
Minimal Backups of Cryptographic Protocol Runs

Jay A. McCarthy
∗

Brigham Young University
Provo, UT

jay@cs.byu.edu

Shriram Krishnamurthi
Brown University
Providence, RI

sk@cs.brown.edu

ABSTRACT
As cryptographic protocols execute they accumulate infor-
mation such as values and keys, and evidence of properties
about this information. As execution proceeds, new infor-
mation becomes relevant while some old information ceases
to be of use. Identifying what information is necessary at
each point in a protocol run is valuable for both analysis and
deployment.

We formalize this necessary information as the minimal
backup of a protocol. We present an analysis that determines
the minimal backup at each point in a protocol run. We
show that this minimal backup has many uses: it serves
as a foundation for job-migration and other kinds of fault-
tolerance, and also assists protocol designers understand the
structure of protocols and identify potential flaws.

In a cryptographic context it is dangerous to reason infor-
mally. We have therefore formalized and verified this work
using the Coq proof assistant. Additionally, Coq provides
a certified implementation of our analysis. Concretely, our
analysis and its implementation consume protocols written
in a variant of the Cryptographic Protocol Programming
Language, cppl.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods; D.2.5 [Testing and Debugging]: Diagnostics; F.3.1
[Specifying and Verifying and Reasoning about Pro-
grams]: Miscellaneous

General Terms
Languages, Reliability, Security, Theory, Verification

Keywords
Cryptographic protocols, CPPL, Strand Spaces, Coq

∗Work completed at Brown University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE’08, October 27, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-60558-288-7/08/10 ...$5.00.

1. PROBLEM AND MOTIVATION
Each cryptographic protocol has a goal. This goal is

conveniently expressed as data and properties about that
data. For example, a two-party key agreement protocol’s
goal might be a key (the data) that is shared only between
two parties (the property). This property expresses the re-
lationship between three pieces of data: the key and the
identities of the two parties.

Each step of a protocol can be seen as advancing towards
the ultimate goal. Some steps provide necessary data. Some
steps provide evidence that a property is true. And other
steps serve to provide these two kinds of information to other
parties.

The evidence of properties may not be explicitly in the
protocol. Consider an authentication test [7]: protocol role
P receives a nonce1 that uniquely originated in a message
sent by P encrypted with Q’s public key. That P received
the nonce back enables P to conclude that Q received and
acted on the message (provided Q’s private key is not com-
promised). The evidence of this property is not explicitly in
the protocol. These kinds of properties are often checked in
formal verification models, such as strand spaces [22].

The evidence of other properties are explicitly in the pro-
tocol, in the form of rely-guarantee formulas [8]. To use this
technique, each message transmission is annotated with for-
mulas that express properties about the transmitted values,
and each message reception is annotated with formulas that
express properties about the received values. Formulas on
transmission must be guaranteed, or checked, by the trans-
mitting party, while formulas on reception are assumed to
be true. Such a protocol is sound if, in every execution, for
every reception, the assumed formulas are guaranteed earlier
in the execution (perhaps by another party).

This process of learning information and converging to-
wards the final goal may be made up of smaller protocols
that establish contingent, intermediate goals. For example,
a protocol to secretly exchange some information may begin
with a key agreement protocol to produce a session key. This
process of sub-protocol invocation may be implicit, i.e., the
main protocol embeds a sub-protocol pattern, rather than
explicitly calling another protocol.

This structure is revealed when we consider what informa-
tion (data and explicit evidence) is necessary at each step of
a protocol run. For example, a key agreement protocol may
use a nonce Nk to prevent replay attacks; when this protocol
is used as a sub-protocol, after the session key is provided,

1Nonces are unique random values intended to be used only
once; they are used, e.g., to protect against replay attacks.

Nk is no longer necessary, i.e., it never appears in message
transmissions, receptions, or formula annotations. Data and
properties can become unnecessary. In the case of the nonce,
properties about its freshness may be unnecessary as well.

Thus far we have only discussed why the necessary infor-
mation at a step of a protocol is valuable; we do not know
if it can be known. It seems plausible that we should be
able to know what information is sufficient for a protocol to
continue, because this is essentially a backup of the proto-
col run. However, the necessary information is effectively a
minimal backup: the smallest backup that allows the proto-
col to continue.

Our solution is to first define and compute backups of
cryptographic protocol runs, then we will prove that they are
minimal by a particular ordering. This solution strategy has
the added benefit of giving us an “optimal” fault-tolerance
strategy in the form of minimal backups.

Since our backups are minimal, and therefore capture the
necessary information at a protocol step, they provide a rich
diagnostic to protocol researchers. We show how studying
the minimal backup can detect certain kinds of flaws in cryp-
tographic protocols. We discuss how the structure of a pro-
tocol is revealed by how the minimal backup changes over
time. We evaluate a test-suite of protocols [15] using this di-
agnostic method and discuss our findings. We find (Sec. 7)
that almost all protocol roles discard over 60% of their avail-
able information at some point, thereby demonstrating their
structure.

Our work is presented in the context of an adaptation
of cppl, the Cryptographic Protocol Programming Lan-
guage [6]. We have built an actual tool and applied it to
concrete representations of protocols, as we discuss in Sec-
tion 7. All our work is formalized using the Coq proof assis-
tant [23], and we make our formalization freely available2.
Coq provides numerous advantages over paper-and-pencil
formalizations. First, we use Coq to mechanically check our
proofs, thereby bestowing much greater confidence on our
formalization and on the correctness of our theorems. Sec-
ond, because all proofs in Coq are constructive, our tool is
actually a certified implementation that is extracted auto-
matically in a standard way from our formalization, thereby
giving us confidence in the tool also. Finally, being a mech-
anized representation means others can much more easily
adapt this work to related projects and obtain high confi-
dence in the results.

2. INFORMAL SOLUTION
In this section we provide the high-level overview of our

solution to the minimal backup problem. Afterwards, we
develop the formal framework and then present our findings.

Protocols.
Figure 1 presents the Andrew Secure RPC [19] protocol.

(See Sec. 3 for details of the message syntax.) The essence
of a cryptographic protocol is a list of messages to be sent
or received on a network. A reasonable adversary has the
ability to inject or redirect messages, so we cannot rely on
where the informal descriptions indicate a message should
be sent to or received from.

These messages are decorated with formulas that express

2Sources are available at:
http://www.cs.brown.edu/research/plt/dl/fmse2008/.

a knows a:name b:name kab:symkey

learns kabn:symkey

b knows a:name b:name kab:symkey

learns kabn:symkey

1 a -> b : a, {|na:nonce|} kab

2 b -> a : {|na:nonce, nb:nonce|} kab

3 a -> b : {|nb:nonce|} kab]

4 b -> a : {|kabn:symkey, nbn:nonce|} kab

Figure 1: Andrew Secure RPC Protocol

properties about values in the messages. In the Andrew
protocol, these formulas would express the freshness of the
nonces na, nb, and nbn and the key kabn. The evidence of
these formulas would be the generation time of the value.
Executions may compare this time with the current time at
their use to ensure the assumptions about the capacity of
the adversary are valid. (For example, an execution may
assume that a nonce can be guessed after T seconds and
ensure that this interval has not passed.)

Backups.
The intuitive picture of a protocol as a list of messages

gives rise to a natural understanding of a protocol backup:
a backup after a step of the protocol is (a) the data necessary
to produce or understand the rest of the messages and (b)
the evidence of formulas relevant to this data. We formalize
this intuition in Section 4.

Consider the Andrew protocol from the perspective of the
B role. Before the protocol starts, i.e., before step 1, the only
necessary data is the initial knowledge of the role. However,
between steps 1 and 2, it is necessary to remember na, so it
can be sent back to role A. Similarly, between steps 2 and 3,
it is necessary to remember nb, so that A’s response can be
checked, and that it was uniquely generated locally, so that
its freshness can be checked as well.

Minimal Backups.
We must define an ordering on backups before we are able

to meaningfully describe a backup that is minimal. Intu-
itively, a backup a is smaller than a backup b, when the mes-
sages are physically smaller and the formulas are stronger,
i.e., any formula of b can be deduced from the formulas in a.
(A formula could express a property such as “A is even”, “A
is prime”, or “A is 2”. The latter property is stronger than
the first two, since they can both be derived from it.) For
details, see Section 4.1.

Computing the Minimal Backup.
When we compute the minimal backup, we must ensure

that (a) minimality is achieved and (b) that the content
is available at the correct point in the protocol run. This
part of work is highly dependent on our formalization of
protocols, so we must simply refer the reader to Section 5.1.

After computing the content of the backup, we must cal-
culate the relevant formulas, i.e., the formulas about the
necessary data. The interesting part about this is that the
formulas and backup content are defined inductively. We
ensure that this set is finite and computable in Section 5.2.

s → . | sd⇒ s
sd → +m,Φ | −m,Ψ
m → nil | v | k

| (m,m′) | hash(m) | < v = m >
| [m]v | [|m|]v | {m}v | {|m|}v

v, u → x : t
t → text | msg | nonce
| name | symkey | pubkey | channel

Figure 2: Strand Spaces Syntax

Outline.
We formalize our notion of cryptographic protocols in

Sec. 3. We define the notion of protocol backups and provide
an ordering on backups in Sec. 4. We show how to provably
compute the minimal backup for a protocol at any given
point in its execution in Sec. 5 using the Andrew protocol
role as an example. Finally, we discuss our findings, related
work, and our conclusions.

3. INTRODUCTION TO STRAND SPACES
The essence of a cryptographic protocol is a list of mes-

sages that are sent and received. These messages are dec-
orated with the trust management formulas that they rely
on or guarantee. This intuition precisely matches the ex-
tant strand space [21] model of cryptographic protocols ex-
tended with trust managment formulas [8]. Naturally, peo-
ple will not want to specify a protocol at this level of ab-
straction. This model is, however, the semantic interpre-
tation of the practical cryptographic protocol programming
language, cppl, discussed at the end of this section. There
is, therefore, a convenient notation that corresponds to this
semantics.

3.1 Syntax
Our syntax of strands is presented in Figure 2.3 Figure 3

presents the strand encoding of role B of the Andrew Secure
RPC [19] protocol (Fig 1). This strand only encodes half
of the protocol; another strand would be necessary to fully
encode the protocol.

A strand (s) is a list of strand descriptions (sd), where “.”
represents the empty strand and sd⇒ s represents combin-
ing one description (sd) with the rest of the strand (s). A
strand description is either: +m,Φ, which represents guar-
anteeing the formulas Φ and sending m; or, −m,Ψ, which
represents receiving the message m and relying on the for-
mulas Ψ.

Formulas in relies and guarantees may contain strand iden-
tifiers, in addition to logical variables and strand values. If
bound in the environment at runtime, a strand identifier
will be replaced in Φ (Ψ) by the value to which it is bound;
if not yet bound, it serves as a query variable that will be
bound as a consequence of a trust management call. Logical
variables in a trust management formula, if they occur, are
interpreted implicitly universally.

We use m for message patterns. They may be constructed
by concatenation (,), hashing (hash(m)), variable binding
and pattern matching (< v = m >), asymmetric signing ([m]v),

3The syntax and semantics of the formulas is a parameter
of the language.

symmetric signing ([|m|]v), asymmetric encryption ({m}v),
and symmetric encryption ({|m|}v). In these last four cases,
v is said to be in the key-position. For example, in the An-
drew role kab is in key-position on line 2. Concatenation
is right associative. Parentheses (“(” and “)”) are informally
used to control precedence.

We write vars(. . .) to refer to the identifiers that appear in
a syntactic object. We write bound(. . .) for those identifiers
that are bound by the object.

3.2 Semantic Interpretation
A strand merely specifies what messages are sent and re-

ceived. In this model, a protocol designer regards the cryp-
tographic primitives as black boxes, and concentrates on the
structural aspects of the protocol. The representation does
not specify to whom messages are sent or from whence they
are received. This corresponds to the Dolev-Yao model [3]
that allows an adversary to have maximal power to manip-
ulate the protocol by modifying, redirecting, and generating
messages ex nihilo. This ensures that proofs built on the
semantics are secure in the face of a powerful adversary.

The basic abilities of adversary behavior that make up
the Dolev-Yao model, including: transmitting a known value
such as a name, a key, or whole message; transmitting an
encrypted message after learning its plain text and key; and
transmitting a plain text after learning a ciphertext and
its decryption key. The adversary can also manipulate the
plain-text structure of messages: concatenating and sepa-
rating message components, adding and removing constants,
etc. Since an adversary that encrypts or decrypts must learn
the key from the network, any key used by the adversary—
compromised keys—have always been transmitted by some
participant.

A useful concept when discussing the adversary is a uniquely
originating value. This is a value that only originates (enters
the network) at one unique location. Nonces and other ran-
domly generated data are perfect examples of unique orig-
ination. By definition, the adversary cannot know these
values until they have sent in an unprotected context.

A strand is local in the sense that it describes what one
principal P does. This involves deciding what values to bind
to identifiers; what messages to send; how to process a mes-
sage that is received; and how to select a procedure to call as
a sub-protocol. A strand says nothing about how messages
are routed on a network; nothing about what another prin-
cipal P ′ does with messages received from P ; nothing about
how another principal P ′′ created the messages that P re-
ceives; etc. Likewise, it describes only the execution of one
protocol role. In essence, the execution semantics describes
only a single principal executing a single run of a single role.

To reason about a protocol’s execution as a whole, we need
to combine strands. We do this using the global bundle se-
mantics as provided by earlier work [6]. But, the details of
this are not important for our purposes, because our work
naturally focuses on the local semantics, i.e., the execution
at a single server, rather than the global semantics. How-
ever, it is incredibly important when actually using strand
spaces to verify protocols to include this step in the analysis.

3.3 The Runtime Environment
To explain how strands execute, we must first introduce

the notion of a runtime environment. In our view of protocol
behavior, as a principal executes a single local run of a pro-

0 − ("call", pr:name, "b", ai:nonce, a:name, b:name, kab:symkey), ⇒
1 + ("accept"), accept([chana:channel])⇒
2 − ("msg", chana, a, {| na:nonce |} kab), ⇒
3 + ("new_nonce"), new_nonce([nb:nonce])⇒
4 + ("msg", chana, {| na, nb |} kab), ⇒
5 − ("msg", chana, {| nb |} kab), ⇒
6 + ("new_nonce"), new_nonce([nbn:nonce])⇒
7 + ("new_symkey"), new_symkey([kabn:symkey])⇒
8 + ("msg", chana, {| kabn, nbn |} kab), ⇒
9 + ("ret", ai, kabn), ⇒ .

Figure 3: Andrew Secure RPC Role B Strand

tocol, it builds up an environment that binds identifiers to
values encountered. As in logic programming, these bind-
ings are commitments, never to be updated; once a value
has been bound to an identifier, future occurrences of that
identifier must match the value or else execution of the run
aborts. For example, on line 2 of the Andrew role, the value
for a must be the same as was received on line 0; any other
value will prevent execution of the run from continuing.

We also have an auxiliary notion of guaranteeing formu-
las Φ in a runtime environment. This means asking the
runtime trust management system to attempt to prove the
formulas Φ. This occurs on line 1 of the Andrew role (Fig. 3),
where the formula accept([chana:channel]) is guaranteed.
Identifiers in Φ already bound in the runtime environment
are instantiated to the associated values. Identifiers not yet
bound in the runtime environment are instantiated by the
trust management system, if possible, to values that make
the formulas Φ true. Thus, on line 1 of the Andrew role, a
new channel is instantiated to accept a connection. The run-
time environment extended with these new bindings is the
result of successfully guaranteeing Φ. Thus, on line 1 of the
Andrew role, the identifier chana is bound. If the runtime
trust management system fails to establish an instance of Φ
the guarantee fails. This notion of guaranteeing is employed
whenever a message is sent.

Finally, there is the notion of relying on formulas Ψ in a
runtime environment. This means adding assumptions (or
“facts” in Datalog terminology) to the runtime trust man-
agement system. As with guarantees, identifiers in Ψ must
have the same values as those in the runtime environment.
These facts are available for future instances of guarantee-
ing. The Andrew role (Fig. 3) does not contain any relies.
However, if on line 2 there was a formula, it would be relied
upon. In general, relying is employed whenever a message
is received.

These trust management notions coalesce into the cru-
cial definition of protocol soundness: a protocol is sound if
whenever a principal relies on a formula, another principal
has previously guaranteed it. This dimension of protocol
analysis and verification—commitment and trust—greatly
enhances the utility and expressiveness of strands.

3.4 Well-formedness
Compilers use bnf context-free grammars to syntactically

parse programs. They must also use context-sensitive rules

Nil

σ `s nil

Var
v ∈ σ
σ `s v

Const

σ `s k

Join
σ `s m σ `s m

′

σ `s (m,m′)

Hash
σ `s m

σ `s hash(m)

Bind
σ `s m

σ `s< (i : msg) = m >

SymEnc
i ∈ σ σ `s m

σ `s {|m|}(i : symkey)

SymSign
i ∈ σ σ `s m

σ `s [|m|](i : symkey)

PubEnc
i ∈ σ σ `s m

σ `s {m}(i : pubkey)

PubSign
i ∈ σ σ `s m

σ `s [m](i : pubkey)

Figure 4: Message well-formedness (sending)

to determine which syntactic expressions are legal programs:
e.g., when the syntax refers only to bound identifiers. Sim-
ilarly, not all strands describe realizable protocols. For ex-
ample, (+x, ⇒ .) cannot be realized, because it does not
account for where the value for x comes from. Like a pro-
gramming language, every identifier in a strand must be
bound for it to be well-formed.

The only surprising aspect of the well-formedness condi-
tion on strands is that, due to cryptographic primitives, the
conditions are different on message patterns used for sending
and receiving.

Intuitively, to send a message we must be able to con-
struct it, and to construct it, every identifier must be bound.
Therefore, a pattern m is well-formed for sending in an en-
vironment σ (written σ `s m herein; see Figure 4) if all
identifiers that appear in it are bound. For example, the
message on line 4 of the Andrew role is well-formed, but if
we removed line 3 it would not be, because nb would not be
bound.

A similar intuition holds for using a message pattern to re-
ceive messages. To check whether a message matches a pat-
tern, the identifiers that confirm its shape—namely, those
that are used as keys or under a hash—must be known to
the principal. Thus, we define that a pattern m is well-

Nil

σ `r nil

Var

σ `r v

Const

σ `r k

Join
σ `r m σ `r m

′

σ `r (m,m′)

Hash
σ `s m

σ `r hash(m)

Bind
σ `r m

σ `r< (i : msg) = m >

SymEnc
i ∈ σ σ `r m

σ `r {|m|}(i : symkey)

SymSign
i ∈ σ σ `r m

σ `r [|m|](i : symkey)

PubEnc
i ∈ σ σ `r m

σ `r {m}(i : pubkey)

PubSign
i ∈ σ σ `r m

σ `r [m](i : pubkey)

Figure 5: Message well-formedness (receiving)

formed for receiving in an environment σ (written σ `r m;
see Figure 5) if all identifiers that appear in key-positions
or hashes are bound. For example, the message pattern
on line 2 of the Andrew role is well-formed because kab is
bound, but if it were not, then the pattern would not be
well-formed.

We write σ ` fs to mean that the formulas fs are well-
formed in the environment σ. This holds exactly when the
identifiers mentioned in fs are a subset of σ.

We write σ ` sd to mean that the strand description sd
is well-formed in the environment σ.

σ ` +m,Φ holds if and only if σ ` Φ and σ ∪ bound(Φ) `s

m; this corresponds to the intuition that Φ is guaran-
teed and then the message m is sent.

σ ` −m,Ψ holds if and only if σ `r m and σ ∪
bound(m) ` Ψ; this corresponds to the intuition that
m is received and then Ψ is relied upon.

We write σ ` s to mean that the strand s is well-formed
in the environment σ.

σ ` . holds for all σ.

σ ` sd ⇒ s holds if and only if σ ` sd and σ ∪
bound(sd) ` s, corresponding to the intuition that
strands describe an order of message reception and
transmission.

3.5 Pragmatics
Naturally, no one would actually write down the strand

semantics of a protocol initially. Therefore, we provide a
domain-specific language, an extension of cppl [6], to spec-
ify protocols in a more natural style. The semantic inter-
pretation of this language is a set of strands, representing
every possible path through a protocol. The language ex-
tends the original work with assertions, message let-values,
empty messages, and failure continuations. Additionally, we
provide a definition of well-formedness that ensures that ev-
ery strand interpretation of a well-formed cppl program is
a well-formed strand. Figure 6 shows the cppl encoding of
the Andrew B role from above.

1 proc b (a:name b:name kab:symkey) _

2 let chana = accept in

3 recv chana (a, {| na:nonce |} kab) -> _ then

4 let nb = new nonce in

5 send _ -> chana {| na, nb |} kab then

6 recv chana {| nb |} kab -> _ then

7 let nbn = new nonce in

8 let kabn = new symkey in

9 send _ -> chana {| kabn, nbn |} kab then

10 return _ (kabn)

11 else fail

12 else fail else fail

13 else fail

14 end

Figure 6: Andrew Secure RPC Role B in cppl

4. DEFINITION OF A BACKUP
Intuitively, the backup at point p is a message that can

be generated at point p and if received later can be used to
completely reconstruct the state at p sufficiently to execute
the rest of the protocol run. For example, at step 0 of our ex-
ample protocol (Fig. 3), the backup only contains the initial
knowledge of the roles, because the protocol has not done
any work. Before step 9, when ai and kabn are to be sent, it
is clearly necessary to know them. The backup should also
contain the evidence of any formulas related to ai or kabn.
In this case, the only formula is new_symkey(kabn:symkey)

from step 7.
This satisfies the second part of our intuition: if we re-

ceived ai, kabn, and evidence of new_symkey(kabn:symkey),
then we could complete this strand from step 9. Does this
backup meet the first part of the intuition? Can it be gen-
erated at step 9? It certainly can: ai is bound at step 0,
kabn is bound at step 7, and new_symkey(kabn:symkey) is
guaranteed (evidence is provided) at step 7.

With this intuition, we will now formally define a backup.

Definition A pair of a message m and the evidence of the
properties associated with the formulas fs is the backup of
the well-formed strand sl⇒ sr after sl if and only if:

1. The message m can be generated and the evidence of
the formulas in fs can be provided after sl: ∅ ` sl⇒
+m, fs⇒ .

2. sr can be executed after receiving message m and the
evidence of the formulas fs: ∅ ` −m, fs⇒ sr

3. fs entails all relevant formulas: If x is an identifier in
sr, m, or fs and f is a formula in sl that mentions x,
then f must be entailed by fs.

The first condition corresponds to the intuition that a
backup must be generated at the given point in the protocol.
The second condition formalizes the intuition that the rest of
the protocol must be executable by consulting the backup.
The third and final condition corresponds to the intuition
that all of the relevant properties must be deducible from
the backup, where relevance is defined as mentioning any
identifier in the backup (m or fs) or the rest of the protocol
(sr).

Preservation.
It may not be immediately clear how or why this definition

of a backup preserves the semantic meaning of protocol. The
backup assumes that the strand sl has executed (per con-
dition one.) The backup message allows the strand sr to be
executed (per condition two.) Since the protocol run is en-
tirely described by the run of sl⇒ sr, we must only explain
why this is equivalent to sl ⇒ +m, fs ⇒ −m, fs ⇒ sr.
Clearly the beginning and the end are equivalent. The ac-
tual recording and reading of the backup, however, is not
so clear. This is where we must assume that the backup is
completely and entirely secure and invisible to the outside
world: if it were not, then these actions would be potentially
dangerous, and therefore, not equivalent. Since we assume
that they are safe, they can be ignored for the purposes of
the semantics of the protocol. Therefore, using backups pre-
serves meaning precisely: there are no more or less attacks
the adversary is capable of.

It is conceivable to not make this assumption and still
maintain security. For example, we could encrypt every
backup message with a key known only to the principal be-
fore recording it. We do not need to be specific about what
mechanism is used for this purpose.

4.1 Minimality
Since our goal is to compute the minimal backup of a pro-

tocol at a certain point, it is necessary to define an ordering
on backups. We have defined a backup as a pair of a message
m and a set of formulas fs, so we must provide an order-
ing on these, then combine those orderings to construct one
ordering on backups.

Intuitively, a message m is smaller than a message m′

when it is physically smaller, i.e., uses less bits. However,
backup messages are just sequences of values, not general
messages, i.e., they do not contain encryption, hashing, etc.
Therefore, we abstract the backup message to the set of
identifiers that appear in the message. We approximate the
physical ordering by the subset relation. For example, (a)
is smaller than (a,b), which is smaller than (a,b,c).

The meaningful partial order on sets of formulas is in
terms of entailment. Φ entails Ψ, when for every ψ ∈ Ψ,
Φ |= ψ. The formula “A is 2” entails the two formulas “A is
even” and “A is prime”.

Given these definitions of ordering, is it feasible that a
“smallest” object exists? In the case of the values, clearly
the subset relation has this property. However, for formulas
the situation is more murky. For example, two formulas may
entail each other, and therefore are interchangeable in any
backup, so backups are not unique. Therefore, we will not
be able to compute the “minimal” backup (since this implies
a uniqueness we cannot attain.) Instead, we will guarantee
one member of the equivalence class of backups under this
notion of formula equivalence.4

5. COMPUTING THE MINIMAL BACKUP
Using the ordering on backups given above, our goal is to

compute the minimal backup. There are two parts of this
task: (1) calculating the message content and (2) calculating
the relevant formulas. Because the relevant formulas are
dependent on the message content—any formulas relevant

4Astute observers will recall Church’s Theorem, which im-
plies that in reasonable logics “A iff B” is undecidable.

to identifiers in the message are relevant—we calculate the
message content first, then show how to find the relevant
formulas.

We will provide a running example by considering the
backup at point 8 in the Andrew protocol (Fig. 3).

5.1 Backup Content
Our general strategy for computing the necessary data to

include in the backup of sl⇒ sr is:

1. Consider the smallest set σ such that σ ` sr.

2. Construct a message, m, that binds σ.

3. Prove that m is well-formed for sending after the exe-
cution of sl, i.e., condition (1) of a backup.

4. Prove that sr is well-formed after receiving m, i.e.,
condition (2) of a backup.

Computing σ.
σ can be computed through a number of proofs and simple

manipulations of sets, combined with a lot of tedious work
at the bottom-most point. We will walk through the high-
level process and leave out the tedium. As a notational
convenience, we will write sset(x) for the smallest set σ such
that σ ` x, where x may be a strand, strand description,
message, or formula. We write ssetr(x) and ssets(x) for
the smallest set such that the message x is well-formed for
receiving and sending, respectively.

We first prove the trivial theorem that sset(.) = ∅ (recall
that . is the empty strand). We then prove that for strand
description sd and strand s,

sset(sd⇒ s) = sset(sd) ∪ (sset(s)− bound(sd)).

The rationale of this theorem is very clear: strand descrip-
tions introduce bindings, which could not possibly be in the
backup, and they require bindings, which must be in the
backup.

Next, we do a similar case analysis on strand descriptions.
For the receiving strand description −m, fs, we show that

sset(−m, fs) = ssetr(m) ∪ (sset(fs)− bound(m)).

Intuitively, a message m has data that are necessary to de-
construct it, such as keys or hash contents, (ssetr(m)), after
which it binds identifiers (bound(m)) that are referred to
(sset(fs)) by the relied-upon formulas, fs. For the send-
ing strand description +m, fs, we have a dual formulation
where

sset(+m, fs) = sset(fs) ∪ (ssets(m)− bound(fs)).

Intuitively, a principal guarantees a number of formulas fs,
then constructs a message m, which refers to some identi-
fiers (ssets(m)), that may have been bound by the formula
derivations (bound(fs)).

At the bottom, it remains to define the smallest sets for
formulas, sent messages, and received messages. Each of
these is very straight-forward and tedious: The identifiers
mentioned by a formula are the smallest set for a set of
formulas; The identifiers mentioned by a sent message are
the smallest set; and, the keys and hash contents are the
smallest set for a received message.

Example. In our example, the necessary set is
{chana, kabn, nbn, kab, ai}, because all these are referred to

in the strand starting at point 8. In this case, there are no
identifiers bound, so nothing is subtracted from the set at
any point.

Constructing the message m.
It is trivial to construct a message that binds σ: sim-

ply include each member of σ in the message, i.e., m =
x1, x2, . . . , xn, where xi is the ith element of σ. We addi-
tionally prefix the message with the constant "backup" and
an integer indicating the point in the protocol. This is a nod
to the practical concern that it is necessary to ensure that
backups at different points cannot be confused.

Example. In the example, the backup message is: ("backup",
"8", chana, kabn, nbn, kab, ai). In this message, both
nbn and ai are nonces that can be used to distinguish back-
ups of different sessions.

Proving well-formedness of m.
We must prove that m is well-formed. If it is not, then

an implementation will not be able to generate the backup.
Recall that a backup of sl⇒ sr is only defined if the strand
is well-formed, i.e., ∅ ` sl ⇒ sr. We will use this to prove
that the message m is well-formed after sl, i.e., it can be
generated after sl. We first prove the following theorem:

Theorem 1. (type_strand_cut) For strands s and s′,
Σ ` s⇒ s′ if and only if Σ ` s and Σ ∪ bound(s) ` s′.

Proof summary. Induction on the length of the strand
s combined with set theory identities.

Based on this general result, it is simple to prove that m
is well-formed. First, we can read off that ∅ ` sl ⇒ sr

implies bound(sl) ` sr. Since we know σ is the smallest set
such that σ ` sr, we can conclude that σ ⊆ bound(sl), i.e.,
the necessary data is present. Then, we prove that θ ` m if
and only if vars(m) ⊆ θ, when m is a message that has the
form x1, x2, . . . , xn, as our backup message does. Therefore,
bound(sl) ` m, because vars(m) = σ and σ ⊆ bound(sl).

Example. In our example, the message is well-formed be-
cause each identifier is bound somewhere before point 8:
chana is bound at point 1; kabn at point 7; nbn at point 6;
kab and ai at point 0.

Proving well-formedness of sr.
Our construction of m allows for a concise proof of ∅ `
−m, ⇒ sr, because we constructed m such that the iden-
tifiers bound are exactly sset(sr). This is the smallest set σ
such that σ ` sr, so clearly ∅ ` −m, ⇒ sr.

Example. In our example, the rest of strand is well-formed
because m binds all the identifiers necessary:
{chana, kabn, nbn, kab, ai}.

5.2 Computing the formulas
A backup must also entail all formulas relevant to the

data. A minimal backup includes that smallest such set.
Therefore, we must (a) identify the relevant formulas and
(b) compute the minimal set that entails them all.

Relevant formulas.
A formula is considered relevant to a value if it contains a

reference to its binding. For example,“A is prime”is relevant
to the value A. Some formulas mention values not otherwise
contained in the backup data. For example, suppose that

the backup data is only A, but a formula relevant to A is
“A + B = C”. Since this formula references B and C, they
must be included in the backup set as well. Furthermore,
any formulas relevant to B and C must also be included.

Thus, the relevant formulas of a backup are an induc-
tively defined set. We must prove that this set is finite and
computable. If it is not finite, then it cannot be realistically
saved. If it is not computable, then it cannot be constructed,
used, or studied.

Theorem 2. The set of relevant formulas is finite and
computable for all backups of all protocols.

Proof summary. We rely on the finite length of strands
and the finite number of formulas attached to any point
in the strand. Since the set of all formulas of a strand is
finite and computable, and because identifier reference is
computable, we can easily construct the set of relevant for-
mulas.

Strongest formulas.
Once we have the set of relevant formulas, we must select

the minimal, or strongest, subset, i.e., the smallest set such
that all relevant formulas are entailed.

In our protocol environment, cppl, the logic of formulas
is not specified. Instead, it is left as a parameter, so that
whatever logic is necessary for a particular protocol may be
used. Therefore, we cannot define the minimality calculation
in general, since some logics do not have a computable notion
of entailment, and push this burden on the provider of the
logic.

However, a very common logic is a simple predicate lan-
guage combined with a database. This is the logic used by
the Andrew Secure RPC example. In this logic, entailment is
mapped to inclusion in the database. Therefore, no formula
entails anything but itself, and the minimality calculation is
trivial: each set is minimal for itself.

5.3 Putting Together the Pieces
At this point, we can give our minimum backup of the

strand sl⇒ sr: It is the message m that binds sset(sr) as
well as all identifiers mentioned in Φ, where Φ is the relevant
subset of the formulas that appear in sl.

It is necessary to prove that this backup—m and Φ—
satisfy the three conditions on backups: (1) ∅ ` sl ⇒
+m,Φ ⇒ .; (2) ∅ ` −m,Φ ⇒ sr; and (3) If x is an identi-
fier mentioned in sr, m, or Φ and f is a formula in sl that
mentions x, then f must be deducible from Φ.

Each of these properties is verified easily by the construc-
tion of the various parts. The backup values, m, were con-
structed such that (1) and (2) hold, and modified in a sound
way during the the relevant formula calculation. Property
(3) holds by definition of our computation of the relevant
formula set.

We present the minimal backup at each point of role B of
the Andrew Secure RPC protocol in Table 1.

6. INSIGHTS
As mentioned earlier, the minimal backup of a protocol

provides some subtle insights into its structure. This ca-
pability comes from a principled understanding of what the
minimal backup is: an extensional description of what is

Step Values Formulas
0 {} {}
1 {kab, ai} {}
2 {kab, ai, chana} {accept(chana)}
3 {kab, ai, chana, na} {accept(chana)}
4 {kab, ai, chana, na, nb} {accept(chana), new nonce(nb)}
5 {kab, ai, chana, nb} {accept(chana), new nonce(nb)}
6 {kab, ai, chana} {accept(chana)}
7 {kab, ai, chana, nbn} {accept(chana), new nonce(nbn)}
8 {kab, ai, chana, nbn, kabn} {accept(chana), new nonce(nbn), new symkey(kabn)}
9 {ai, kabn} {new symkey(kabn)}

Table 1: Andrew Secure RPC Role B Backups

relevant at each point in the protocol. This extensionality
allows us to easily compare and understand protocols.

For example, when the minimal backup at points i and j
of a protocol are the same, then the protocol has the same
requirements at each of those points. This is extremely dan-
gerous, because it means that in principle there is nothing
preventing a protocol from skipping directly to point j after
point i−1. The example protocol, Andrew Secure RPC [19],
has this property. Notice in the minimal backup table (Ta-
ble 1) that the backup contents are identical at steps 2 and
6. This means that role B can skip the execution of steps 3
through 5. This directly corresponds to a known attack on
the protocol [1].

We learn interesting things about the structure of a pro-
tocol even when the minimal backups at two points in the
protocol are not identical. Suppose that the only difference
between the minimal backups at points 2 and 5 of a protocol
is a single identifier, nb. This means that the points in be-
tween must have been for the very purpose of acquiring nb. If
this is not actually the case, then something must be wrong
with the protocol. An alternative take on this problem is
to check when some value is learned without the generation
of a new nonce to provide an authentication challenge; this
pattern reveals the kinds of errors discussed by Lowe [13].
For example, the Denning-Sacco protocol [2] contains only
one nonce, rather than two as Lowe suggests. We intend on
using this intuition to automatically construct attacks on
protocols, but do not pursue that avenue in this work.

This is an example of a general principle: when the size of
the minimal backup decreases, then some sub-task has been
completed. This reveals the structure of the protocol. In the
extreme case, when the size of minimal backup decreases to
zero, then this means that the protocol’s past is independent
of its future. Another way of thinking of this case is that
what is presented as one protocol is in fact two independent
protocols. Naturally, a good cryptographic protocol will not
have this property, but many other protocols do: for exam-
ple, after a request-response sequence in http, the protocol
essentially starts afresh. Our analysis would show this as
the minimal backup becoming empty.

7. APPLICATIONS
Although we present minimal backups primarily as a di-

agnostic tool, they are useful in practical applications. The
most obvious application of minimal backups is, of course, as
a backup. If the minimal backup is stored on secure, non-

volatile storage, then it can be used to recover a running
protocol session from a failure. Job migration is a natural
out-cropping of this application, as migration can be un-
derstood as causing a “failure” and “recovering” from it at
another location. Of course, in a deployment where the pro-
tocol is part of some larger service, it is also necessary to
handle tcp state (e.g., [14, 20]), persistent service data [12],
et cetera [4], but the minimal backup of the cryptographic
protocol provides the foundation of the entire fault-tolerance
milieu. Both of these applications provide core components
of a scalability strategy designed to handle high customer
load: backups deal with inevitable failure and job migration
enables load-balancing.

8. EVALUATION
We have studied the minimal backups of 121 protocol

roles found in the spore Protocol Repository [15]. We have
used our analysis to determine the minimal backups at ev-
ery point in each of these protocols. Our implementation,
extracted from Coq, was able to calculate these in approxi-
mately 1 second. We were interested in the applicability of
the minimal backup-based analysis and the pragmatic ben-
efits of minimality.

First, we found that no protocol role had an empty mini-
mal backup after the first step of the protocol. Second, we
found that every protocol exhibited some decrease in the size
of the minimal backup at some point in the protocol. We
calculated the largest percentage decrease in backup size for
each protocol and determined the minimum (16%), mean
(65%), median (69%), and maximum (93%). This shows
that most protocols discard over half of their knowledge at
some point in the run. Figure 7a shows the space savings
due to minimality as a percentage of total backup space.
Notice that the graph is heavily weighted to the right: this
demonstrates the practical utility of minimality. Figure 7b
presents a graph of the size of a minimal backup of a pro-
tocol at each stage of completion, where the average of all
protocols has been emphasized. This graph indicates that
backups have an“n”shape, which matches the intuition that
they start from a small amount of knowledge, build towards
some goal, but no longer require the intermediate knowledge
by the end of the run. This evidence of our intuition justifies
the diagnostic application of the minimal backup graph.

(a) (b)
Figure 7: Minimal Backup Diagnostic Graphs

9. RELATED WORK

Analysis.
Our analysis is similar to live expression analysis [10].

Liveness analysis determines whether a value is necessary in
the rest of a computation, similar to how our analysis deter-
mines what information is necessary to complete a protocol
run. We could use liveness analysis on the implementation
of a cryptographic protocol to get some of the results of our
analysis, e.g., sound backups. However, liveness analysis is
typically not complete for implementation languages. Our
analysis is complete, modulo our approximation of entail-
ment5, in the form of our proof of minimality of backups.

If we used live-expression analysis at the implementa-
tion level, then we would approximate the checkpointing
approach of Li et al.’s [11]. This approach instruments a
program with points where full system checkpoints can be
taken. Due to the difficulty in determining what data is live
in c, they must snapshot the entire system memory. They
pursue minimality via a heuristic training process that de-
termines where to place checkpoint locations. While their
work is inspiring, we do not need to resort to these tech-
niques, because we can calculate provably minimal backups.
It would be interesting to compare the empirical results of
each approach to ascertain how close they come to minimal-
ity.

Diagnostic.
The diagnostic aspect of minimal backups can be seen as

a generalization of the idea of authentication tests [7]. These
are protocol patterns that represent the attainment of a sub-
goal. In a sense, analyzing the minimal backup is a means
of finding other similar patterns. However, minimal backup
patterns do not provide the guarantees of an authentication
test, in general.

The diagnostic aspect of our analysis can also be consid-
ered a way of determining the degree to which a protocol
exhibits soft-state [16, 9, 12]. This state, recognized as de-
sirable by systems designers, is what is not necessary for
a protocol to execute properly, but may be useful in im-

5In our implementation, the logic’s entailment relation is
decidable. This caveat only applies when an undecidable
logic is used.

proving performance. For example, by definition a cache
protocol does not need a cached version of all of memory, so
it can remove pages from the cache under press. But when
it has some particular page, there are performance benefits.
In a fuzzy way, the difference between the entire state and
the minimal backup represents the soft-state. Our literature
review has not unveiled any analyses that automatically de-
termine the degree to which a protocol uses soft-state.

Fault-tolerance.
In the realm of cryptographic protocols, Williams [24] dis-

cusses how to produce a fault-tolerant version of a trusted
third-party authentication service, with applications to Ker-
beros and the Needham-Schroeder protocol. At the time of
this writing, we were not able to obtain a copy of this paper,
despite email requests. Based on the abstract, we assume
that (a) their work is tied to details about the protocols in
question, rather than a general technique; and, (b) that they
do not provide verified guarantees about backup minimality.

Gong [5] developed a distribution authentication protocol
designed to increase fault-tolerance, while providing reason-
able security guarantees. Inspired by this approach, Re-
iter [17, 18] developed a methodology of constructing repli-
cations of general services and applied this work to an au-
thentication protocol.

These two strategies work by requiring multiple servers to
partially serve, or authenticate, a client that has many such
servers available. The strategy increases fault-tolerance, be-
cause only a fraction of those servers must be available at
any given time. Our work contrasts with this approach by
providing an analysis that allows fail-over of any protocol
without modification through a uniform strategy of storing
the minimal backup securely.

10. CONCLUSION
We have formally defined a protocol backup for a partic-

ular point in a cryptographic protocol execution. We have
shown how to provably compute the minimal backup, given
a reasonable ordering on backups. We have described the
utility of the minimal backup as a diagnostic to protocol
designers. We have also explained how the minimal backup
can be used to solve the problems of fault-tolerance and
job-migration of cryptographic protocol sessions. Finally,

we have provided a summary of our study of the minimal
backups of 121 protocol roles from the spore repository.

This work demonstrates that the internal structure of a
protocol is revealed by investigating its minimal backup.
This is made possible by the formal proof that the back-
ups are truly minimal and that their construction is sound
with respect to the protocol semantics. This analysis is also
useful for enabling a scalability property: fault-tolerance.

We are interested in investigating how to automatically
analyze minimal backups to identify common, or important,
protocol structures. For example, we might be able to au-
tomatically identify authentication tests or replay attacks.
We are also interested in pursuing an optimization of cryp-
tographic protocols that decreases the size of the minimal
backup, while preserving the security guarantees of each pro-
tocol role.

Acknowledgments.
This work is partially supported by the NSF (CCF-0447509,

CNS-0627310, and a Graduate Research Fellowship), Cisco,
and Google. We are grateful for the advice and encourage-
ment of Joshua Guttman and John Ramsdell.

11. REFERENCES
[1] M. Burrows, M. Abadi, and R. Needham. A logic of

authentication. Proceedings of the Royal Society,
Series A, 426(1871):233–271, December 1989.

[2] D. Denning and G. Sacco. Timestamps in key
distribution protocols. Communications of the ACM,
24(8), Aug. 1981.

[3] D. Dolev and A. Yao. On the security of public-key
protocols. IEEE Transactions on Information Theory,
29:198–208, 1983.

[4] F. Douglis. Transparent process migration: Design
alternatives and the Sprite implementation.
Software–Practice and Experience, 21(8):757–785,
Aug. 1991.

[5] L. Gong. Increasing availability and security of an
authentication service. IEEE Journal on Selected
Areas in Communications, 11(5):657–662, 1993.

[6] J. D. Guttman, J. C. Herzog, J. D. Ramsdell, and
B. T. Sniffen. Programming cryptographic protocols.
In Trust in Global Computing, 2005.

[7] J. D. Guttman and F. J. Thayer. Authentication tests
and the structure of bundles. Theoretical Computer
Science, 283(2):333–380, June 2002.

[8] J. D. Guttman, F. J. Thayer, J. A. Carlson, J. C.
Herzog, J. D. Ramsdell, and B. T. Sniffen. Trust
management in strand spaces: A rely-guarantee
method. In European Symposium on Programming,
2004.

[9] P. Ji, Z. Ge, J. Kurose, and D. Towsley. A comparison
of hard-state and soft-state signaling protocols. In
SIGCOMM Applications, Technologies, Architectures,
and Protocols for Computer Communications, 2003.

[10] G. A. Kildall. A unified approach to global program
optimization. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1973.

[11] C.-C. J. Li, E. M. Stewart, and W. K. Fuchs.
Compiler-assisted full checkpointing.
Software–Practice and Experience, 24(10):871–886,
1994.

[12] B. C. Ling, E. Kiciman, and A. Fox. Session state:
Beyond soft state. In Networked Systems Design and
Implementation, 2004.

[13] G. Lowe. A family of attacks upon authentication
protocols. Department of Mathematics and Computer
Science 5, University of Leicester, 1997.

[14] M. Marwah, S. Mishra, and C. Fetzer. Tcp server fault
tolerance using connection migration to a backup
server. In Dependable Systems and Networks, 2003.

[15] Project EVA. Security protocols open repository.
http://www.lsv.ens-cachan.fr/spore/, 2007.

[16] S. Raman and S. McCanne. A model, analysis, and
protocol framework for soft state-based
communication. In SIGCOMM Applications,
Technologies, Architectures, and Protocols for
Computer Communications, 1999.

[17] M. K. Reiter and K. P. Birman. How to securely
replicate services. ACM Transactions on Programming
Languages and Systems, 16(3):986–1009, 1994.

[18] M. K. Reiter, K. P. Birman, and R. van Renesse. A
security architecture for fault-tolerant systems. ACM
Transactions on Computer Systems, 12(4):340–371,
1994.

[19] M. Satyanarayanan. Integrating security in a large
distributed system. ACM Transactions on Computer
Systems, 7(3):247–280, 1989.

[20] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode.
Migratory tcp: connection migration for service
continuity in the internet. Distributed Computing
Systems, 2002.

[21] F. J. Thayer, J. C. Herzog, and J. D. Guttman.
Strand spaces: Proving security protocols correct.
Journal of Computer Security, 7(2/3):191–230, 1999.

[22] F. J. Thayer Fábrega, J. C. Herzog, and J. D.
Guttman. Strand spaces: Why is a security protocol
correct? In 1998 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 1998.

[23] The Coq development team. The Coq proof assistant
reference manual, 8.1 edition, 2007.

[24] D. Williams and H. Lutfiyya. Fault-tolerant
authentication services. International Journal of
Computers and Applications, 2007.

