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Abstract
Although Software-Defined Networking can simplify network man-
agement, it also poses new testing and debugging challenges for
operators. Debugging is often an interactive process that involves
stepping through data- and control-plane events and performing ac-
tions in response. Sometimes, however, this interactive process can
become highly repetitive; in such cases, we should be able to script
the activity to reduce operator overhead and increase reusability.

We introduce SIMON, a Scriptable Interactive Monitoring system
for SDN. With SIMON, operators can probe their network behavior
by executing scripts for debugging, monitoring, and more. SIMON
is independent of the controller platform used, and does not require
annotations or intimate knowledge of the controller software being
run. Operators may compose debugging scripts both offline and
interactively at SIMON’s debugging prompt. In the process, they can
take advantage of the rich set of reactive functions SIMON provides
as well as the full power of Scala. We present the design of SIMON
and discuss its implementation and use.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management

General Terms
Management
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1. INTRODUCTION
Software-Defined Networking greatly increases the power that

operators have over their networks. Unfortunately, this power comes
at a cost. While logically centralized controller programs do sim-
plify network control and configuration, the network itself remains
an irrevocably distributed system. Bugs in network behavior are
not eliminated in an SDN, but are merely lifted into controller pro-
grams. SDNs also introduce new classes of bugs that do not exist in
traditional networks, such as flow-table consistency issues [16, 19].
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Even in a relatively simple environment such as Mininet [11], it
can be frustrating to understand SDN controller behavior. Simple
errors can be deceptively subtle to test and debug. For instance, if
an application sometimes unnecessarily floods traffic via packetOut
messages, the network’s performance can suffer even though con-
nectivity is preserved. Similarly, Perešíni et al. [16] note a class of
bugs that result in a glut of unnecessary rules being installed on
switches, without changing the underlying forwarding semantics.
Efforts that focus only on connectivity, such as testing via ping, can
disguise these and other problems.

Fortunately, SDN also offers opportunities for improving how
we test, debug, and verify networks. Invariant checking tools such
as VeriFlow [9] and NetPlumber [6] are a good first step. However
these tools, while powerful, are limited in scope to the network’s
forwarding information base, and errors involving more (such as
the above unnecessary-flooding error) will escape their notice. Even
total knowledge of the flow-table rules installed does not suffice to
fully predict network behavior; as Kuźniar, et al. [10] show, different
switches have varying foibles when it comes to implementing Open-
Flow, with some even occasionally disregarding barrier requests and
installing rules in (reordered) batches. Thus, operators need tools
that can inspect more than just forwarding tables and can determine
whether the network (on all planes) respects their goals.

SIMON (Scriptable Interactive Monitoring) is a next step in that
direction. SIMON is an interactive debugger for SDNs; its archi-
tecture is shown in Figure 1. SIMON has visibility into data-plane
events (e.g., packets arriving at and being forwarded by switches),
control-plane events (e.g., OpenFlow protocol messages), north-
bound API messages (communication between the controller and
other services; e.g., see Section 5), and more, limited only by the
monitored event sources (Section 4). Since SIMON is interactive,
users can use these events to iteratively refine their understanding
of the system at SIMON’s debugging prompt, similar to using tra-
ditional debugging tools. Moreover, SIMON does not presume the
user is knowledgeable about the intricacies of the controller in use.
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Figure 1: SIMON’s workflow. Events are captured from the network by
monitors, which feed into Simon’s interactive debugging process.



The downside of an interactive debugger is that its use can often
be repetitious. SIMON is thus scriptable, enabling the automation of
repetitive tasks, monitoring of invariants, and much else. A hallmark
of SIMON is its reactive scripting language, which is embedded into
Scala (scala-lang.org). As we show in Section 2, reactivity
enables both power and concision in debugging. Furthermore, hav-
ing recourse to the full power of Scala means that SIMON enables
kinds of stateful monitoring not supported in many other debug-
gers. In short, SIMON represents a fundamental shift in how we
debug networks, by bringing ideas from software debugging and
programming language design to bear on the problem.

2. SIMON IN ACTION
For illustrative purposes, we show SIMON in action on an in-

tentionally simplistic example: a small stateful firewall application.
(We discuss more complex applications in Section 5.) A stateful
firewall should allow all traffic from internal to external ports, but
deny traffic arriving at external ports unless it involves hosts that
have previously communicated.

2.1 Debugging With Events
Consider a basic implementation that performs three separate

tasks when an OpenFlow packetIn message is received on an internal
port:

1. It installs an OpenFlow rule to forward internally-arriving
traffic with this packet’s source and destination;

2. It installs an OpenFlow rule forwarding replies between those
addresses arriving at the external port; and

3. It replies to the original packetIn with a packetOut message
so that this packet will be properly forwarded.

If the programmer forgets (3), packetOuts are never sent, and
packets that arrive before FlowMod installation will be dropped.
Since the OpenFlow rules are installed correctly, this bug will not be
caught by flow-table invariant checkers like VeriFlow. Connections
eventually work, but the bug is noticeable when pinging external
hosts. Faced with this issue, an operator may ask: What happened
to the initial ping? To investigate, we first enter the following at
SIMON’s prompt:

1 val ICMPStream=Simon.nwEvents().filter(isICMP);
2 showEvents(ICMPStream);

The first line reactively filters SIMON’s stream of network events
(Simon.nwEvents()) to remove everything but ICMP packet arrivals
and departures. All streams produced are constantly updated by
SIMON to maintain consistency, and so new ICMP packet arrivals
will automatically be directed to ICMPStream. We might also achieve
this effect with callbacks (Section 3), but at the cost of far more
verbose code where we most want concision: an interactive prompt.
Although the filter operation here is analogous to a pcap filter, we
will show that SIMON provides far more flexibility.

In the second line, the showEvents function spawns a new win-
dow that prints events arriving on the stream it is given, allowing
further study without cluttering the prompt. The window displays
the following1 when h1 pings h2 twice on a linear, 1-switch, 2-host
topology with h1 and eth1 internal:

1 ICMP packet from h1 to h2 arrives at s1 on eth1
2 ICMP packet from h1 to h2 arrives at s1 on eth1
3 ICMP packet from h1 to h2 departs from s1 on eth2

1Edited for clarity; SIMON displays events as JSON by default.
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Figure 2: General illustration of finding related packets with cpRelatedTo
and using flatMap to combine the resulting streams. Red rectangle, blue
square, and green oval represent incoming ICMP packets. Each has related
PacketIn, PacketOut, and/or FlowMod messages (indicated by text under
the original symbol). cpRelatedTo places these messages into a separate
stream for each original packet. flatMap then merges the streams into one
stream of ICMP-related OpenFlow messages, keeping their relative ordering
intact.

We conclude that the initial packet is dropped by the firewall (or,
at least, delayed until well after the second ping is received). The
next question is: Did the program send the appropriate OpenFlow
messages to configure the firewall?

To answer this question, we need to examine OpenFlow events
that are related to ICMP packets. To do this, we use SIMON’s
powerful cpRelatedTo function (“control-plane related to”). It takes
a packet and produces a stream of all future OpenFlow messages
related to that packet: PacketIn and PacketOut messages containing
the packet, as well as FlowMod messages whose match condition
the packet satisfies. We also use the flatMap stream operator; here it
invokes cpRelatedTo on each ICMP packet and merges the results
into a single stream (Figure 2 illustrates this operation on a separate,
more general example). We write:

1 showEvents(ICMPStream.flatMap(cpRelatedTo))

SIMON shows that, while the expected pair of FlowMods are in-
stalled for the initial packet, no corresponding packetOut is received.
This explains the incorrect behavior.

2.2 Debugging via Ideal Models
The operator could have also detected the bug by describing

what a stateful firewall should do, independent of implementation,
and having SIMON monitor the network and alert them if their
assumptions are violated. There are three high-level expectations
about the forwarding behavior of a stateful firewall:

1. It allows packets arriving at internal ports;
2. It allows packets with source S and destination D arriving

at external ports if traffic from D to S has been previously
allowed; and

3. It drops other packets arriving at external ports.
Note that none of these expectations are couched in terms of pack-
etOut events or flow tables; rather they describe actual forwarding
behavior that users expect to see. Also, they are stateful, in that
the second and third expectations refer to the history of packets
previously seen.

We can implement monitors for these expectations in SIMON.
To keep track of the firewall’s state, we create a mutable set of
pairs of addresses called allowed. We then use SIMON’s built-in
rememberInSet operator to keep the set up-to-date:

scala-lang.org


1 Simon.rememberInSet(ICMPStream, allowed,
2 {e: NetworkEvent =>
3 if(isInInt(e))
4 Some(new Tuple2(e.pkt.eth.dl_src,
5 e.pkt.eth.dl_dst))
6 else None});

We pass in a stream of events (here, ICMP packet events), the set to
be mutated (allowed), and a function that says what, if anything, to
add to the set for each event in the stream. Now, as ICMP packets
arrive on the internal interface, their source-destination pairs will
be automatically added to the set. The isInInt (“is incoming on
internal”) function is just a helper defined in SIMON that returns
true on packets arriving on internal interfaces. {e: NetworkEvent

=> ...} is Scala syntax for defining an anonymous function over
network events.

We are now free to write the three expectations using SIMON’s
expectNot function, which takes a source stream (here, the ICMP
stream), along with a function that says whether or not an event
violates the expectation, and a duration to wait. It then returns a
stream that emits an ExpectViolation if a violating event is seen
before the duration is up and otherwise emits an ExpectSucceed

event. The third expectation is most interesting. First we define a
helper that recognizes external packets whose destination and source
are not in allowed

2:

1 def isInExtNotAllow(e: NetworkEvent): Boolean = {
2 e.direction == NetworkEventDirection.IN &&
3 e.sw == fwswitchid && fwexternals(e.interf) &&
4 !allowed((e.pkt.eth.dl_dst, e.pkt.eth.dl_src))
5 }

fwswitchid and fwexternals are configurable parameters that in-
dicate which switch acts as a firewall and which interfaces are
considered external. Now we create a stream for this expectation,
saying that whenever a packet should be dropped, we expect not to
see it exiting the switch:

1 val e3 = ICMPStream.filter(isInExtNotAllow).flatMap(
2 e => Simon.expectNot(ICMPStream, isOutSame(e),
3 Duration(100, "milliseconds")));

We elide the first and second expectations for space, but they are
similar. The isOutSame function accepts an incoming packet event
and produces a new function that returns true on events that are
outgoing versions of the same packet.

After defining all three expectation streams, we merge them into a
single stream that emits events whenever any expectation is violated.
As before, we can call showEvents on this stream. Other code can
also use the stream to modify state, trigger actions on the network,
or even feed into new event streams. Moreover, as we discuss in
Section 5, once expectations have been written they can be re-used
to check multiple applications.

3. WHY REACTIVE PROGRAMMING?
We now explain the advantages of reactive programming for

network monitoring in more detail. Recall this expression from
earlier:

1 showEvents(ICMPStream.flatMap(cpRelatedTo))

Now consider how one might implement it without reactivity. A
natural solution is to use synchronous calls:

2SIMON’s event field names (e.g., pkt.eth.dl_dst) follow the stan-
dard pcap format (www.tcpdump.org).

1 val seen = new Set();
2 while(true) {
3 val e = getEvent();
4 if(isICMP(e))
5 seen += e;
6 for(orig: seen) {
7 if(relatedTo(orig, e))
8 println(e);
9 }

10 }

Not only is this much more involved, it also quickly becomes unten-
able because synchronous calls will block. Instead, asynchronous
communication is needed. Callbacks are a standard way to imple-
ment asynchrony, but even with library support for callback registra-
tion, we get something like:

1 def eventCallback(e: Event) {
2 if(isICMP(e))
3 Simon.nwEvents().subscribe(
4 makeRelatedToCallback(e));
5 }
6 def makeRelatedToCallback(e: Event): Event => Unit {
7 e2 => if(relatedTo(e, e2)) println(e2);
8 }
9 Simon.nwEvents().subscribe(eventCallback);

In general, this approach can produce a tangle of callbacks regis-
tering even more callbacks ad nauseum. We could avoid this with
careful maintenance of state throughout a single callback. How-
ever, that only moves the complexity into the callback’s internal
state, which harms reusability, compositionality, and clarity of the
debugging script.

Callbacks also force an inversion of a program’s usual control
logic: external events push to internal callbacks; this can be confus-
ing, especially when integrating with existing code. Instead, reactive
programs maintain the perspective that the program pulls events.
The necessary callbacks to maintain this abstraction are handled
automatically by the language, and consistency between streams is
maintained without any programmer involvement. (The canonical
example of this is the way a spreadsheet program automatically
updates a cell if other cells it depends on change. The same is true
of streams in reactive programs.) In effect, reactive programming
lets the programmer structure their program as if they were writing
with synchronous calls that return values subsequent computations
can consume, leading to a compositional programming style (which
has already been used successfully in SDN controllers, most notably
by Voellmy, et al. [24]).

Moreover, the ability to name streams, compose them with other
streams, and re-use them as values is not something callbacks can
easily provide. For these reasons, reactive programs tend to be
concise, which makes monitoring—with the full power of a pro-
gramming language behind it—brief enough to use at the debugging
prompt.

There are at least two other applications of SIMON’s streams that
are worth mentioning:
Interacting with the Network As we alluded to in Section 2,
streams can be easily fed into arbitrary code. For instance, suppose
we wanted to write a monitor that sends continuous pings to host
10.0.0.1. We create a stream that detects ICMP traffic exiting the
network, and feed that stream into code that sends the next ping via
subscribe:

1 ICMPStream.filter(
2 e => e.sw == fwswitchid &&
3 e.direction == NetworkEventDirection.OUT)
4 .subscribe( _ => "ping 10.0.0.1" ! );

www.tcpdump.org


(The ! operation, from Scala’s process library, executes the preced-
ing string as a shell command.)
Caching Stream History By default, SIMON’s event streams do
not remember events they have already dealt with, but sometimes
visibility into the past is important. Users can apply the cache op-
erator to obtain a stream that caches events as they are broadcast,
so that new subscribers will see them. While this incurs a space
overhead, it also enables omniscient debugging scripts that can see
into the past of the network, before they were run.

4. A SIMON PROTOTYPE
As depicted in Figure 1, SIMON’s architecture separates the

sources of network events from event processing. We implement
a fully functional prototype of SIMON’s event processing compo-
nent, and in this paper evaluate it by monitoring a Mininet-emulated
SDN running different networks and controller applications. The
current sources of events in our prototype rely on the visibility into
the network afforded by Mininet, but the event processing frame-
work and scripts do not. While an immediate contribution is the
ability to monitor and debug arbitrary SDN environments running in
Mininet—our original motivation was the frustration of doing just
this—in Section 7 we discuss other potential sources of events that
would enable SIMON in real networks.

We implement SIMON event processing atop Scala, using Scala’s
ReactiveX library (reactivex.io) to manage streams and events.
SIMON’s debugging prompt is the Scala command-line interface3

plus a suite of additional functions we wrote for processing and
reacting to events. Users can either use the prompt by itself, or load
external scripts from the REPL.

Figure 3 contains a selection of ReactiveX operators (top), as well
as a selection of built-in helper functions for network debugging
and monitoring (bottom). These functions are built from ReactiveX
operators and are sufficient for the examples of Sections 2 and 5. If
needed, additional functions can be written the same way; SIMON’s
helper functions are themselves scriptable.
Prototype Monitors SIMON’s event processing is independent
of the types of events it receives, but of course the scripts and
debugging power depend on the specific input event streams. SIMON
receives events from monitor components through a JSON interface.

Our current prototype uses two types of monitors: a pcap monitor
that captures both data plane and OpenFlow events, and an HTTP
monitor that we use to capture REST API calls to a firewall running
atop the Ryu controller (Section 5). Both monitors use JnetPcap 1.4
(jnetpcap.com), a Java wrapper for libpcap, and exploit the fact
that we can capture all packets from Mininet. We use the APIs pro-
vided by JnetPcap and Floodlight (www.projectfloodlight.
org/floodlight/) to deserialize data-plane data and control-
plane data. The HTTP monitor currently assumes that the API calls
will be contained in the first data packet of the TCP connection,
which holds true for our tests.

The monitors use multiple threads to capture packets, which are
timestamped by the kernel when captured. Due to the scheduling
order of the threads, however, events may become accessible to
SIMON out of order, so we implement a holding buffer to allow
reordering of the packets. Empirically, a buffer of 50ms is enough
to provide more than 96% of the packets in order. Because of the
way the buffer is implemented, we change the interarrival time dis-
tribution of the packets seen by SIMON slightly, which has (minor)

3Also called a REPL, short for “read-eval-print loop”. A REPL is an
interactive prompt where expressions can be evaluated and programs
run. Though sometimes called an “interpreter” loop, it can equally
well interface to a compiler, as it does here.

implications to reactive operators that depend on timeouts, such
as expect and expectNot. In Section 7 we discuss a more general
handling of time needed to apply SIMON to real networks.

5. ADDITIONAL CASE-STUDIES
We evaluate SIMON’s utility by applying it to three real controller

programs: two that implement shortest-path routing and a firewall
application with real-time configurable rules. The firewall and one
of the shortest-path applications are third-party implementations that
are used in real networks. All are necessarily more complex than
the basic stateful firewall of Section 2. However, unlike the previous
example, none of these applications sends data-plane packets to the
controller. Rather, the controller responds to northbound API events,
network topology changes, etc.
Shortest-Path Routing We first examine a pair of shortest-path
routing controllers. The first was the final project for a network-
ing course designed by two of the authors. The second is Route-
Flow [20], a complex application that creates a virtual Quagga
(quagga.net) instance for each switch and emulates distributed
routing protocols in an SDN.

The shortest-path ideal model in SIMON keeps up-to-date knowl-
edge of the network’s topology and runs an all-pairs-shortest-path
algorithm to determine the ideal path length for each route. When
the user sends a probe, the model starts a hop-counter appropriate
to the probe’s source and destination, and decrements the counter as
the probe traverses the network. A non-zero counter at the final hop
indicates a path of unexpected length, and the ideal model issues
a warning. Note that the ideal model does not determine a distinct
shortest path that packets must follow. Rather, the model is tolerant
of variations in the exact paths computed by each application, so
long as they are indeed shortest (by hop count). The shortest-path
computation takes roughly 100 lines of code; the remaining model
uses under 80 lines.

This example highlights an advantage of SIMON’s approach: we
were able to re-use the same ideal model for both implementations;
once a model is written, its assumptions can be applied to multiple
programs. Also, creating the ideal model did not require knowledge
of RouteFlow or Quagga, but merely a sense of what a shortest-path
routing engine should do. Of course, our model is a proof of concept,
and assumes a single-area application of OSPF with known weights.
Ryu Firewall We also created an ideal model for the firewall mod-
ule released with the Ryu controller platform (osrg.github.
io/ryu). This module accepts packet-filtering rules via HTTP
messages, which it then enforces with corresponding OpenFlow
rules on firewall switches. These OpenFlow rules are installed proac-
tively (i.e., the application installs them without waiting for packets
to appear), but the rule-set is modified as new messages arrive.

To capture these rule-addition and -deletion messages, we took
advantage of SIMON’s general monitor interface to add a second
event source, one that listens for HTTP messages to the controller.
By creating a model aware of management messages, rather than
depending on the OpenFlow messages created by the program, our
SIMON model was able to check whether traffic-filtering respected
the current firewall ruleset.

6. RELATED WORK
We relate SIMON to other work along the four axes that char-

acterize it: interactivity, scriptability, reactivity, and visibility into
network events.
Scriptable Debugging Scriptable debuggers are not new; many
have been proposed, starting with Dalek [15], which can automate

reactivex.io
jnetpcap.com
www.projectfloodlight.org/floodlight/
www.projectfloodlight.org/floodlight/
quagga.net
osrg.github.io/ryu
osrg.github.io/ryu


filter Applies a function to every event in the stream, keeping only events on which the function returns true.
map Applies a function to every event in the stream, replacing that event with the function’s result.

flatMap Like map, the function given returns a stream for each event, which flatMap then merges.
cache Cache events as they are broadcast, allowing subscribers to access event history.
timer Emit an event after a specified delay has passed.

merge Interleave events on multiple streams, producing a unified stream.
takeUntil Propagate events in a stream until a given condition is met, then stop.
subscribe Calls a function (built-in or user-defined) whenever a stream emits an event.

expect Accepts a stream to watch, a delay, and a function that returns true or false on events. Produces a stream that will generate
exactly one event: an ExpectViolation or the first event on which the function returned true.

expectNot Similar to expect, but the function describes events that violate the expectation.
cpRelatedTo Accepts a packet arrival event and returns the stream of future PacketIns and PacketOuts that contain the packet, as well as

FlowMods whose match condition the packet would pass.
showEvents Accepts a stream and spawns a new window that displays every event in the stream.

isICMP Filtering function, recognizes ICMP traffic. (Similar functions exist for other traffic types.)
isOutSame Accepts an incoming-packet event and produces a function that returns true for outgoing-packet events with the same

header fields.

Figure 3: Selection of Reactive Operators and built-in SIMON helper functions. The first table contains commonly-used operators provided by Reactive
Scala (reactivex.io/documentation/operators.html). The second table contains selected SIMON helper functions we constructed from reactive
operators to support the examples shown in Sections 2 and 5.

repetitive tasks in gdb. Dalek’s scripts are event-based, as in SIMON,
but Dalek is callback-centric rather than reactive. MzTake [13]
brought reactive programming to scriptable debugging. SIMON’s
use of the Scala command-line interface is partly inspired by Mz-
Take’s use of the DrScheme interface. Expositor [8] adds time-travel
features to scriptable debugging, i.e., it allows users to view (and act
on) events that have occurred in the past. SIMON has the capability
to do the same, but we have not yet fully explored this direction.
Expositor is also interactive, with a reactive programming style. All
of these tools are designed for traditional program debugging, and
so their notion of event visibility is different from SIMON’s (e.g.
method entrance and exit rather than network events).
Data-Plane Invariant Checking There has been significant work
on invariant checking for the data plane. Anteater [12] provides off-
line invariant checking about a network’s forwarding information
base. VeriFlow [9] extends the ideas of Anteater with specialized
algorithms to allow real-time verification, ensuring invariants are
respected as the rules in a live network changes. Beckett et al. [2]
use annotations in controller programs to enable dynamic invariants
in VeriFlow. Although powerful, these tools are limited to checking
invariants about the rules installed on the network. For instance,
the example of Section 2 would not be expressible in these tools,
since the forwarding rules installed by the buggy program violate
no invariants. SIMON does not require knowledge or annotation of
controller program code to function, and its visibility is not limited
to flow-tables.

Batfish [4] checks the overall behavior of network configurations,
including routing and other factors that change over time. Like the
above tools, it uses data-plane checking techniques, but the invari-
ants it checks are not limited only to the data-plane. Batfish provides
off-line configuration analysis, rather than on-line monitoring and
debugging as SIMON does.
Network Monitoring and Debugging The NetSight [5] suite of
tools has several goals closely aligned with SIMON. Chief among
these tools is an interactive network debugger, ndb, which provides
detailed information on the fate of packets matching user-provided
filters on packet history. ndb is not scriptable, however, and its filters
are limited to describing data-plane behavior, although control-plane
context is attached to packet histories it reports. NetSight’s postcard
system allows it to differentiate between packets based on payload

hashes, rather than using only packet header information (as our
prototype monitor does); this means it provides more fine-grained
packet history information than SIMON currently can. The matching
invariant checker, netwatch, contains a library of invariants, such
as traffic isolation and forwarding loop-freedom, and raises an alarm
if those invariants are violated, along with the packet-history context
of the violation. These invariants are limited in general to data-plane
behavior; in contrast, SIMON provides visibility into all planes of
the network.

Narayana, et al. [14] accept regular expressions (“path-queries”)
over packet behavior and encode them as rules on switches, avoiding
the collection of packets that are not interesting to the user. This is
in contrast to both NetSight and SIMON, which process all packets.
However, the path-queries tool is neither interactive nor scriptable,
and has visibility only into data-plane behavior.

OFRewind [26] is a powerful, lightweight network monitor that
records key control plane events and client data packets and allows
later replay of complete subsets of network traffic when problems
are detected. While it is neither scriptable nor interactive to the level
SIMON provides, its replay can be an excellent source of events for
analysis with SIMON.

FortNOX [17] monitors flow-rule updates to prevent and resolve
rule conflicts. It provides no visibility into other types of events, is
not scriptable and has no interactive interface.

Y! [25] is an innovative tool that can explain why desired network
behavior did not occur. Such explanations take the form of a branch-
ing backtrace, where every possible cause of the desired behavior
is refuted. Obtaining such explanations requires program-analysis
as well as monitoring, whereas SIMON has utility even if the con-
troller is treated as a black box. Y! does not provide interactivity or
scriptability.
Other Network Debugging Tools A number of other tools provide
useful debugging information without monitoring. Automated test
packet generation [28] produces test-cases guaranteed to fully exer-
cise a network’s forwarding information base. SDN traceroute [1]
uses probes to discover how hypothetical packets would be for-
warded through an SDN. The tool functions similarly to traditional
traceroute, although it is more powerful since it allows arbitrary
packet-headers to be tested. These also lack either an interactive en-
vironment or scriptability, and none leverage reactive programming.

reactivex.io/documentation/operators.html


SIMON’s ideal-model description bears some resemblance to the
example-based program synthesis approach of NetEgg [27]. How-
ever, NetEgg synthesizes applications from individual examples of
correct behavior; ideal models fully describe the shape of correct-
ness.

STS [21] analyzes network logs to find minimal event-sequences
that trigger bugs. Although logs may include OpenFlow messages
and other events, STS’s notion of invariant violation is limited to
forwarding state. Thus SIMON is capable of expressing richer invari-
ants, although it does not attempt to minimize the events that led
to undesired behavior. As STS focuses on log analysis, it provides
neither scriptability nor interactive debugging.

7. DISCUSSION
Reactive Programming Section 3 discusses how reactive program-
ming is a natural fit to deal with the inherent streaming and concur-
rent nature of network events. However, not all programmers and
operators will feel comfortable with it. SIMON is flexible in this
regard and allows any observable to invoke event-processing call-
backs at any point in a script, and progressively incorporate reactive
features.
SIMON beyond Mininet SIMON as presented is agnostic to, but
only as useful as, the source of events that it sees as input. In this
paper we prototyped SIMON using omniscient packet capturing
enabled by Mininet. Given that Mininet allows the faithful repro-
duction of many networking environments and SDN applications,
this is already valuable.

There are, however, many other potential sources of events that
can make SIMON applicable to real networks. On a live network,
port-mirroring solutions such as Big Switch’s Big Tap [3] can serve
as sources of events, and an OpenFlow proxy like FlowVisor [23]
can intercept OpenFlow messages. It is also straightforward to
feed SIMON with events from logs, such as pcap traces, which are
routinely captured in test and production networks. NetSight’s [5]
packet history files can also be used a source of events to SIMON.
Finally, SIMON’s interactivity and scriptability offer an excellent
complement to OFRewind [26]’s replay capabilities, which offer a
hybrid between online and offline monitoring.

SIMON can also compile portions of debugging scripts that in-
volve flow-table invariants to existing checkers such as VeriFlow [9]
or HSA [7].

Narayana et al. [14] make a distinction between two types of
monitors: “neat freaks,” which record a narrow range of events but
support correspondingly narrow functionality, and “hoarders,” which
record all events available. Our prototype monitor is a hoarder; it
captures all network events, which are then filtered at the prompt
or in a script. While this is practical in a prototype deployment it is
less so in a real network under load. A solution would be to “neaten”
SIMON by analyzing how scripts process event streams and, where
possible, proactively circumscribing what traffic must be captured.
Incomplete Information Some sources of events will not provide
all packets in the network. Mirroring ingress and egress ports only,
for example, allows for end-to-end checks in SIMON programs, but
not hop-by-hop. Sampling (e.g., sFlow [22] and Planck [18]) makes
it infeasible to witness the same packet be forwarded by different
switches along a path, as sampling is uncoordinated. Incorporat-
ing these with SIMON (e.g., via inference) is an interesting future
challenge.
Dealing with Time Most networks can synchronize clocks to ac-
ceptable accuracy, but SIMON has to be prepared to deal with occa-
sional timing inconsistencies. Our prototype naïvely orders packet
events by their timestamps after a small reordering buffer, but in

real networks we will need to extend SIMON’s notion of time. Some
scripts are only concerned with logical time; for these, SIMON only
needs to potentially reorder events to be consistent with causal order.
For these, SIMON has to maintain an internal notion of time, driven
by the timestamps in the input streams, but properly corrected to
be consistent with causal ordering. By observing pairs of causally
related events in both directions among two sources, SIMON can
compute correction factors and bounds for the different time sources
in the network.
Other Application Areas SIMON applies to a wide range of sit-
uations beyond the illustrative examples seen here. For instance,
SIMON could monitor a load-balancing application, sending events
on a warning stream whenever balancing failed.

More broadly, networks that are not entirely controlled by a logi-
cally centralized program—e.g., networks with middleboxes—cry
out for black-box methods that are nevertheless stateful. SIMON
can even be used to debug problems in a non-SDN network, al-
though it may be harder to pinpoint the cause of observed anomalies.
SIMON also allows stateful debugging at the border between net-
works, even when one or more are not SDNs. Because it does not
assume that flow-tables suffice to fully predict behavior, it can also
be useful in detecting consistency errors [16, 19] or switch behavior
variation [10].
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