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Abstract. Cryptographic protocols are useful for engineering trust in transac-
tions. There are several languages for describing these protocols, but these tend
to capture the communications from the perspective of an individual role. In con-
trast, traditional protocol descriptions as found in a state of nature tend to employ
a whole-protocol description, resulting in an impedance mismatch.
In this paper we present two results to address this gap between human descrip-
tions and deployable specifications. The first is an end-point projection technique
that consumes an explicit whole-protocol description and generates specifications
that capture the behavior of each participant role. In practice, however, many
whole-protocol descriptions contain idiomatic forms of implicit specification. We
therefore present our second result, a transformation that identifies and eliminates
these implicit patterns, thereby preparing protocols for end-point projection.
Concretely, our tools consume protocols written in our whole-protocol language,
, and generate role descriptions in the cryptographic protocol programming
language, . We have formalized and established properties of the transfor-
mations using the Coq proof assistant. We have validated our transformations by
applying them successfully to most of the protocols in the  repository.

1 Problem and Motivation

In recent years, there has been a vast growth of services offered via the Web, such as
third-party credit-card handling as offered by several banks. There is growing recogni-
tion that these services must offer security guarantees by building on existing protocols
and techniques that establish such guarantees.

Fig. 1 shows three examples of actual protocols, as found in a state of nature. Fig. 1
(a) is the specification of the Kerberos protocol [21]; (b) is the specification of the Kao
Chow protocol from [17]; and (c) is the specification of the Yahalom protocol [7] for
the  repository [22].

These specifications contain a description of what each role of the protocol does at
each step of the protocol. They say that at each step, some role a sends a message m to
another role b, written a → b : m. However, it is important to understand that this is
not what actually happens. In reality, a emits a message m and b receives a message m′

that matches the pattern of m. Recognizing this distinction makes apparent the threat of
man-in-the-middle attacks and other message mutilation in the network medium. This
is called the Dolev-Yao network model [12]. The role of a cryptographic protocol is to
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Fig. 1. Protocols in the wild

describe a sequence of messages that accomplishes some goals—perhaps exchanging
data or creating a logical session—even when attacked by a powerful adversary.

All three of the protocols in Fig. 1, and most others like them found in the literature
and in repositories, have two characteristics in common:

1. They describe the entire protocol at once, whether diagrammatically (akin to a mes-
sage sequence chart) or in an equivalent textual format.

2. They have certain idiomatic forms of implicit specification (see below and Sec. 5).

The whole-protocol nature of description is problematic because ultimately, what
executes is not the “protocol” per se, but rather various software and hardware devices
each implementing the individual roles. Therefore, we need a way to automatically
obtain a description of a single role’s behavior from this whole-protocol description.

The problem of obtaining individual roles from a composite description is familiar.
In the realm of Web Services, is is common to choreograph a collection of roles by
presenting a similar whole-protocol description. This has led to the definition of end-
point projection [9], a process of obtaining descriptions of individual role behaviors
from the choreography.

Unfortunately, we cannot directly lift the idea of end-point projection to the cryp-
tographic realm because existing descriptions of end-point projection do not handle the
complexities introduced by cryptography. If role A sends a message encrypted with key
K, then role B can only receive the contents of that message if he has key K. Cryptogra-
phy introduces information asymmetries like this into communication: it is not always
the case that what one role can send, another role can receive. Existing end-point pro-
jection systems assume that such asymmetries do not exist. These systems thus focus
on communication patterns and neglect communication content. In this paper, we de-
fine end-point projection from whole protocol specifications to the  [15] role spec-
ification language that builds on past work but considers the question of information
asymmetries. We target  because it supports a host of other analyses.



An additional problem is that protocol specifications have a few idiomatic forms.
They typically do not explicitly encode: (a) what information is available at the first
step of the protocol; (b) where and when various values, such as nonces1, are generated;
(c) when certain messages are not deconstructed; and, (d) the order in which messages
components are deconstructed. We provide a whole-protocol specification language,
, that allows all these to be expressed explicitly. Furthermore, we provide a trans-
formation that removes idioms (b), (c), and (d) from a protocol.

Formalization. Our work is presented in the context of an adaptation of , the Cryp-
tographic Protocol Programming Language. We have built an actual tool and applied it
to concrete representations of protocols, as we discuss in Sec. 5. All our work is for-
malized using the Coq proof assistant [24]. Coq provides numerous advantages over
paper-and-pencil formalizations. First, we use Coq to mechanically check our proofs,
thereby bestowing much greater confidence on our formalization and on the correctness
of our theorems. Second, because all proofs in Coq are constructive, our tool is actu-
ally a certified implementation that is extracted automatically from our formalization,
thereby giving us confidence in the tool also. Finally, being a mechanized representa-
tion means others can much more easily adapt this work to related projects and obtain
high confidence in the results.

Our Coq formalization2 includes 2.6k lines of specification and 3.5k lines of proof
and was produced in roughly three mythical man-months. The formalization of 
and strands spaces consists of 1.1k and 1.5k lines. The definition of  is only 1.3k
lines, evenly divided between specification and proof. Finally, the idiom removal trans-
formation is 841 lines of specification and 1.3k lines of proof. The most difficult part of
the work was formulating and verifying properties about the transformation; the other
components merely required commitment and patience.

Outline. We define the syntax and semantics of our language, , in Sec. 2. Pursuant
to describing our end-point projection, we give the relevant details of  in Sec. 3.
We give the end-projection from  to  in Sec. 4. We describe our transformation
from idiomatic to explicit protocol specifications in Sec. 5. We follow with related work,
and our conclusion.

2 WPPL

 is our domain-specific language for expressing whole cryptographic protocols
with trust annotations. It matches the level of abstraction of the Dolev-Yao model [12],
i.e., the programmer regards the cryptographic primitives as black boxes and concen-
trates on the structural aspects of the protocol. In this view of protocol behavior, as each
principal executes, it builds up an environment that binds identifiers to values encoun-
tered and compares these values with subsequent instances of their identifiers.

1 Nonces are unique random values intended to be used only once for, e.g., replay protection.
2 Sources are available at: http://www.cs.brown.edu/research/plt/dl/esorics2008/.



s → (spec rs∗ a)
rs → [x (v∗) (u∗)]
a → . | [x→ y : Φ m Ψ ] a | let v @ x = new nt a
| bind v @ x to m a | match v @ x with m a | derive Φ@ x a

nt → nonce | symkey | pubkey
m → nil | v | k | (m,m′) | hash(m) | < v = m >
| [m]v | [|m|]v | {m}v | {|m|}v

v → x : t
t → text | msg | nonce | name | symkey | pubkey

Fig. 2.  Syntax

1 (spec ([a (a b s kas) (kab)]

2 [b (b s kbs) (kab)] [s (a b s kas kbs) ()])

3 [a -> s : a, b, na:nonce]

4 [s -> b : {|a, b, na, kab|} kas, {|a, b, na, kab|} kbs]

5 [b -> a : {|a, b, na, kab|} kas, {|na|} kab, nb:nonce]

6 [a -> b : {|nb|} kab] .)

Fig. 3. Kao Chow in 

The Core Language. The syntax of the  core language is presented in Fig. 2. The
core language has protocol specifications (s), role declarations (rs), and six types of
actions (a). Programming language identifiers are indicated by x, lists of variables by
v∗, and constants (such as 42) by k. The language has syntax for trust management
formulas—by convention we write guaranteed formulas as Φ and relied formulas as Ψ .

Examples. Fig. 3 shows the Kao Chow [17] protocol as an idiomatic specification.
We will discuss what exactly is idiomatic about this specification in Sec. 5.

Syntactic Conventions. m refers to both messages and message patterns because of the
network model. Consider the m expression (a, b, na, kab). The sender looks up a,
b, etc., in its environment to construct a message that it transmits. From the receiver’s
perspective, this is a pattern that it matches against a received message (and binds the
newly-matched identifiers in its own environment). Because of the intervening network,
we cannot assume that the components bound by the receiver are sent by the sender.

A protocol specification declares roles and an action. Role declarations give each
role a name x, a list v∗ of formal parameters, and a list u∗ of identifiers that will be
returned by the protocol representing the “goal” of the protocol. Actions are written
in continuation-passing style. Although the grammar requires types attached to every
identifier, we use a simple type-inference algorithm to alleviate this requirement. (Simi-
larly, we infer the principal executing each action.) However, these technical details are
standard, so we do not elaborate them.



V (S)
v ∈ σ

σ `s v

H (S)
σ `s m

σ `s hash(m)

SE (S)
i ∈ σ σ `s m

σ `s {|m|}(i : symkey)

V (R)

σ `r v

H (R)
σ `s m

σ `r hash(m)

Fig. 4. Message well-formedness (excerpts)

Well-formedness. Compilers use  context-free grammars to syntactically parse pro-
grams. They must also use context-sensitive rules to determine which syntactic ex-
pressions are legal programs: e.g., when the syntax refers only to bound identifiers.
Similarly, not all  specifications describe realizable protocols. The only surprising
aspect of the well-formedness condition on  is that, due to cryptographic primi-
tives, the conditions are different on message patterns used for sending and receiving.

Intuitively, to send a message we must be able to construct it, and to construct it,
every identifier must be bound. Therefore, a pattern m is well-formed for sending in
an environment σ (written σ `s m; see Fig. 4 for non-structural rule examples) if all
identifiers that appear in it are bound; e.g., the message on line 3 of Kao Chow is not
well-formed, because na is not bound.

A similar intuition holds for using a message pattern to receive messages. To check
whether a message matches a pattern, the identifiers that confirm its shape—namely,
those that are used as keys or under a hash—must be known to the principal. Thus, we
define that a pattern m is well-formed for receiving in an environmentσ (writtenσ `r m;
see Fig. 4 for non-structural examples3) if all identifiers that appear in key-positions or
hashes are bound. For example, the message pattern on line 4 of Kao Chow is not
well-formed to receive, because b does not know kas.

We write σ ` f s to mean that the formulas f s are well-formed in the environment
σ. This holds exactly when the identifiers mentioned in f s are a subset of σ.

A  specification is well-formed when, for each declared role, the identifiers it
uses are bound and the messages it sends or receives are well-formed.

We write κ, σ `rρ a to mean that an action a is well-formed for role r, that r expects
to return ρ, in the environment σ, when it has previously communicated with the roles
in κ, where κ and σ are sets of identifiers, r is an identifier, ρ is a list of variables, and a
is an action. We write `r s to mean that the specification s is well-formed for the role r
and ` s to mean that specification s is well-formed for all roles r that appear therein.

The parameter ρ is necessary because returns do not specify what is being returned.
The parameter κ is necessary because we do not require explicit communication chan-
nels. At first glance, it may seem that we must only ensure that the name of a commu-
nication partner is in σ, but this is too conservative. We are able to reply to someone
even if we do not know their name. Therefore, κ records past communication partners.

We choose to require well-formed  specifications to be causally connected [9].
This means that the actor in each action is the same as that of the previous action, except
in the case of communication. Our presentation does not rely on this property, so we

3 The H (R) rule is not a typo.



p → proc x v∗ Ψ c
c → fail | return Φ v∗ | derive Φ c c′ | let v = lv in c | send Φ v m c c′

| recv v m Ψ c c′ | call Φ x v∗ u∗ Ψ c c′ | match v m Ψ c c′

lv → new nonce | new symkey | new pubkey | accept | connect v | m
t → . . . | channel

Fig. 5.  Syntax

believe we could elide it. However, we believe that to do so would allow confusing
specifications that are not commonly found in the literature.

Semantics. The semantics of  contains an implicit end-point projection. Each
phrase is interpreted separately for every role as a set of strands that describes one
possible local run of that role. These sets are derived from the many possible strands
that may be derived as descriptions for particular phrases. We write a→r

ρ,κ s, ν to mean
that an action a, when executed by role r, with return variables ρ, and the current con-
nections κ may produce strand s and requires ν to all be unique identifiers.

We use a few strategies in this semantics. First, to ensure that the same identifiers
are bound in the strand, we send messages (“internal dialogue”) that contain no infor-
mation, but where the formulas bind identifiers. Second, the interpretation of matching
is to emit an identifier, then “over-hear” it, using a message pattern. Third, when binding
an identifier, the identifier is replaced by the binding in the rest of the strand.

We write sp →r s, ν to mean that spec sp, when executing role r may produce
strand s and requires ν to all be unique identifiers. We prove that this semantics always
results in well-formed strands for well-formed specifications.

Theorem 1 If `r sp and sp→r s, ν then ` s.

Adversary. Because the semantics of a  specification is a set of strands, the Dolev-
Yao adversary of the general strand model is necessarily the adversary for . A
Dolev-Yao adversary has the capability to create, intercept, and redirect messages. He
can redirect messages from any party to any party. He can intercept messages to learn
new information. He can create messages based on previously learned information. His
only constraint is that he cannot break the cryptographic primitives, i.e., he must possess
the appropriate key to decrypt a message. Therefore, the only information he knows is
derived from an insecure context.

3 CPPL

 [15] is a domain-specific language for expressing cryptographic protocols with
trust annotations. The definition we use slightly extends the original work with trust
derivations, message binding, empty messages, and explicit failure.

Syntax. The syntax of the  core language is presented in Fig. 5. The  core
language has procedure declarations and eight types of code statements. It uses the same
syntactic conventions as .



C (S, C)
t ∈ κ a⇒r

ρ,κ c′

[r→ t : Φ m Ψ ] a⇒r
ρ,κ send Φ tc m c′ fail

C (S, C)
t < κ a⇒r

ρ,κ∪{t} c′ c = send Φ tc m c′ fail

[r→ t : Φ m Ψ ] a⇒r
ρ,κ let tc = connect t in c

Fig. 6. End-point projection (excerpts)

Well-formedness.  procedures and code statements are well-formed when all
identifiers used are bound. This in turn means that messages are well-formed in their
appropriate context: sending or receiving. We write σ ` c to mean that code statement
c is well-formed in σ. Similarly, we write ` p for well-formedness of procedures.

Semantics. The semantics of a  phrase is given by a set of strand, each of which
describes one possible local run. We write c→ s, ν to codify that the strand s describes
the code statement c, under the assumption that the identifiers in ν are unique. We
write p → s, ν to mean that a procedure p is described by the strand s with the unique
identifiers ν.

Theorem 2 If ` p then if p→ s, ν, then ∅ ` s.

4 End-Point Projection

Our end-point projection of  into  is realized as a compiler. We write a ⇒r
ρ,κ c

to mean that the projection of a for the role r, with return variables ρ, when κ are all
roles r has communicated with, is c. An example of this definition is given in Fig. 6.

The compilation is straight-forward, by design of , and is, in principle, no dif-
ferent that previous work on this topic. The only interesting aspect is that  uses chan-
nels in communication, while  uses names. Thus, we must open channels as they
are necessary. This is accomplished by the auxiliaries let connect and let accept,
which produce a let statement that opens the channel through the appropriate means.
These introduce new bindings in the  procedure that are not in the  specifica-
tions, and must be specially tracked.

Theorem 3 If κ, σ `rρ a and a⇒r
ρ,κ c then σ ` c.

Theorem 4 If a⇒r
ρ,κ c, then if a→r

ρ,κ s, ν then c→ s, ν.

Theorem 4 expresses preservation of semantic meaning: the strand s and the unique
set ν are identical in both evaluation judgments. This means that the  phrase per-
fectly captures the meaning of the  phrase.

Another two proofs about the compiler show that there is always a return state-
ment and that all return statements are the same. This ensures the well-formedness of
compiled  procedures.



1 a(a:name, b:name, s, kas) (kab)

2 let na = new nonce in

3 let chans = connect s in

4 send _ -> chans (a, b, na) then

5 let chanb = accept in

6 recv chanb (stoa, btoa, nb:nonce) -> _

7 then match stoa {|a, b, na, kab|} kas -> _

8 then match btoa {|na|} kab -> _

9 then let atob = {|nb|} kab then return

10 else fail else fail else fail else fail else fail end

Fig. 7. Compilation of Kao Chow role A into 

We lift the compiler of actions to specifications. We write s ⇒r p to mean that the
projection of the specification s for the role r is the procedure p. For some roles, namely
those that are not declared in the specification, we will write s⇒r ⊥ to indicate the lack
of a projection for the role.

Theorem 5 `r s implies there is a p such that s⇒r p and ` p.

Theorem 6 sp→r s, ν implies sp⇒r p implies p→ s, ν.

Example. Fig. 7 is the compilation of one role of the Kao Chow protocol (Fig. 3), after
explication. The others are similar.

5 Explicit Transformation

Having shown a correct end-point projection, we turn to the problem of handling the id-
ioms in specification. The Kao Chow specification (Fig. 3) is not well-formed because:

1. a cannot construct the message on line 3 because na is not bound.
2. s cannot construct the message on line 4 because kab is not bound.
3. b cannot match the message on line 4 because kas is not bound.
4. b cannot construct the message on line 5 because nb is not bound.
5. a cannot match the message on line 5 because kab is not bound.

We are specifically interested in allowing protocols to be taken from standard presenta-
tions in the literature and used with our compiler. As other researchers have noted [1, 4],
protocols like this often make use of very loose constructions and leave many essentials
implicit. One approach is to reject such protocols outright and force conformance. Our
approach is to recognize that there is a de facto idiomatic language in use and support
it, rather than throwing out the large number of extant specifications.

The Kao Chow protocol contains all the idioms that we most commonly encounter:

I. Implicitly generating fresh nonces and keys by using a name that does not appear
in the rest of the specification (e.g., na, kab, and nb).



(spec ([a (a b s kas) (kab)]

[b (b s kbs) (kab)] [s (a b s kas kbs) (kab)])

3’ let na = new nonce

[a -> s : a, b, na]

4’ let kab = new symkey

[s -> b : {|a, b, na, kab|} kas, {|a, b, na, kab|} kbs]

5’ let nb = new nonce

[b -> a : {|a, b, na, kab|} kas, {|na|} kab, nb]

[a -> b : {|nb|} kab] .)

Fig. 8. Kao Chow in  after step one

II. Allowing roles to serve as carriers for messages that they cannot inspect, without
indicating this (e.g., the first part of line 4’s message).

III. Leaving the order of pattern-matching unspecified (e.g., line 5).

We remove all these idioms and produce a version of this protocol that is well-formed.

Overview. Our transformation has three stages. The first removes idiom I, by generating
new bindings for nonces and keys. The second removes idiom II and is the first step of
removing idiom III. It lifts out message components that are possibly unmatchable,
i.e., encrypted or hashed, and binds them to identifiers. The third stage matches bound
identifiers against their construction pattern, when this will succeed. This sequences
pattern matching, removing idiom III, and recovers any losses temporarily created by
stage two. We conclude with an evaluation of these transformations.

Generation. Our first transformation addresses problems 1, 2 and 4 above by explicitly
generating fresh values for all nonces, symmetric keys, and public keys that appear free
in the entire protocol. After transformation, Kao Chow is as in Fig. 8.

This transformation is very simple, so we do not present it in detail. Instead, we ex-
plain its correctness theorem. We write gen(s) as the result of this stage for specification
s. Our theorem establishes a condition for when the first idiom is removed:

Theorem 7 For all s, if its action does not contain an instance of recursive binding,
then for all vi, if vi appears free in gen(s), then there exists a type vt, such that vt is not
nonce, symkey, or pubkey and vi appears free in s with type vt.

An action has recursive binding if it contains as a sub-action bind r v m a and
v appears in m. These actions are not strictly well-formed, because v is not bound in
m. However, we cannot assume that input specifications are well-formed—our trans-
formation is to make them so! So, we have parceled out the smallest amount of well-
formedness necessary.

This theorem says that any free identifier (a) is not of one of the types for which
we can construct a fresh value and (b) is free in the original specification, i.e., was not
introduced by our transformation. Thus, the first idiom is successfully removed. But we
still have problems 3 and 5, so our modified Kao Chow protocol is still not well-formed.



(spec ([a (a b s kas) (kab)]

[b (b s kbs) (kab)] [s (a b s kas kbs) (kab)])

let na = new nonce

[a -> s : a, b, na]

let kab = new symkey

4’’ bind msg0 = {|a, b, na, kab|} kas

4’’ bind msg1 = {|a, b, na, kab|} kbs

[s -> b : msg0, msg1]

let nb = new nonce

5’’ bind msg2 = {|na|} kab

[b -> a : msg0, msg2, nb]

6’’ bind msg3 = {|nb|} kab

[a -> b : msg3] .)

Fig. 9. Kao Chow in  after step two

Lifting. The second stage transforms each message construction by introducing a mes-
sage binding for each message component. It binds those components that can po-
tentially fail to match, namely signing and encryption (which require the key to be
matched), and hashing (which requires the hash contents to be matched). This results
in Kao Chow further being rewritten to the form shown in Fig. 9. As a result of this
transformation, b can transmit msg0 without needing to inspect it on line 4.

This serves to ensure (a) all matching sides of communication are well-formed;
(b) messages that are carried without inspection are well-formed for sending; and, (c)
sequencing is completely unspecified on the receiving side. We prove a theorem about
this stage that establishes criterion (a), but we argue criteria (b) and (c) informally.

One interesting part of our transformation is that it is not structurally recursive in
the action. In the cases for communication, binding, and matching, the translation is
recursively applied to the result of replacing all instances of the lifted message compo-
nents in the continuation. Instead, we recur on a natural number bound. We prove that
the number of actions is a lower bound for its correctness.

This transformation removes idiom II, but introduces many instances of idiom III.

Opening. The third stage introduces pattern-matching at each point where a message
previously bound may be successfully matched against the pattern it was bound to. This
results in Kao Chow being rewritten to the final, well-formed, form shown in Fig. 10.

After this stage, every message that can possibly be deconstructed by each role is
deconstructed. This removes idiom III by fully specifying the order of pattern matching.
In particular, it removes instances of idiom III introduced by the second stage.

Although it follows from this stage’s mission statement, it is not necessarily intuitive
that this stage will also check that previously unverified message contents are correct.
Since this pattern occurs when a message that could not be deconstructed becomes
transparent, this pattern is handled by this step. For example, if a commitment message,
hash(m), has been received, but the contents, m, is unknown until a later step; this stage
will check the commitment at the appropriate time.



(spec ([a (a b s kas) (kab)]

[b (b s kbs) (kab)] [s (a b s kas kbs) (kab)])

let na = new nonce

[a -> s : a, b, na]

let kab = new symkey

bind msg0 = {|a, b, na, kab|} kas

bind msg1 = {|a, b, na, kab|} kbs

[s -> b : msg0, msg1]

5’’’ match msg1 with {|a, b, na, kab|} kbs

let nb = new nonce

bind msg2 = {|na|} kab

[b -> a : msg0, msg2, nb]

6’’’ match msg0 with {|a, b, na, kab|} kas

6’’’ match msg2 with {|na|} kab

bind msg3 = {|nb|} kab

[a -> b : msg3]

7’’’ match msg3 with {|nb|} kab .)

Fig. 10. Kao Chow in  after step three

This stage must solve the following problem: find some order whereby the messages
may be matched, or “opened.” A message may be opened if (a) the identifier it is bound
to is bound (which isn’t necessarily the case: e.g., msg0 is not bound on line 7) and (b)
it is well-formed for receiving in the environment. At each line of the specification, our
transformation will compute the set of messages that may be opened, and the order to
open them in. If a message cannot be opened, it will be reconsidered in subsequent lines.
Note that this is a recursive set, because opening a message extends the environment,
potentially enabling more messages to be opened. Thus, messages that can’t be opened
may become amenable to opening after some other message is opened.

The core of the transformation is a function that computes this set for each line. This
function, open bmsgs, in principle accepts a B, list of identifiers and message patterns,
i.e., the bound messages, and σ, an environment. It partitions B into two lists: C, the
bound messages that cannot be opened; and O, those that can.

In fact, this function cannot not only receive these two values as arguments, because
it cannot be defined recursively on either of them. Instead, it is supplied an additional
integer bound that must be greater than the number of messages.

Theorem 8 If (i,m) is in C, then either i < σ ∪ ids(O) or σ ∪ ids(O) 0r m.

Theorem 9 If O = p @ (i,m) :: q, then i ∈ σ ∪ ids(p) and σ ∪ ids(p) `r m.

Our transformation is trivial, given open bmsgs. In essence, it keeps track of the
environment of the role being transformed and the bound messages. Then, it calls
open bmsgs and uses the result of a small auxiliary, build match, destructures bound
messages, thereby removing idiom III. We prove the following theorem about build match:

Theorem 10 If κ, σ ∪ ids(O) `rρ a and build match r O a = a′ then κ, σ `rρ a′.



Evaluation We now evaluate the effectiveness of these transformations. We did not
“evaluate” end-point projection because our theorem established that it succeeds for
all inputs. Similarly, we have established appropriate correctness conditions for each
of the three transformations. However, we still need to determine how well the three
transformations actually cover the space of protocols found in practice. (Note that we
cannot argue the correctness of the composition of the three transformations, because
their input is not well-formed, so there is no foundation for their “correctness”.)

We attempted to encode fifty of the protocols in the  repository in . We
successfully encoded forty-three of the protocols. We consider this compelling evidence
that  is useful for producing protocols. Of these protocols, zero were well-formed
in the repository and all are well-formed after applying the composed transformation.
This demonstrates the transformations can remove idioms from protocol specifications.

Weaknesses and Limitations.  has a few weaknesses that prevent all protocols to
be encoded. First,  cannot express unique cryptographic primitives. It can only
express asymmetric or symmetric modes of encryption or signing and hashing. There-
fore, it cannot express protocols that build these (and other) primitives. For example, the
Diffie-Hellman protocol [11] is a method of creating shared symmetric keys. We cannot
guarantee from within our framework that these keys are equivalent to our symmetric
keys. In essence, this protocol is too low-level for our theory.

Second, there is no way to express conditional execution in . Thus, there is
only one path through a protocol and protocols with built-in failure handling, such as
the  protocol [14], cannot be written. We could have extended our work to allow
the expression of these protocols, but  attempts to capture the spirit of traditional
protocol description, and we cannot identify a community consensus on how to write
conditional executions.

Third, protocols that rely on parallel execution are not well-formed, as mentioned
earlier. For example, a principal cannot transmit two messages in a row, without receiv-
ing a message. The transformation does not remove this instance of parallelism.

6 Related Work

End-point Projection. Carbone, Honda, and Yoshida [9] have developed an end-point
projection for the Choreography Description Language. Our approach is different in a
few fundamental ways. First, they do not specify a well-formedness condition to iden-
tify information asymmetries between participants as we do in Sec. 2, because they do
not discuss cryptography. Instead, their well-formedness conditions only involve ses-
sion usage. Second, sessions are an assumed concept in Web Services, whereas in the
cryptographic space, session creation is often the goal of a protocol. Therefore, we can-
not impose their session usage conditions. Third, they allow conditional and parallel
protocol execution, which we do not.

Sabri and Khedri [23] employ the Carbone framework of end-point projection in
their development of a framework for capturing the knowledge of protocol participants.
They observe that they must verify the well-formedness of protocols given information
asymmetries, but do not address this problem. Rather, they assume they are resolved
appropriately. Therefore, our work is complementary to theirs.



Corin et al. [10] perform end-point projection in their work on session types. A
session type is a graph that expresses a global relation among protocol participants, in-
cluding the pattern of legal communications. When implementing a role, it is necessary
to consider that role’s view of the graph. End-point projection is used to derive these
session views as types that can be verified at each end-point. Corin’s application of end-
point projection is different from either Carbone’s or ours. While Corin uses  at the
type-level, we use it at the program-level. However, the technique is basically the same.

Program Slicing. The essence of end-point projection is program slicing [25]. Program
slicing is a technique to take a program and remove parts of it that are irrelevant to
some particular party. For example, the program slice with respect to some variable is
the subset of that program which influences the value of the variable. In our case, we
will be slicing a program with respect to some participant and removing parts of the
program that do not concern that party. In particular, if the role in question receives a
message, it need not be concerned with the generation of that message.

Compiling Traditional Protocol Specifications.  [20] is a system that transforms
a protocol into runnable Java code.  describe the entire protocol and their com-
piler performs an end-point projection. Our work is distinct for multiple reasons. First,
 targets the analysis theory of the  Protocol Analyzer [19], rather than the stand
spaces with rely-guarantee. Second,  specifications are fully explicit and annotated
to resolve idioms, thus they do not resemble the style used in the literature.

Casper [18], “a compiler for the analysis of security protocols”, takes programs writ-
ten in a whole-protocol form and transforms it into  processes that can be checked
with the model-checker. This system is intended not only to specify the protocol, but
also its security goals. Like , protocols are required to be fully explicit and with-
out idioms. However, Casper is superior to  in that it deals with properties. This
represents a difference in ’s focus: protocol deployment rather than development.
, Casper, AVISS [3] and CVS [13] use the % operator to annotate when values

cannot be understood and must be treated as black boxes. Our transformation essentially
generates these annotations are generated where information asymmetries exist.

Jacquemard et al. [16] compile whole-protocol specifications into rewrite rules that
model the protocol and can be verified with the daTac theorem-prover. This system
specifies the protocol as well as properties about it. The main advantage over Casper,
etc. is that daTac can be used to handle infinite state models. In their work, they deal with
information asymmetries by tracking the knowledge available to each principal at each
point of the protocol. However, they do not revisit earlier message components that were
treated as black boxes when the knowledge needed to inspect their contents becomes
available as we do. This process of dealing with idioms and information asymmetries
is embedded in their semantics, rather than an orthogonal step (as we present it).

Explication. Bodei et al. [5] mention the idioms of traditional protocol specifications. In
their work they give some advice for how to manually make such specifications explicit,
but they do not automate this process.

Briais and Nestmann [6] investigate the formal semantics of traditional protocol
specifications. They address three of four forms of informality mentioned by Abadi [1].



Only two of these correspond to parts of our transformation or specification language.
First, to “make explicit what is known before a protocol is run”, which we require in the
 specification. Second, to “make explicit ... what is to be generated freshly during
a protocol run”, which we detect as step one of our transformation. In their work, they
do not require the usage of the % operator, but they do not revisit old messages, when
more information is available, as we do.

Caleiro et al. [8] study the semantics of traditional protocol specifications. In their
work, they focus on the internal actions of principals. They give a manual strategy for
encoding traditional whole-protocol specifications into a number of single-role spec-
ifications in their semantic framework. Their denotational semantics of these specifi-
cations makes explicit when and how incoming messages are checked and outgoing
messages generated. They also provide a transformation of their specifications into a
variant of the spi-calculus [2]. They prove that this transformation is meaningfully re-
lated to the denotational semantics. In contrast, our work takes traditional specifications
mostly as-is and directly provides a semantics in the strand spaces model. We also pro-
vide a formally verified compilation to  for deployment purposes. An important
similarity in the two works is that in the their approach messages that cannot be un-
derstood are represented as variables in their “incremental symbolic runs”, while in our
approach, the idiom removal transformation introduces these variables directly into the
specification and checked when possible.

 and Process Calculi.  is uncommon amongst cryptographic protocol calculi
and verifiers. Verifiers typically work with process calculi languages, such as the spi-
calculus [2]. In contrast to spi,  is not intended to be verified directly; instead, it
is meant to be used in implementations. Verification of  specifications is through
its semantic interpretation—the strand spaces model. This model has a rich body of
analysis research, as well as formal relations to many other verification methods, which
our work can seamlessly leverage for verification purposes.

7 Conclusion

We have presented , a programming language for whole-protocol specification,
along with an end-point projection from  to . We have shown that this projec-
tion is correct through verified proofs. We have also given a transformation that resolves
idioms in traditional protocol presentations. We have shown properties of this transfor-
mation with verified proofs. We have validated our transformations by applying them
successfully to eighty-six percent of the protocols in the  repository. In the future,
we would like to extend  to support conditional and parallel execution, and better
integrate our work with the existing results from Carbone, et al., for Web Services [9].
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