. In all applications, however, nonces are globally
unique, and therefore distinguish the session that generated them.
In this work, we will therefore provide the most conservative anal-
ysis by treating only locally-originating nonces as distinguishing
values. Our solution, however, easily generalizes to other, includ-
ing application-specific, notions of distinction. We note where such
values can be used as we describe our analysis.

These distinguishing values are assumed to be unique and non-
forgeable, like nonces in the Dolev-Yao [2] model, and therefore
not vulnerable to duplication by attackers. This is essential to the
correctness of our analysis.

We will refer to a message that contains a distinguishing value
asdispatchable, because the destination session is identifiable. We
will also call a code phrase dispatchable if all messages received
within it are dispatchable.

We may be tempted to simply inspect each branch of eachrecv

statement and ensure that the message pattern contains an identifier
bound to a distinguishing value, but this will reject programs that
should be accepted, as shown below.match statements contain
additional information that will allow morerecv statements to be
considered dispatchable. This fact will complicate our analysis,
but will produce a more useful answer.2

For example, the following procedure clearly contains arecv

statement that contains a distinguishing value and therefore is dis-
patchable:

1 proc example1 (chnl, v) _
2 let n = new in

2Still more information could be extracted from the trust manage-
ment logic database. We could pursue this angle, but do not to
avoid creating dependencies on the particular trust management
logic, thereby enabling users to employ whichever one is most ap-
propriate for their setting.

3 (send _ chnl n
4 (chnl recv n _
5 return _ v))

The message received on line 4 is exactly the noncen.
However, the following procedureappearsto contain arecv state-

ment that does not contain a distinguishing value and therefore is
not dispatchable:

1 proc example2 (chnl, v) _
2 let n = new in
3 (send _ chnl n
4 (chnl recv m _
5 (m match n
6 return _ v)))

The message received on line 4 is a completely new binding,m, and
therefore not identifiable directly as the noncen. However, on line
5 of the program, that value is checked againstn, so the program
will succeedonly if m = n. Thus, we should consider this program
as being dispatchable.

This last example demonstrates a general aspect ofmatch state-
ments: they impose constraints on messages that are received ear-
lier in the program. Inexample2, thematch on line 5 imposes the
constraint that the message received on line 4,m, must match the
patternn, i.e., must equaln.

The following pattern, common tocommitmentprotocols [3],
demonstrates a more complicated constraint imposition:

1 proc commit (chnl) _
2 (chnl recv payload _
3 ...
4 (chnl recv key _
5 (payload match {objective} key
6 return _ objective)))

In this protocol, one participants receives an encrypted payload
(line 2), performs some further work and communication (elided
in line 3), then receives a commitment from the other participant
in the form of a key (line 4), to the data sent earlier (line 5),which
contains the objective (line 6). In this example, thematch on line
5 imposes the constraint on the message received on line 2 that
“There must exist some valuekey which decryptspayload”.

Another kind of constraint is introduced by branching in thelan-
guage. Consider the following contrived example:

1 proc example3 (chnl, left, right) _
2 (chnl recv prod _
3 (prod match left
4 return _ left
5 match right
6 return _ right))

In this example, thematch beginning on line 3 imposes the con-
straint on the message received on line 2 that “prod must match
eitherleft or right.”

Neither of these examples is dispatchable, as neither the mes-
sage patterns nor the constraints imply that the message contains
a distinguishing value. However, more complicated protocols with
similar constraints are dispatchable. In Sec. 5.1 we develop how to
make this judgment.
Workflow. A protocol engineer uses our tool to turn aCPPLm
source program into an executable that can be used to deploy their
protocol. If the protocol passes our analysis, the engineerwill have
a deployable binary. If not, they see an error indicating themessage
of the protocol that does not contain a distinguishing value.

µ → ⊤ [TOP]
| x∼ m ; µ [M ATCH]
| µ+µ′ [OR]
| ∃x∗.µ [EXISTS]

Figure 2: Constraint Language Syntax

Solution Overview. Our system consumes aCPPLm file, generates
all the constraints on incoming messages imposed by the restof
the program, checks that the incoming messages all contain some
distinguishing value, then produces an executable. This executable
uses a runtime library that provides cryptographic communication
and checks for the satisfaction of the computed constraints. This
executable is combined with a server that consumes messagesand
dispatches them to sessions.

The server can use a very naı̈ve dispatching algorithm. When-
ever it receives a message, it can attempt to deliver it to allsessions,
stopping when one session has accepted the message. If no session
accepts the message, then it can attempt to create a new session for
the message. Only if this final step fails is the message rejected.

The analysis of this paper makes such a dispatching algorithm
sufficient. In the absence of such an analysis, the algorithmwould
be doubly erroneous: it might deliver messages to the wrong ses-
sion, i.e., one intended for sessionA might resume sessionB, caus-
ing bothB to incorrectly resume andA to incorrectly starve. Sec. 5
describes the algorithm formally and justifies our claim that it is
not susceptible to such errors.

4. CONSTRAINTS
The heart of this section show how constraints are generated

from CPPLm phrases (Sec. 4.2). To support this, we describe the
language of constraints (Sec. 4.1) and give their semantics. Once
we have generated constraints, we show how to annotateCPPLm
programs with them by translation to an intermediate language,
CPPLm+c, in Sec. 4.3. As a final bookkeeping step, we present the
semantics of this annotated language in Sec. 4.4. With semantics
in hand, we then show that properties proved about translated CPPL

programs are maintained, satisfying one of our primary goals.

4.1 Constraint Language
Fig. 2 specifies the syntax of the constraint language. In this

syntax, the ; and+ operators are right-associative, and+ binds less
tightly than ;. The language is best explained through a description
of the informal execution semantics. This semantics depends on a
runtime environment binding identifiers to values, corresponding to
the runtime environment of theCPPLm program at the point where
constraint satisfaction occurs.

To check a TOP constraint of the form⊤, nothing need be done,
as this constraint is always satisfied.

To check a MATCH constraint of the formx∼ m;µ, the runtime
environment is consulted for the value bound tox. This value is
matched against the patternm. For the match to be successful
match, the value must agree with the runtime environment foriden-
tifiers in m that are already associated with a value. Other values
in m will be bound to the values contained in the value ofx, yield-
ing an extended runtime environment. If the match is successful,
constraint checking continues with the constraintµ in the extended
runtime environment. Ifµ is satisfied in this environment, then this
constraint is satisfied.

An example of a MATCH constraint is the constraint on therecv
statement on line 4 inexample2 in Sec. 3:m ∼ n;⊤. In this con-

MATCH

σ[x] matchesm′

σ1 = σ⊕σ′ dom(σ′) ⊆ ide(m′) σ1 |= µ

σ |= (x ∼ m′ ; µ)

OR, LEFT

σ |= µ

σ |= µ + µ′

OR, RIGHT

σ |= µ′

σ |= µ + µ′

EXISTS

σ[x 7→ v]∗ |= µ for somev∗

σ |= ∃x∗.µ

TOP

σ |= ⊤

Figure 3: Constraint Satisfaction

straintm is the message received on line 4,n is the pattern used in
thematch statement on line 5, and the⊤ constraint comes from the
continuation of thismatch, i.e., thereturn on line 6.

To check an OR constraint of the formµ+µ′, the two sub-constraints
are checked independently, i.e., the runtime environment is copied
in each branch. If one of the sub-constraints is satisfied, this con-
straint is satisfied and the other need not be consulted.

To check an EXISTS constraint of the form∃x∗.µ, the runtime
environment is extended with values forx∗, if possible, that make
the constraintµ satisfied. If there is no assignment of the identifiers
x∗ to values for whichµ may be satisfied, then this constraint is not
satisfied.

The formal semantics of constraint satisfaction is given inFig. 3.
The judgments have the form:

σ |= µ

where the runtime environment is represented byσ and the con-
straint is represented byµ.
Runtime Implementation. The semantics does not explicitly state
how to generate values for the identifiers bound in EXISTS con-
straints during satisfaction checking. An implementationmust solve
this problem. The obvious solution is to use unification of identi-
fiers with CPPLm values and identifiers inmatch patterns. Identi-
fiers introduced by these constraints are initially unbound. Iden-
tifiers are bound by their first comparison in a MATCH constraint.
After an identifier has been bound, a failure to unify with a value
in a MATCH constraint is a failure of the EXISTS constraint that
introduced the identifier.

There are some subtleties, however, due to the use of cryptog-
raphy. For example, the following constraint can be satisfied with
unification:

[x 7→ (0,0)] |= ∃y.x∼ (y,y);⊤

The following, however, cannot:

σ |= ∃x,k.M ∼ {x}k;x∼V;⊤

because it refers to the contents of an encryption for which the key,
k, is unknown. We can, however, still perform some checking of
this constraint. Specifically,M can be checked to ensure that it is
long enough (in bits) to be decrypted to anx that is as long (in bits)
as the value ofV.

Our compiler also optimizes some constraints at compile-time.
Informally, if the identifier introduced in an EXISTSconstraint does
not appear in any of the message patterns in the sub-constraint, then
the EXISTS constraint can be removed. This allows the constraint-
solver to short-circuit the unification mechanism in many cases.

This optimization could be incorporated into the constraint gen-
eration phase of our analysis, but to do so would complicate our
analysis and shift attention from the essence of the problem.

4.2 Constraint Generation
This section discusses how to generate constraints fromCPPLm

phrases.
For eachrecv branch, we must find the constraints imposed on

the message by the continuation. Each code statement in the contin-
uation of the receive statement can refer to identifiers bound by the
message. For example, in thecommit protocol (Sec. 3) the continu-
ation starting on line 3 imposes constraints on the message received
in line 2 through the use of the identifierpayload. Although in that
example this is the only identifier bound by the pattern on line 2, in
general a receive pattern may bind any number of identifiers.

Therefore, our constraint generation analysis is defined with re-
spect to (a) the identifiers bound by the message, (b) all bound iden-
tifiers, to decide what identifiers are introduced by the message, and
(c) a code statement, initially the continuation of therecv.

The phrase “bound by the message” is quite subtle. The mes-
sage binds identifiers in therecv branch message patternand in
anymatch pattern where the variable being matched was bound by
the message. For example, in thecommit protocol, the message
received on line 2 introducespayload on line 2 andobjective on
line 5.

We will now present the analysis. The judgments are of the form:

Σ,Π |= c : µ

whereΣ represents the set of bound identifiers andΠ represents a
set of identifiers bound by the message. These judgments can be
roughly categorized into a few cases based on the code statements:

• Statements without continuations,such asreturn, that gener-
ate a TOPconstraint.

• Statements that introduce bindings,such aslet, recv, send,
and call statements that generate an EXISTS constraint for
each of the identifiers they bind.

• Statements that represent branching,such asrecv branches,
send branches, andmatch branches, that introduce OR con-
straints for each branch.

Examples of each of these categories are presented in Fig. 4.
However,match statements do not fit into any of these categories.
The judgments for them are shown in Fig. 5.

If the identifier being matched,x, is in Π, then thismatch repre-
sents further use of the original message. Therefore, any identifiers
bound by thismatch must be incorporated into theΠ used to an-
alyze the continuation. Furthermore, the pattern used to match the
identifier must be incorporated into the constraints via a MATCH

constraint. If the identifier being matched isnot in Π, then this
match is treated like any other statement that introduces bindings.

In Fig. 6 we present an example of constraint generation for lines
4 through 6 of the commit protocol example. In this derivation, we
use< i > to represent the continuation beginning on linei of the
source.

4.3 Translation
Having generated these constraints, we still need to show how

to incorporate them into an analysis that checks for the presence of
distinguishing values. We provide these constraints to theanalysis
by translatingCPPLm phrases into another language that contains
these constraints as annotations onrecv statements.

{payload,key,objective},{payload,objective} |= < 6 > : ⊤ payload ∈ {payload}

{payload,key},{payload} |= < 5 > : payload ∼ {objective} key; ⊤

{payload},{payload} |= < 4 > : ∃key.payload ∼ {objective} key; ⊤

Figure 6: CPPLm Example Constraint Generation

RETURN

Σ,Π |= return Φ x∗ : ⊤

SEND

{y∗} = Free(Σ,Φ) Σ ∪ {y∗},Π |= c : µ

Π |= send Φ x m c : ∃y∗.µ

SEND BRANCH

Σ,Π |= sb0 : µ0 . . . Σ,Π |= sbn : µn

Σ,Π |= (sb0 . . . sbn) : (µ0 + · · ·+µn)

Figure 4: CPPLm Constraint Generation Examples

MATCH (x IN Π)
{y∗} = Free(Σ,m)

Σ ∪ {y∗},Π ∪ {y∗} |= c : µ x∈ Π
Π |= x match m c : x∼ m ; µ

MATCH (x NOT IN Π)
{y∗} = Free(Σ,m) Σ ∪ {y∗},Π |= c : µ x /∈ Π

Π |= x match m c : ∃y∗.µ

Figure 5: CPPLm Constraint Generation: Matching

We will refer to this new language asCPPLm+c. We specify the
syntax below as a modification toCPPLm. The syntax is identical,
except that an annotation has been added to therecv branch case:
the constraint,µ, imposed on this statement by its continuation.

rb → recvm µΨ c

The form of translation judgments is:

Σ ⊢ c c′

whereΣ is a set of bound identifiers,c is a CPPLm program state-
ment, andc′ is the CPPLm+c program statement produced by the
translation and eventually run in the server.

Except for the judgment dealing withrecv statements, all the
judgments are obvious and only carry along information about the
introduction of identifiers. Therefore, they are not included in this
short presentation. The judgment forrecv statements is:

RECEIVE

Π0 = Free(Σ,m)
Σ ∪ Π0 ⊢ c c′ Σ ∪ Π0,Π0 |= c : µ

Σ ⊢ recv m Ψ c recv m µΨ c′

The identifiers initially bound by the message pattern are used as
the initial set of identifiers bound by the message (Π0) in the con-
straint generation process (Sec. 4.2) that analyzes the continuation
of the recv statement. The generated constraint,µ, is used in the
resulting translated program statement.

MATCH AND RELY

σ[x] matchesm
σ1 = σ⊕σ′ dom(σ′) ⊆ ide(m) σ1;Γ ⊢ c : s,υ

σ;Γ ⊢ (x match m c rb∗) : s,υ

MATCH ALTERNATIVE

σ;Γ ⊢ (x mb∗) : s,υ
σ;Γ ⊢ (x match m c mb∗) : s,υ

Figure 8: Semantics ofmatch

4.4 CPPLm+c Local Semantics
In keeping with previousCPPL work [4], we give the seman-

tics of CPPLm+c procedures and code statements by describing the
strandsthat specify their possible behavior. Each strand is a se-
quence of transmissions and receptions that is possible fora prin-
cipal executing thisCPPLm+c phrase faithfully. As mentioned in
Sec. 2, this describes the local nature of protocol execution.

Our local semantics is identical to previous work [4], except in
the RECEIVE AND RELY, RECEIVE ALTERNATIVE MATCH AND

RELY, and MATCH ALTERNATIVE cases.
The semantics of a receive statement (Fig. 7) is identical tothe

earlier semantics, except that the extended runtime environment,
σ1, is checked against theµ constraint according to the constraint
satisfaction semantics in Fig. 3. (And, for technical reasons the se-
mantics of RECEIVE ALTERNATIVE must be modified for the new
syntax.)

The semantics of a match statement (Fig. 8) is very close to the
semantics of a receive statement, except: (a) there is no message
reception or transmission, and (b) we must explicitly statethat the
value bound tox in the runtime environment,σ, matches the mes-
sage pattern,m. This is normally implicit in the description of the
strand unleashed by a receive statement.

The semantics described in this section is a replacement forthe
local semantics of earlier work [4]. The original work also de-
scribes a global semantics relating bundles of strands. In this work,
there is no reason to modify the global semantics of that earlier
work. We elide it for brevity.

4.5 Preservation of Properties
We would like to show that properties proved aboutCPPL pro-

grams remain true about the translatedCPPLm+c programs.

THEOREM 1. If a CPPL phrase, c, unleashes a strand s by the
earlier semantics [4], then the translation of c unleashes strand s
by theCPPLm+c semantics.

PROOF. Consider the changes made betweenCPPLandCPPLm+c.
The two differences are (1) the introduction ofmatch statements
and (2) the introduction of constraint satisfaction ofrecv state-
ments. A CPPL program, which by definition does not include
match statements, unleashes the same strand by theCPPLm+c se-
mantics, after translation, because (1) nomatch statements are in-

RECEIVE AND RELY

σ1 = σ⊕σ′ σ1 |= µ dom(σ′) ⊆ ide(m) σ1;Γ,Ψσ1 ⊢ c : s,υ
σ;Γ ⊢ (x recv m µ Ψ c rb∗) : (−msg (x, m)σ1 , Ψσ1) ⇒ s,υ

RECEIVE ALTERNATIVE

σ;Γ ⊢ (x rb∗) : s,υ
σ;Γ ⊢ (x recv m µ Ψ c rb∗) : s,υ

Figure 7: Semantics ofrecv

troduced by translation and (2) onlymatch statements generate
constraints that may not be satisfied. Therefore, the strandun-
leashed by aCPPL phrase is identical to the strand unleashed the
translation of this phrase.

This is not anif and only if statement: becausematch statements
do not cause communication and only reject messages, it is possi-
ble for someCPPLm+c program,p, to unleash a strands which is
also unleashed by someCPPL program,p′, such thatp is not the
translation ofp′.

Notice that we have not yet discussed whether our compilation
of CPPLm+c programs preserves properties, or, more formally, cor-
rectly executes the strand. We have simply shown that the transla-
tion of CPPL to CPPLm+c does not change the strands unleashed by
CPPLprograms.

5. DISPATCHING
So far we have calculated the constraints imposed on incoming

messages, recorded the constraints as annotations in an extended
language, and taken a first step towards proving correctness. We
still must describe how these constraints can be used to guarantee
that all messages received by a protocol contain distinguishing val-
ues. We must also describe the algorithm used for dispatching.

Sec. 5.1 describes the analysis that is run onCPPLm+c programs
to ensure that all received messages contain distinguishing values.
Sec. 5.2 presents the algorithm used by the dispatching server that
relies on this analysis. Sec. 5.3 proves correctness properties on
both of these.

5.1 Analyzing CPPLm+c Programs
Given aCPPLm+c program, or more generally aCPPLm+c phrase,

we must check that all received messages contain a distinguishing
value. A message may contain such a distinguishing value directly,
in a message pattern, or indirectly, in the constraints imposed on
the message by the rest of the program. The analysis to check these
conditions is fairly straight-forward, once we understandexactly
what we are checking. In particular, we are checking forvisible
distinguishing values.

The notion ofvisibility is somewhat subtle: if a message com-
ponent contains a distinguishing value but is encrypted by an un-
known key, then the distinguishing value isnotvisible. Similarly, if
our language modeled hashing, then a distinguishing value would
be visible if it was hashed together with any number of visible data.
Our definition of visibility is given in Fig. 9.

The majority of the analysis is obvious, merely carrying along
information across the structure of the code phrase, and is therefore
not included in this short presentation. The judgments are of the
form:

ν ⊢ c

signifying the fact that given the set of distinguishing valuesν, all
messages received inc contain a visible distinguishing value.

The only interesting judgments are on one variant oflet state-
ments,recv statements, andmatch statements.

vis : {x∗}×µ→ bool

vis(ν,µ) = vis(ν, /0,µ)

vis : {x∗}×{x∗}×µ→ bool

vis(ν,σ,µ+µ′) = vis(ν,σ,µ)∧vis(ν,σ,µ′)

vis(ν,σ,∃x∗.µ) = vis(ν,σ∪{x∗},µ)

vis(ν,σ,⊤) = false

vis(ν,σ,x∼ m;µ) = vis(ν,σ,m)∨vis(ν,σ,µ)

vis : {x∗}×{x∗}×m→ bool

vis(ν,σ,x) = x∈ (ν−σ)

vis(ν,σ,(m,m′)) = vis(ν,σ,m)∨vis(ν,σ,m′)

vis(ν,σ,(r m)) = vis(ν,σ,m)

vis(ν,σ,(m)) = vis(ν,σ,m)

vis(ν,σ, [m]x) = vis(ν,σ,m)∧x /∈ σ
vis(ν,σ,{m}x) = vis(ν,σ,m)∧x /∈ σ

Figure 9: Visibility under constraints

LET (NEW)
ν ∪ {x} ⊢ c

ν ⊢ let x = new in c

This rule simply introduces a new distinguishing value intothe set
ν. Recall that thenewcase of thelet form generates a globally-
unique, i.e., locally-originating, nonce.3

MATCH (ALIASING)
x∈ ν ν ∪ {y} ⊢ c

ν ⊢ x match y c

MATCH

x /∈ ν ¬∃y.m= y ν ⊢ c

ν ⊢ x match m c

These rules handlematch statements. The interesting subtlety is
that pattern matching can introduce aliases for existing distinguish-
ing values. When such an alias is detected, i.e., when the pattern
is simply an identifier,y, then that identifier must be added to the
ν set. (Recall that only identifiers may appear on the left sideof a
match, so detecting aliasing is very simple.)

RECEIVE

ν ⊢ c ν ⊆ ide(m)∨vis(ν,µ)

ν ⊢ recv m µΨ c

This is the pivotal rule. It checks that either the message pattern or
the constraint contains a visible distinguishing value, byemploying
the definition of visibility given in Fig. 9.

3If a protocol author has more information about what values are
distinguishing, then custom rules similar to this one can beadded
that incorporate identifiers bound to these values into theν set.

There are a few subtleties we do not formalize here. First, sub-
protocols invoked by a protocol must themselves be dispatchable.
Second, these protocols must not have messages that overlap, in the
sense discussed in the conclusion. Third, the analysis as presented
will fail on protocols that start with message reception, because
no distinguishing values have been transmitted. However, we can
relax this restriction, but it requires some uninterestingtechnical
modifications to the analysis.

5.2 The Dispatching Algorithm
Having shown an analysis that ensures every expected incom-

ing message contains a distinguishing value, we must show how
to build a dispatching server that can correctly dispatch incoming
messages. The fundamental implication of our analysis is that only
one session will accept any given message, because each message
contains a distinguishing value. Given this, defining our server is
very simple. The server simply attempts to deliver an incoming
message to all existing sessions. By the above, at most one session
will accept the message.

Before we formally present the dispatching algorithm, we must
clarify the notion of a “session”. Asession, s, captures the entire
state of a protocol run: the runtime environment, the trust manage-
ment database, and the current continuation. A session may be ini-
tializedby a procedurep by creating the runtime environment con-
taining bindings forp’s arguments, initializing a trust management
database, and using the continuation embedded inp. A session is
waiting if its continuation is arecv statement, i.e., it is waiting for
an incoming message. We say that a sessions evolvesinto a session
s′ if executing the continuation ofswith the given runtime environ-
ment and trust management database reduces after some number of
steps to the sessions′. If a sessions evolves to a sessions′ where
the continuation is areturn statement, then the sessions is said to
havereturned. A sessions that cannot evolve to any sessions′ is
said to bestuck. We say that wedelivera messageM to a waiting
sessions when we allows to evolve and receive messageM at the
recv statement at the top of the continuation. Notice that if we de-
liver a messageM to a waiting sessions whereM does not match
the message pattern or constraints in any of the branches of therecv

statement at the top ofs’s continuation, thens is stuck.
The server obeys the following algorithm, withP representing

theCPPLm+c protocol being served.

1. Initializesessionsto {}.

2. Wait for a message,M.

3. Replicatesessionsto createtmp.

4. If tmp is the empty set, then go to step 7. If not, continue.

5. Remove a session,s, from tmp.

6. Deliver messageM to s.

(a) If s returns, removes from sessions, and go to step 2.

(b) If s evolves into a waiting sessions′, removes from
sessions, adds′ to sessionsand go to step 2.

(c) If s is stuck, go to step 4.

7. Initialize the protocolP to create a new sessionsnew. Deliver
messageM to snew.

(a) If snew returns, go to step 2.

(b) If snewevolves into a waiting sessions′, adds′ tosessions
and go to step 2.

(c) If snew is stuck, reject the message and go to step 2.

5.3 Correctness of Analysis and Dispatching
Our goal is not only to deploy protocols on the Web but also

to show that, in the process of doing so, we have preserved any
properties proven about them. We must therefore show that our
dispatching algorithm is “correct” in some way. Correctness is,
however, difficult to define in this context.

One definition of correctness would be that if a message is deliv-
ered to a session, then that session can run to completion. One way
of stating this formally is: If a messageM0 is delivered to a session
s, then if some sequence of messagesM1, . . . ,Mn is subsequently
delivered tos, then sessions will return.

This condition is, however, not easy to prove, and it is not always
possible to even check in an actual implementation. For example,
consider thecommit protocol given in Sec. 3. As we mentioned,
it is not possible to check that somekey will decrypt payload (in-
deed, cryptographic security relies on this fact). Given this, it is
difficult to imagine a means of realistically implementing achecker
for the above condition for a message received on line 2.

In other words, it is difficult to establish that the dispatching al-
gorithm is “right”, i.e., that it ensuresprogress. Absent this stronger
form of correctness, we should at least try to demonstrate the algo-
rithm does not do anything “wrong”, i.e., that it exhibitspreser-
vation. In particular, it seems clearly wrong to deliver a message
meant for one session to some other session.

Our work adopts this approach, but with a practical restriction.
To understand this restriction, consider two sessions,A andB, of a
protocol that employs the empty message,ε, as a keep-alive. Under
the strand-space network model, when anε message is received,
there is no reason why it should be delivered toA rather than toB.
Informally, there is no harm in sending anε message “meant” forA
to B, providedA eventually receives anε message. Pragmatically,
however, it is clear that conditions outside the pure strandspace
model—such as timeouts—can cause session abortion.

Our analysis therefore forces every every message to contain a
distinguishing value. This is a property that theε message, in par-
ticular, fails to exhibit. So long as messages contain distinguishing
values that some session accepts but no other sessions can, we can
easily demonstrate that no message will be delivered incorrectly.
This final analysis is therefore implemented by our compiler. It is
satisfied by a wide range of existing protocols, and also provides a
useful guideline for the creation of new ones.

To prove this form of preservation, we first show that we have
correctly formulated a definition of visibility and that ouranalysis
is correct.

LEMMA 1. If vis(ν,σ,m) for some message pattern m and set
of unknown identifiersσ, then some identifier inν is visible.

PROOF. We proceed by structural induction over the cases ofm.
Case (1) Assume thatm= x. If x∈ ν, thenx is visible and is in

ν. If x /∈ n or x is unknown, thenx is not visible or inν. This our
base case.

Case (2) Assume thatm= (m′,m′′). By induction.
Case (3) Assume thatm= (r m′). By induction.
Case (4) Assume thatm= (m′). By induction.
Case (5) Assume thatm= [m′]x. We may proceed by induction

provided the signing keyx is known.
Case (6) Assume thatm= {m′}x. We may proceed by induction

provided the encrypting keyx is known.

LEMMA 2. If vis(ν,σ,µ) for some constraint µ and set of un-
known identifiersσ, then some identifier inν is visible.

PROOF. We proceed by structural induction over the cases ofµ.

Case (1) Assume thatµ = ⊤ andvis(ν,σ,µ). This is clearly a
contradiction of our definition.

Case (2) Assume thatµ = µ′ + µ′′. This OR constraint repre-
sent two branches of the program. We must ensure that all paths
through the program contain distinguishing values. Thus, each sub-
constraint must contain some identifier ofν.

Case (3) Assume thatµ= ∃x∗.µ′. By induction.
Case (4) Assume thatµ= x ∼ m;µ′. By induction and Lemma 1.

THEOREM 2. If a CPPLm+c phrase passes the analysis, then
each message it receives contains a distinguishing value.

PROOF. We proceed by induction and cases. Clearly the only
interesting case isrecv statements.

A recv statement is satisfied only if some distinguishing value,
i.e., a member of the setν, n, is in the set of identifiers of the
message pattern, or if it is visible under the constraints,µ, of the
statement. In the first case, the distinguishing value is clearly in
the message. In the second case, we know by Lemma 2 that the
message contains the distinguishing value.

Now that we have shown our analysis is correct, we can prove
our algorithm is correct by relying on these proofs. We do so in
two steps.

LEMMA 3. If the dispatching algorithm rejects a message M,
then no session could accept message M.

PROOF. Suppose that some sessions could have accepted mes-
sageM. If the message has been rejected, then it must have been
rejected in step 7c. This implies thatsnew rejected the message and
that the settmpwas empty (step 4).

Suppose thattmpwas initially {s0, . . . ,sn}. For tmp to become
empty, step 5 must be executed for each sessions0 throughsn. At
step 6, the algorithm must have taken branch 6c, to return to step 4
and then 5. The algorithm only takes branch 6c when the session
(si) rejects the message.

Thus all sessions have rejectedM, resulting in a contradiction
with the assumption that some sessionsexists.

LEMMA 4. If a session s accepts a message M, then no other
session s′ could have accepted message M.

PROOF. Assume that some other sessions′ exists that also ac-
cepts messageM.

If s acceptsM, then it is waiting on some patternp for a mes-
sage that satisfies constraintsµ andM matchesp and satisfies the
constraintsµ.

If s′ acceptsM, then it is waiting on some patternp′ for a mes-
sage that satisfies constraintsµ′ andM matchesp′ and satisfies the
constraintsµ′.

Recall that the code associated withsands′ have passed the anal-
ysis. Thereforep or µ contains some visible distinguishing valuen,
andp′ or µ′ contains some visible distinguishing valuen′.

If M satisfies both patterns and constraints, then it contains both
n andn′. This is a contradiction to our assumptions about distin-
guishing values, and in particular, our Dolev-Yao [2] assumptions
about nonces, which are globally unique and non-forgeable.

Thus,s′ must not exist.

THEOREM 3. The dispatching algorithm delivers all messages
that can be delivered and does not deliver a message to session s
that should be delivered to session s′.

PROOF. By Lemmas 3 and 4.

Figure 10: Typical Benchmark Results

6. IMPLEMENTATION
We have modified the existingCPPLcompiler to support the anal-

ysis described above. This compiler is implemented using OCaml [7]
and translates aCPPLm source file into OCaml. EachCPPLm proce-
dure is translated into an OCaml procedure that takes a number of
CPPLm values as arguments and returns a tuple of results.

Our implementation performs the analysis described in thispa-
per; if the analysis fails, the compiler displays an error. The error
message advises the protocol author about which line contains a
recv statement that does not contain a distinguishing value. For
example, an error message would be displayed for line 2 of the
commit protocol example from Sec. 3. This helps a protocol au-
thor identify where hand soundness proofs must occur or where the
protocol must be changed for Web deployment.

In our previous implementation, translatedCPPLsource files were
combined with OCaml source files that set up the environment cor-
rectly and then invoked theCPPLprocedures with the proper argu-
ments. Our implementation provides a dispatching server, like a
Web server, written in OCaml that runs theCPPLm procedures on
incoming messages as described by our algorithm. Our implemen-
tation also records the values returned by each successful proto-
col run, whereas the earlier implementation prints this information
when the single protocol run completes.
Performance.We have built a benchmarking suite based on a sam-
ple of protocols from theSPORE[10] repository. Fig. 10 shows
results for two protocols which captures the trend across the suite.
The horizontal axis shows the number of concurrent clients and the
vertical axis shows the average time to session completion.The
upper lines show the outcome for the previous compiler, and the
lower lines show the outcome for our approach.

The reason for this gain is clear. Enabling deployment ofCPPL

protocol specifications on stock Web servers engenders bothusabil-
ity (since both deployers and clients can leverage the Web’sinfras-
tructure) and scalability (owing to the Web’s statelessness). In par-
ticular, deployments can now leverage the frequent improvements

being made to Web server performance to handle more simultane-
ous sessions.

7. RELATED WORK
In the introduction, we alluded to a strawman solution involv-

ing uniform modification of protocols. That approach corresponds
to past work [8] on compiling sequential interactive programs into
programs that run in Web servers. Their compiler consumes con-
sole programs that present a prompt and react to what the usertypes
into Web applications that present a form and resume when the
user submits a response. The compiler functions by computing and
storing the continuation at each interaction point, and encoding the
computation’s closure in a combination of hidden fields, database
records, and cookies. On response, this continuation is invoked
with the client’s response and the program continues, oblivious to
the modification. A nonce records which continuation to resume at
each form submission.

This solution is inappropriate forCPPLprograms for several rea-
sons. First,CPPL programs need not follow every send with a re-
ceive. Second,CPPLprograms may involve more than two partici-
pants. A third, essential, reason why this solution is not appropriate
is that it changes the format of the messages by adding the encoded
continuations. In our environment this corresponds to changing the
protocol itself, which makes existing proofs invalid.

There is another reason why that work is inappropriate here.A
goal of that research is to ensure that continuations may be invoked
safely multiple times, e.g., that the Web browser’sBack button may
be used safely. We expressly do not wish to support this because it
would correspond to replay attacks and violate freshness assump-
tions.

One aspect of our work extendsCPPL to includematch state-
ments that perform pattern matching. Other languages for program-
ming cryptographic protocols also contain this functionality. Haack
and Jeffrey [6] discuss their pattern-matching system in the context
of the Spi-calculus. They also discuss the subtlety we mention in
Sec. 4.1 regarding whether identifiers introduced by EXISTS forms
can be used in an encrypting position in a pattern. Our work is
complementary to theirs in this aspect, as our system is based on a
strand-space semantics and this feature is not our sole contribution.

8. CONCLUSION
We have shown how aCPPLm program can be analyzed and com-

piled into a form that allows it to be used in the context of a Web
server. We have argued that the properties proved on the original
protocol are preserved, and we have presented a dispatchingstrat-
egy that enables multiple sessions to not interfere with oneanother.
We have built an implementation that can be used by protocol en-
gineers to produce efficient implementations.

The approach used in this work may be applied to other prob-
lems as well. For example, there is work that produces proto-
cols that guarantee that participants implement session types [1, 9].
We could analyze the constraints of existing protocols and ensure
that they imply that messages contain the appropriate cryptographic
forms that enforce the session type property, thereby allowing this
work to be applied to existing protocols.

We would like to extend our language with regular expressions
types (to representXML) and extend our analyses to handle them,
then apply our work toXML Web service protocols that exist in
the wild. We would also like to optimize the dispatcher design
presented here to eliminate many tests when many protocol runs
share similar constraints and message patterns, by associating the
shape of incoming messages with existing sessions.

Finally, we would like to generalize our analysis to accommodate
multiple protocols simultaneously. This would require an analysis
of all participating protocols to ensure that there are no messages
that match receive branches in multiple protocols, i.e., toensure
that the messages do not overlap.
Acknowledgments. This material is based upon work supported
by NSF grant CNS-0627310 and under a National Science Foun-
dation Graduate Research Fellowship.

9. REFERENCES
[1] K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon.

Secure sessions for web services. InWorkshop on Secure
Web Services, pages 56–66, 2004.

[2] D. Dolev and A. Yao. On the security of public-key
protocols.IEEE Transactions on Information Theory,
29:198–208, 1983.

[3] O. Goldreich.The Foundations of Cryptography. Cambridge
University Press, Cambridge, UK, 2004.

[4] J. D. Guttman, J. C. Herzog, J. D. Ramsdell, and B. T.
Sniffen. Programming cryptographic protocols. InTrust in
Global Computing, pages 116–145, 2005.

[5] J. D. Guttman, F. J. Thayer, J. A. Carlson, J. C. Herzog, J.D.
Ramsdell, and B. T. Sniffen. Trust management in strand
spaces: A rely-guarantee method. InEuropean Symposium
on Programming, pages 325–339, 2004.

[6] C. Haack and A. Jeffrey. Pattern-Matching Spi-Calculus. In
Formal Aspects in Security and Trust, pages 55–70, 2004.

[7] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon.
The Objective Caml System. INRIA,
http://caml.inria.fr/, 2000. Version 3.00.

[8] J. Matthews, R. B. Findler, P. T. Graunke, S. Krishnamurthi,
and M. Felleisen. Automatically restructuring programs for
the Web.Automated Software Engineering, 11(4):337–364,
2004.

[9] K. Onda, V. T. Vasconcelos, and M. Kubo. Language
primitives and type discipline for structured
communication-based programming. InEuropean
Symposium on Programming, pages 122–138, 1998.

[10] Project EVA. Security protocols open repository.
http://www.lsv.ens-cachan.fr/spore/, 2007.

[11] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces:
Proving security protocols correct.Journal of Computer
Security, 7(2/3):191–230, 1999.

