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ABSTRACT

Test-first development and peer review have been studied
independently in computing courses, but their combination
has not. We report on an experiment in which students
in two courses conducted peer review of test suites while
assignments were in progress. We find strong correlation
between review ratings and staff-assessed work quality, as
well as evidence that test suites improved during the re-
view process. Student feedback suggests that reviewing had
some causal impact on these improvements. We describe
several lessons learned about administering and assessing
peer-review within test-first development.

Categories and Subject Descriptors: K.3.2 [Computers
and Education]: Computer and Information Science Educa-
tion

Keywords: Peer-review, Test-first development

1. INTRODUCTION

In many disciplines with a craft component, apprentices
learn from observing masters. Observing someone else’s
work and producing a critique of it helps develop critical
facilities, which in turn can be applied to one’s own efforts.
However, programming neophytes usually lack the skills to
even examine the work of a master (e.g., a beginning pro-
gramming student likely has no hope of understanding the
Linux kernel). What can students possibly review?

One very useful object of review is the work of fellow stu-
dents. Reviewing peer work eliminates numerous variables
that would otherwise make review difficult or even impossi-
ble: classmates typically use the same language, the same
features, and work on the same problem. Indeed, studying
the work of classmates on a problem can even help a student
understand the problem better. If peer-review is then done
while a problem is in progress, students can improve their
understanding in a way that is immediately useful—this in-
centivizes reviewing effort. We call this in-flow peer-review.

One challenge with in-flow peer review lies in identify-
ing sufficiently mature artifacts for early review. As educa-
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tors who use test-first programming,! we find the point at
which tests are submitted provides a natural review bound-
ary. This moment is especially conducive for several reasons:

e Tests represent a student’s understanding of a prob-
lem. Therefore, they can reveal incorrect and incom-
plete understanding. Reviewing at this stage therefore
has the potential to set students on the right path for
the remainder of the problem.

e Because tests—especially unit tests—are both (a) con-
crete and (b) usually understandable in isolation from
one another, they can be easier to comprehend (and
thus review well) than programs, which tend to be both
abstract and full of subtle interdependencies.

e In some professional settings [12], tests are actually
used as a means of communication. Submitting and
reviewing tests reinforces this use.

e Reading others’ tests might improve a student’s abil-
ities as a tester. Because testing is a vital part of
modern software development,? and even a profession
in itself, this enriches a career skill.

Our vehicle for in-flow peer-review of tests is CaptainTeach,
an on-line environment designed to facilitate this process [13].
We have used CaptainTeach in two collegiate courses in the
past year. Though CaptainTeach was used to provide feed-
back for more than test suites, including implementations,
in this paper we focus on its effect on testing.

In-flow peer-review of tests raises several natural ques-
tions. Do students submit tests and reviews early enough to
be of use? Do their test suites evolve during review? Are the
reviews accurate and helpful? This paper explores the via-
bility of in-flow peer review through these questions, while si-
multaneously reporting observations about the process. We
believe this is the first study of in-flow peer-reviewing of any
significant artifacts. In addition, while other projects have
incorporated tests into peer-review (Section 5), we are not
aware of prior work in which students review others’ test
suites themselves as standalone artifacts.

We use the term test-first because students are asked to
write tests before writing code. We do not follow the
stronger test-driven [1] practice, which prohibits writing any
code before tests have first been written and found to fail.
20ne of the spaces at Google most likely to get an employee’s
attention—mnamely, the blank spaces that are stared at in
restrooms—features a series of articles known as TotT: Test-
ing on the Toilet (http://googletesting.blogspot.com/
2007/01/introducing-testing-on-toilet.html).  That
is, when a major software company can best get its em-
ployees’ attention, it emphasizes testing.



2. ASSESSING TESTING

Traditionally, test suites are evaluated by code coverage.
However, coverage is relative to a particular implementation,
and is thus not meaningful for tests written before code. In-
stead, we must measure how well a test suite reflects the
problem’s intent. We use two criteria for this: correctness
and thoroughness. Intuitively, correctness assesses whether
tests yield answers that are consistent with the problem
statement, while thoroughness assesses whether a set of tests
covers the interesting inputs to a problem. In defining these
criteria more rigorously, we will use two terms: a test case
is a particular input-output pair that checks a single point
in the space of a program’s (or function’s) behaviors; a test
suite is a collection of test cases.

Students in our courses assessed correctness and thorough-
ness through peer-review; Section 3.1 explains the process.
Our course staff independently assessed these criteria in as-
signing grades: in one course, this assessment was auto-
mated, as described in the rest of this section. (Section 4.3
compares the student- and staff-assessments.)

Course staff assess correctness using reference implemen-
tations, which we call gold solutions. An individual test case
is correct if the gold solution returns the test case’s output
when given its input. Correctness is, however, insufficient
to measure an entire test suite. To build intuition, suppose
the programming task is to implement sorting. A weak test
suite might check only a few small examples, and perhaps
even only ones that are already sorted. These will all pass
the gold solution, but do not represent a deep understanding
of the nuances of the problem. Thoroughness fills this gap.

Staff assess thoroughness using buggy, or coal, solutions.
Coal solutions have the same interface as the gold solution,
and are usually designed to reflect a particular error. The
deviation from correct behavior could be large, or it could be
small and subtle. Coal solutions for sorting might include:
the identity function (which “works” on already sorted lists);
one that reverses its input; one that permutes the input list
randomly; one that fails on empty lists; one that drops du-
plicate entries; one that adds arbitrary new elements (but in
sorted order) to the output; and so on. A test case detects a
coal solution either because (1) it expects a particular con-
crete answer but the coal solution yields a different answer
or an exception, or (2) it expects an exception but the coal
solution yields an answer or a different exception.

A test suite should act as a classifier, accurately label-
ing each program it is run against as gold or coal. This
check can be automated, computing a test suite’s grade as
a function of the percentages of correct test cases and of
coals detected. Section 3.3 describes the formulas used in
the courses in this study. Of course, a student’s test suite
might also target aspects of her particular implementation:
our gold/coal methodology works with any suite whose tests
match the interfaces defined for the problem.

3. EXPERIMENTAL SETUP

We used CaptainTeach in two undergraduate courses in
the fall semester of 2013 at Brown University (USA). One,
which we label CS1.5, is an accelerated introduction to data
structures and algorithms for first-year students that com-
presses the first-year curriculum into a semester, roughly
like a “honors” course (though it is open to all students, and
students place into it by doing extra homeworks in a regular

introductory course). The other, which we dub CSPL, is an
upper-level course in programming languages, attended by
second-year undergraduate through graduate-level students.
All programming was done in Pyret (pyret.org).

In CS1.5 the homeworks consisted of algorithmic tasks, of-
ten embedded in larger systems. Many assignments thus had
multiple, ordered problems, each requiring both a test suite
and an implementation. In CSPL, all assignments consisted
of the implementation of a single significant function (inter-
preter, type-checker, garbage collector, etc.), and required
a single test suite. Within each problem in both courses,
the test suites and implementations formed distinct steps
that had to be submitted separately and in order (Captain-
Teach enforced this). In both courses, the staff provided the
interfaces against which students wrote tests. While we en-
couraged students to write tests before implementations, we
could not enforce the order in which they actually did their
(offline) work. For each problem, students could submit one
set of tests and one implementation for review before the
deadline: we term these initial submissions. Subsequent
submissions were recorded but not sent out for review. A
student’s final submission (for each of tests and implemen-
tation) was the last made before the deadline.

For various reasons (including the complexity of the as-
signments), we used gold/coal solutions in CSPL but not in
CS1.5. Therefore, some of our analyses cover both courses,
while others look only at CSPL. In particular, any reference
to measured test-suite quality is limited to CSPL.

3.1 The Review Process

After submitting each step, students wrote reviews of work
others did for that same step. With 50% probability, one re-
view was of a staff-written gold or coal solution (with equal
chance of being gold or coal). Other works presented for
review were from classmates, chosen by picking the submis-
sions with the fewest number of assigned reviews, breaking
ties by picking earlier submissions. To have something to
review for the first three students to submit, we seeded the
system with three fake student submissions that were not
designated as either gold or coal.

CSPL students wrote three reviews per step, while CS1.5
students typically wrote only two (they wrote three on one
assignment). Each CS1.5 assignment had multiple interact-
ing functions; students had to submit tests and bodies for
each function before moving on to the next. Because these
assignments had more steps, we asked for fewer reviews.

For test-suite reviews, students were asked to judge both
correctness and thoroughness: each had a Likert-scale rating
(required for submission) and a comment box for elaborat-
ing on their rating (not required for submission). The Lik-
ert scale had 6 ratings, from Strongly Disagree to Strongly
Agree (with three positive and three negative options, and
no neutral option). The two prompts were:

1. “These tests correctly reflect the desired behavior.”
2. “These tests are representative of the possible inputs.”

Submission for later steps was disabled while students had
outstanding reviews to complete. Upon receiving a review,
CaptainTeach sent email to the author of the test suite with
a link a to page that displayed the review.

Despite other work that argues for detailed rubrics [10],
we intentionally left ours unstructured. Because little prior



work considers reviews of tests, we wanted baseline data on
in-flow test reviewing that we could build on in future work.

3.2 Review Feedback

Students received two kinds of feedback on their reviews:

1. When students graded gold or coal solutions, Captain-
Teach gave feedback on how they were doing. If their
review was inappropriate (Slightly Disagree or lower
for gold, Slightly Agree or higher for coal), they were
informed of the discrepancy, whereas if it was appropri-
ate (Slightly Agree or higher to gold, Slightly Disagree
or lower to coal), they were informed of our agreement.

2. When reading a review, students could provide feed-
back to the reviewer. Submission of feedback was op-
tional; we report on its frequency in Section 4.6. If
students gave feedback, they had to fill out a Likert
scale with the prompt “This review was helpful”; they
could optionally also offer free-form comments.

3.3 Grading and Motivation

In addition to written feedback from course staff, CSPL
students also received a single numeric grade for their test
suite. This was computed using the gold and coals. As
a baseline, we took the thoroughness (proportion of coal
tests caught) of a suite. We then subtracted two percentage
points for each test case that failed when run against the gold
implementation. We did this instead of counting the number
or proportion of tests that passed the gold implementation
since this rewards “stuffing” the test suite with redundant
or simplistic tests. Penalizing for incorrect tests while using
the overall thoroughness as a baseline allowed us to avoid
the most obvious ways of gaming the system.

To ensure students put a genuine effort into their initial
submissions, we graded both the initial submission and the
final one, and gave a weight of 75% to the initial and 25%
to the final. The weights were chosen so that learning from
others’ work from feedback could make a qualitative differ-
ence, but would not be a substitute for students doing their
own work. In particular, a student who submitted a blank
test suite and copied the best of the ones given to review
would be sure to get a failing grade. (Nobody tried this.)

Finally, we had repeated discussions with students about
the goals and design of the peer-review process and of our
system of weights. Students appeared able to articulate the
benefits of peer-review, and in anonymous course evalua-
tions found the process largely beneficial (though it was
regarded much more useful for some assignments than oth-
ers). Even though the workload had the potential to increase
(because the assignments were largely unchanged from pre-
vious years), students did not report working significantly
more time. Curiously, an independent (student-run) eval-
uation rated CSPL substantially easier (by one point on a
four-point scale) than in previous years; though this cannot
necessarily be attributed to peer-review, it does suggest that
peer-review did not make the course substantially harder.

4. DATA ANALYSIS

Our analysis of peer-review for testing relies on a com-
bination of data extracted from CaptainTeach and manual
coding of extracted data. We extracted the contents of all
review and review-feedback forms, the time of each submis-
sion (both work and reviews), and the initial access times of
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Figure 1: Timings of key events in test-suite review.
Times are given as deltas from the assignment dead-
line, grouped in 6-hour intervals (time O is the dead-
line). Bars to the right of 0 represent late assign-
ments. The far left bars aggregate activity earlier
than 150 hours before the deadline.

each review. The course staff provided information on which
submissions were seeds, to filter out in our analysis.

For analyses that looked at comment content, we devel-
oped rubrics and manually coded data. When multiple au-
thors coded data, we coded independently only after achiev-
ing x of at least .75 (above .8 in most cases).

All statistical analyses were done in R version 3.0.2.3

Summary of Parameters.

Our analysis refers to key parameters of our data, as sum-
marized in the following table. The first column is how many
students completed the course (in parens is the number of
those who started it and submitted some step for review).
Next we list the number of assignments and number of actual
problems (CS1.5 assignments had multiple problems with
the same due date). The last two columns report the to-
tal number of test suites and reviews that were submitted
in each course: the former excludes our good and bad seed
solutions, but the latter includes reviews of those solutions
(so the review count is not just a multiplier on the suites).

Summary of key parameters per course

Course | students | asgns | probs | suites | reviews
CS1.5 | 49 (55) 4 14 621 1565
CSPL 37 (41) 8 8 288 863

4.1 Student Behavior in the Review Process

In-flow feedback on test suites cannot be helpful unless
students engage in reviewing early enough to affect imple-
mentations. Our courses did not have a separate due date
for the initial tests: students were free to submit their ini-
tial tests just before the deadline (though they had to leave
at least a few minutes to submit test-suite reviews before
being able to submit their implementations). Our analysis
therefore begins with submission times of initial test suites
and reviews, as well as access times on test-suite reviews.

Figure 1 shows distributions of when students submitted
their initial test suites, received reviews, and read reviews.

3Data and scripts for this paper are available at http://cs.
brown.edu/research/plt/dl/icer2014ct/.
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Figure 2: Word counts of review comments. The
right bar aggregates comments of 50 or more words.

The data are clustered by 6-hour intervals leading to the
deadline.* As each submission received 2-3 reviews, there
are fewer submission events in the graph than receive-review
or read-review events. We present a combined plot over both
courses as their individual graphs were similar.

The graph shows that at least half of the test-suite sub-
missions occurred at least 24 hours prior to the deadline.
The bars for receive-review and read-review are fairly simi-
lar across the time intervals (though each class has a set of
reviews that got read only after the assignment deadline had
passed). There were only 6 instances in which students in
CS1.5 didn’t read their reviews for a particular assignment,
and only 9 such instances in CSPL. The data suggest that
most students are engaged to some extent in the review pro-
cess, with some sufficiently engaged to submit work at least
two days in advance. In particular, enough students took
test-case reviews seriously that we can meaningfully explore
the content and validity of their reviews.

4.2 Nature of Test-Suite Reviews

The nature of free-form review comments also reflects stu-
dent engagement in reviewing. Figure 2 shows the word

4All assignments were due at midnight. The periodic dips
thus correspond to the midnight—6am period, suggesting
that our students might be getting some sleep!

counts of comments given on each of the thoroughness and
correctness criteria. Reviews in CSPL tend to be longer
than in CS1.5, as confirmed by the following summary statis-
tics (difference in means across the courses is significant at
p=1.6e~'! for thoroughness and p=2.2¢~'% for correctness
using a Mann-Whitney-Wilcox test).

thoroughness correctness
Course | mean | med SD mean | med SD
CS1.5 9.48 7 9.98 7.96 4 12.29
CSPL 12.85 9 12.49 | 16.01 7 21.78

Students often reported (anecdotally) not knowing what
to say about high-quality work. We therefore expected longer
comments on lower-rated work. The following plot of review
rating versus word count shows the lowest Likert rating (-3)
got shorter reviews than other negative or weak ratings (-2
to 1). This suggests that students reserved their writing for
test suites that had some problems but did not appear hope-
less. More detailed manual analysis of the review contents
would be needed to confirm this interpretation.
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Of course, comment length matters less than content: short
reviews can be useful, and reviews of the same length can
differ widely in utility (e.g., “all looks good”, “test nested
scopes”, and “missing many cases”). Therefore, one au-
thor manually coded all test-suite reviews for one assign-
ment from each course (choosing assignments with subtleties
that we hoped reviewing would uncover), looking only at
the review text (hiding its rating). Inspired by Nelson and
Schunn’s rubrics for writing assignments in undergraduate
humanities courses [11], we created a coarse-grained rubric
with four variables: abstract positive (e.g., “this looks good”),
abstract negative (e.g., “this looks bad”), concrete but general
(e.g., “check more error cases”), and concrete targeted (e.g.,
“your third test returns the wrong answer”). A review could
be marked with multiple variables. The counts of comments
were as follows:

Course | # comm | APos | ANeg | CoGen | Targeted
CS1.5-C 96 64 3 4 20
CSPL-C 108 67 2 3 41
CS1.5-T 96 36 24 7 46
CSPL-T 108 57 6 27 34

Abstract positive remarks across both criteria (thorough-
ness and correctness) appeared almost exclusively in reviews
with high Likert ratings; we believe this mirrors the anecdo-
tal remarks about students not knowing what to say when
reviewing good work. Concrete targeted comments occur
fairly uniformly across the different Likert ratings. Within



CS1.5, abstract negative comments on thoroughness skew
towards reviews with lower Likert ratings. The concrete
general comments on thoroughness in CSPL have no signif-
icant relationship with review ratings.

Ideally, low-quality work would receive concrete comments
that highlight its weaknesses. In CS1.5, 28 of 39 reviews
that gave thoroughness ratings in the lower-half of the Lik-
ert scale included concrete targeted comments; in CSPL, 5
of 15 low-rated thoroughness reviews gave concrete targeted
comments, although 9 of 15 had concrete general comments.
On correctness, only 2 of 29 reviews with low ratings had
no concrete targeted comments. That correctness comments
are more targeted than thoroughness ones makes sense: vio-
lations of correctness would arise from individual test cases,
while violations of thoroughness often arise from overlooking
broad classes of program inputs.

4.3 Accuracy Of Test-Suite Reviews

To check whether students are effective reviewers, we com-
pare their ratings to the gold/coal grades. Figure 3 plots the
Likert review ratings against the gold (correctness) and coal
(thoroughness) grades in CSPL. The plots show that initial
submissions are generally strong, and that positive reviews
outweigh negative ones. Thoroughness reviews are less con-
centrated in the upper-right quadrant than correctness ones.
The horizontal bands in the thoroughness plot reflect the na-
ture of the grading: thoroughness grades are a percentage of
a single-digit number of coal solutions, so only a few grades
are possible per assignment.

The interesting sections of these graphs are the lower-right
and upper-left portions, which reflect reviews that were in-
consistent with our grading assessment. Possible explana-
tions in these cases include poor performance of the reviewer
on that assignment, last-minute reviewing, weaknesses in
our grading mechanisms (that failed to accurately assess
work quality), or lack of engagement by the reviewer. For
each of thoroughness and correctness, we manually inspected
all data points with the top two Likert ratings and grades
below 40, as well as points with the bottom two Likert rat-
ings and grades above 60.

For the 43 cases of low thoroughness reviews with high
grades, all but a couple of the free-form comments point
to concrete situations or constructs that the test suite did
not adequately exercise. This strongly suggests that this
segment of the plot gets populated due to limitations in our
suite of coal solutions.

For the 45 cases of high thoroughness reviews with low
grades, just over half gave generic comments of the form
“this is great”, while a dozen stated specific criticisms and
potential holes in the test suites that would be consistent
with lower ratings. Those dozen might reflect review infla-
tion. For the others, we looked at reviewer performance and
review submission time, but found no patterns.

The comments for the 46 reviews with low correctness rat-
ings but high grades are also detailed and concrete. These
high grades could also be indicative of weaknesses in our
tests. There are only 7 high-rated correctness reviews with
low grades; the comments vary widely in style, and the sam-
ple is too small to draw inferences.

4.4 Test Suite Evolution

We are interested in how test suites evolve from the initial
to the final submission, and the extent to which activities

during the review process correlate with changes to the test
suites. For CSPL, we can explore this by looking at the
gold/coal grades on each of the initial and final submissions.

Our first question is whether test suites change, both in
the number of tests and in the grade earned. Across all
assignments in CSPL, the number of tests change as follows:

fewer | same | 1-5 | 6-15 | 16+
28 79 89 27 16

Individual test cases can change within the same number
of tests. In 33 instances, grades changed within the same
number of tests (each had a change in the correctness grade;
8 also had a change in thoroughness). When tests were re-
moved, it was usually because the staff clarified assumptions
about valid input (e.g., interpreter inputs were guaranteed
to parse) after the assignment was released.

Digging deeper, we want to know how final test suites
compare to initial ones relative to each of our correctness and
thoroughness criteria. Understanding which errors remained
and which were fixed will help us assess the effectiveness of
reviews on test suites. We omit test-suites that failed to run
(due to infinite loops, timeouts, etc.) in this analysis.

Changes in Thoroughness.

We found 155 instances of coal solutions being caught in a
final test suite but not the corresponding initial one. These
instances occur across 75 distinct test suites from 32 unique
students (across all assignments). Only 5 of these 75 cases
are from situations in which the initial test suite did not
run. Thus 70 final test suites improved in thoroughness
from initial to final submission.

We found only 5 instances of coal solutions being caught
in an initial test suite but not in the corresponding final one
(this does not count 14 students whose final suites did not
run, but whose initial suites had detected some coal).

Changes in Correctness.

Across the course, 158 initial test suites had at least one
incorrect test case; a total of 737 individual test cases failed
across these 158 suites.® The corresponding final test suites
ran for 152 of these (that is, there were 6 total cases across
the course where a test suite’s final submission went into an
infinite loop or otherwise failed to run on the gold solution).

We are interested in incorrect test cases from the initial
test suites that remain (by string equality) in the final test
suites: these represent errors that “survived” any impact of
seeing reviews and other students’ work before final submis-
sion. Across the initial 152 test suites with corresponding
final suites, there were 690 total failing test cases. Only
65 of these test cases survived, occurring across 31 final test
suites. Twenty-four of the 31 test suites still had 1-2 of their
original errors; the other seven retained 3-5 errors.

The 31 test suites with unfixed failures involve 6 of the 7
automatically graded assignments in CSPL, and a total of 17
students failed to remove an incorrect test case before final
submission at some point in the course. The surviving 65
incorrect test cases are a majority of the 100 individual test
cases that failed across all final test suites that ran. More
than half of the 31 test suites were submitted at least a day
before the deadline.

5Because the students were not given the output of our tests,
they would not necessarily know of these failures.
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Figure 3: Review ratings versus grades on each of the

4.5 Evolution Through Reviewing

The preceding data do not suggest the extent to which the
review process either could have or did contribute to test-
suite changes. Reviewing could have two impacts: students
might receive reviews that pointed out problems (in their
role as reviewees), or they might edit their tests after seeing
others’ work (in their role as reviewers). Our data allows us
to explore both perspectives.

The following table summarizes how often CSPL test suites
gained or lost detection of individual coals, and how often
the review process had the potential to expose students to
work that caught the corresponding coal. The dataset for
this table contains one data point for the product of: stu-
dents, assignments, and coals for that assignment.

both | gained | lost | neither | total
# instances | 1252 155 5 284 1754
as reviewer | 1209 138 4 183 1590
as reviewee | 1164 129 5 166 1516
neither 11 5 0 47 69

We explain the table by discussing the “gained” column.
There were 155 instances of students submitting an initial
test suite that failed to catch a specific coal, but a final test
suite that caught the same coal. In 138 of the 155 instances,
the student reviewed a test suite with a case that caught the
coal. In 129 (of 155) instances, the student was reviewed by
someone whose initial test suite had caught the coal. In 5 (of
155) instances, neither reviewing nor being reviewed could
have exposed the student to a test that caught the coal.
We now focus on the 439 instances in which a coal was not
detected initially (the “gained” and “neither” columns). We
find that 89% of those who gained the coal reviewed work
that caught the coal compared to 64% who did not gain the
coal. This difference is significant (p=.000065, x*=16.02),
and suggests that reviewing impacts test-suite quality. It
is harder to determine impacts of reviewers having caught
coals without looking at the actual review contents (which
we did not have the resources to do for this paper). This
may be worth doing, as 84% who gained a coal were reviewed
by someone who had caught the coal, compared to 61% of
those who did not gain the coal (p=.00049, x?=12.14).
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correctness and thoroughness criteria (for CSPL).

These data are only suggestive of possible links, and by no
means imply causation. Some causal information could have
been obtained by asking the students directly, e.g., whether
a reviewed test suite taught them anything new. However,
in-flow reviewing already has the potential to be disruptive
to workflow (though this proved to not be a major problem
in practice; a paper about the tool [13] discusses this), and
every extra prompt comes with a cost by increasing time and
adding disruption. In addition, questions asked at the mo-
ment will not capture learning that occurs upon reflection.
Nevertheless, teasing apart causes and effects in a setting
where we don’t wish to burden users too much remains a
daunting task. We do, however, have one additional source
of human input via the feedback comments.

4.6 Student Ratings Of Review Ultility

Though providing feedback on reviews was optional, stu-
dents did so more often than we expected. Out of 2428
reviews, 700 received Likert-scale feedback; 409 of the 700
also had comments (192 in CS1.5; 217 in CSPL).

Though on some social media there is a tendency to com-
plain more than praise, Likert-ratings on reviews (when pro-
vided) were overwhelmingly positive. (This may be because
students knew they were interacting with (anonymous) col-
leagues and friends, not unknown people on the Internet.)
Across both courses, roughly 80% of feedback ratings were
in the top two Likert categories; only 8% in CS1.5 and 3%
in CSPL were in the lowest two Likert categories.

We manually coded all comments for indications that re-
views had identified problems or led to edits in test suites
(these were two of 15 categories identified during open cod-
ing of the comments). In the following table, “Ack Error” re-
flects feedback that acknowledged an error that was pointed
out in a review, and “Will Act” captures claims that the
reviewee would edit their test suite as a result of the review.

Ack Error | Will Act | Both
# comments CS1.5 40 27 2
# authors CS1.5 20 13 2
# comments CSPL 55 30 13
# authors CSPL 25 15 10




For each course, the table reports on (a) the number of cases
of each kind of comment across all review-feedback forms,
and (b) the number of unique students who made such a
comment. While a couple of students in each course made
multiple such comments, most are more isolated cases.

The percentages of students who, unprompted, acknowl-
edge errors and declare intent to act on reviews suggests that
reviewing is successful at identifying problems in test suites.
Of course, our data cannot tell us whether students would
have found the errors discussed in these comments without
the review process. An interesting question for future work
is whether peer-review changes the set of errors caught and
the time at which those errors are detected.

Reviewers can make mistakes, misinterpreting either the
assignment or the work being reviewed. Feedback comments
sometimes cited concrete errors on the part of reviewers.
Comments that disputed specific parts of a review argued
about the expected result of a test, whether a particular sit-
uation needed to be tested, or the reviewer’s interpretation
of the assignment. The following table summarizes reported
instances of reviewer error, alongside data about whether
the comments referenced the assignment:

Dispute | Discuss Asgn | Both
# comments CS1.5 31 12 6
7 reviewers CS1.5 24 10 5
# comments CSPL 41 26 19
# reviewers CSPL 24 19 14

The large number of unique reviewers (relative to the num-
ber of disputes) suggests that reviewing errors were not due
to a couple of students consistently doing a poor job. This
is a positive result. Some assignments in each course had
interesting subtleties (without which there would be less po-
tential value from reviewing test cases). We expected there
would be some differences in interpretation. These data sug-
gest that some discussion of those cases occurred within the
reviewing process, rather than just in office hours.

S. RELATED WORK

Our paper focuses on (a) in-flow (b) peer-review of (c)
tests. Little prior work covers all three aspects. We focus
here on projects that combine two of them.

Kulkarni, et al. study the effects of seeing examples early
on in the creative process [9]. They find that early and fre-
quent exposure to examples (in their case, artwork) leads to
participants producing drawings with more unique features
(a measure of creativity). One of our hopes is that seeing
examples of tests early leads students to create more diverse
and effective test suites for their own programs.

Buffardi and Edwards study students’ testing behaviors
under test-driven-development [2]. Students could submit
tests and code for automated assessment multiple times be-
fore the deadline, receiving in-flow feedback. The point at
which a student’s tests achieve significant coverage of her
code is a key parameter in their analysis. This parameter
is not meaningful in our work, since students submit (and
ostensibly write) tests prior to implementations. Our two
groups share an interest in leveraging early testing to im-
prove code quality; identifying appropriate roles for peer-
review in that process is an interesting open question.

McCarthy [pers. comm.], after the deadline, has students
answer a questionnaire with specific test-related questions.

Affirmative responses must be accompanied by references
to concrete code. Other students are asked to assess these
responses. All these responses are taken into account in
grading. The evaluation is not in-flow. Though our gold
and coal solutions simulate some of the effect of his rubrics,
we may benefit from using such rubrics more directly.

Expertiza is a peer-review system with reviews of reviews,
but as part of a grade rather than as helpful feedback [14].
They do not provide quantitative data on reviews of reviews.
The applications of Expertiza were often on collaborative
projects, where each student submitted pieces of a larger
system, so students’ own experience with their problem was
less directly applicable to the review.

Aropd is a peer-review system that has been used in both
computer science and humanities [6]. It does not support
our notion of in-flow review, but it does support a review-
dispute-revise loop. Since peer reviews are used as part of
the grading process, accurately disputing a flawed review
can lead to a better grade, so students have incentive to
read their feedback with a critical eye.

Hundhausen, et al. study several variations of peer code
review in their courses [7]. They do not consider testing
explicitly, and do not have in-flow components. They do
discuss and reflect on reviews in a group setting, as an oppor-
tunity to identify what makes for a helpful review, or what
problems were seen across the class. Their work demon-
strates the importance of the social aspect of peer review.

Smith, et al. have students write tests for one another as
part of reviewing [16]. The tests (and any bugs found) are
reported to the original authors, who evaluate the feedback,
including the tests and overall testing strategy. Smith et al.
do not discuss specific qualities that were evaluated of the
tests and reviews, and the testing was more whole-system
than in our work. When evaluating reviews, the students
could also submit fixes to their program that the review
identified; the authors do not provide data on how often or
to what degree students exploited this.

Clark studies peer testing in larger software engineering
projects across several years [3]. The testing is less auto-
mated because it involves using interactive interfaces. Af-
terwards, student programmers are asked to evaluate their
testers with a rubric that measures helpfulness.

Sendergaard uses in-flow peer review in a course on com-
pilers [17], though the flow is not test-first. Rather, several
components of a compiler are completed in order, with re-
view steps in between. 68% of students agreed that peer
review helped them improve their work, 63% agreed it im-
proved their ability to reflect on learning, and 89% agreed
that it was useful to see other groups’ solutions.

Reily, et al. have students submit test cases as part of
a peer review process [15], along with Likert and open-
response questions. They do not focus on reviewing test
suites themselves, however, instead using tests as a kind of
concrete feedback on implementations, as part of a rubric.

Gaspar, et al. surveyed students on their perceptions of
Peer Testing, in which students share their test suites with
classmates [5]. The time at which their students submitted
tests relative to the due date is not clear, though the survey
asks students about the impact of Peer Testing on their pro-
grams. Students generally perceived benefits to trading test
suites. Students did not provide feedback on each others’
tests, so this use of Peer Testing captures only one of the
reviewing roles required of CaptainTeach students.



6. DISCUSSION AND FUTURE WORK

We have presented an analysis of what we believe is the
first use of in-flow peer-review of tests. Both the in-flow
process and the review of test suites are variables in this
work, and we did not attempt to tease them apart. We also
did not investigate the review of tests relative to the review
of implementations, although we have analyzable data on
both. We focus on review of tests here because they are a
natural boundary for in-flow reviewing.

Our finding that students participate early and thought-
fully with little structure to reviews is promising. Our data
on student engagement and feedback styles is thus a good
candidate for comparison to students’ behavior in more struc-
tured and enforced contexts. In future iterations, we wish
to borrow rubrics from other authors (e.g., Kulkarni, et al.
[10]). It would also be useful to directly ask students whether
a review inspired them to make any changes.

Our analysis of comments on review helpfulness identifies
a subtlety in rubrics for assessing reviews: prior rubrics [11]
value concrete targeted comments over concrete but abstract
ones on the theory that targeted comments are more action-
able. While this theory holds for correctness, which focuses
on individual tests, it does not apply as well to thorough-
ness, which is fundamentally about the overall structure of
a test suite and is about material that might be missing.

While our data show test-suite quality improving during
in-flow review, there are many possible causal explanations
(besides chance). First, the process prompts students to sub-
mit material earlier, giving them more time to think about
the problem and to revise work. Second, forcing the sub-
mission of tests for review emphasizes test quality. Third,
students may benefit from reading the reviews that others
wrote of their tests. Finally, students may benefit simply
from having to read others’ tests and articulate thoughts
about them. Our system is not set up to discriminate across
these different factors (and hence determine the impact of in-
flow review). A future version of CaptainTeach that enables
A/B testing may make this easier; e.g.: What if students are
asked to write reviews but are not shown reviews of their
own work? What if they submit tests to run against each
others’ code [4] but don’t actually read the tests manually?
These are worth exploring.

One feature we strongly considered incorporating was to
give each reviewer the output of automated grading of sub-
missions, to prompt them for things to comment on. We
decided not to because we feared that if an automated sys-
tem failed to find problems, human reviewers would be in-
clined to pass lightly over the test suite. The top-left and
bottom-right of Figure 3 are especially interesting in this
light: presenting this data might have helped the bottom-
right group do a better job, but might it have made the
top-left group complacent? Overall, our analysis of seem-
ing inaccuracies between high-grade but low-rating reviews
highlights weaknesses in relying on automated grading.

Finally, we want to consider the larger narrative around
in-flow review of tests. Every test case has a lifecycle: it is
created, possibly cloned and modified, fixed to reflect better
understanding of a problem, modified to track a changing
implementation, and sometimes even deleted. This lifecycle
resembles Ko’s model of software errors [8], and similarly can
be affected by learning environments. CaptainTeach should
help study the role of peer-review in this story.
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