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Abstract
As modern type systems grow ever-richer, it can become in-
creasingly onerous for programmers to satisfy them. How-
ever, some programs may not require the full power of the
type system, while others may wish to obtain these rich
guarantees incrementally. In particular, programmers may be
willing to exploit the safety checks of the underlying run-
time system as a substitute for some static guarantees. Pro-
gressive types give programmers this freedom, thus creating
a gentler and more flexible environment for using powerful
type checkers. In this paper we discuss the idea, motivate
it with concrete, real-world scenarios, then show the devel-
opment of a simple progressive type system and present its
(progressive) soundness theorem.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Extensible languages; F.3.3 [Studies of
Program Constructs]: Type structure

Keywords exceptions; runtime failures; gradual typing;
retrofitting; progress

1. Introduction
Recent years have seen a series of strong results on gradual
typing [20, 25, 32], which focuses on adding types to other-
wise untyped languages (such as most scripting languages).
Gradual typing argues that it is difficult for programmers to
proceed from untyped to typed programs in a single step;
instead, they should be allowed to add types incrementally,
on a by-need basis. There are different styles of gradual
typing—some enable the free intermingling of typed and
untyped code [20], while others confine each kind to sep-
arate modules [26]—with correspondingly different guaran-
tees on the behavior of interactions between typed and un-
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typed code. All, however, are designed for the incremental
provision of guarantees in programs.

This paper argues that there are actually two, orthogo-
nal, kinds of incrementalism that programmers are likely to
want, and explores the one not covered by gradual typing. In
gradual typing, the programmer controls the extent of code
covered by the type system, but the guarantee that the type
system provides is fixed. In contrast, we present progressive
types, which let programmers choose what guarantees they
want from their type system. Static guarantees that program-
mers desire are checked by the type system; those not cho-
sen are still enforced by the underlying safe run-time sys-
tem. We argue that many type systems—including those for
traditionally typed languages (e.g., a Java that provided the
choice of allowing NullPointerExceptions)—have progres-
sive elements and can profitably be reformulated to enable
progressive typing.

To understand our choice of name, it is helpful to recall
the basics of type soundness. Per Milner’s formulation [12],
a term that types will either not halt or will result in an an-
swer of the right type. The Wright-Felleisen technique for
proving it [30] decomposes proofs into two parts: progress
and preservation. Progress says that a well-typed term that is
not an answer can take a reduction step. Progress is defined
by first defining faulty expressions, which are a conservative
approximation of terms that will get stuck, and then show-
ing that these faulty expressions are untypable. Since the ty-
pable terms must then necessarily be non-faulty, they either
diverge or evaluate to values. Preservation says that the term
resulting from a step taken by a well-typed term will itself
be well-typed. Interleaving progress and preservation steps
yields the desired soundness result.

This description hides an important caveat: exceptions,
which every realistic sound type system can raise. Progress
thus really means that a program is either an answer, can
take a well-typed step, or will result in one of that set of
exceptions. Progressive types are then a means of tuning
how much progress the user wants, without giving up on
preservation. Indeed, progressive types grew out of our own
experiences as builders and users of various gradual type
systems for real-world code.

Describing type soundness as admitting a set of excep-
tions presents the exceptions as a weakness; in fact, it is a



strength in that only those exceptions can occur. For a lan-
guage with a type-based semantics, the set of “exceptions
that cannot occur” may not be well-defined (because there is
no need to include them in the semantics). In contrast, when
types are being “retrofitted” onto an existing safe run-time,
it becomes easy to identify precisely which exceptions in the
run-time system will not be raised (and their corresponding
checks can even be removed by an optimizer [22]). Indeed,
the classical literature on retrofitted type systems focuses on
the exceptions that cannot occur:

• “Our [. . . ] aim is to provide for the undefinedness that
arises from so-called don’t care conditions in language
specifications.” [13]

• “In typeless languages [. . . ], it is possible to encounter
run-time errors such as applying lists to arguments. Can
one infer types [. . . ] to catch more errors at compile
time?” [24]

• “While Smalltalk is a ‘type-safe’ language in the sense
that [it can produce] a run-time error of the form ‘mes-
sage not understood’, it is nevertheless advantageous for
the programmer to be informed [. . . ] when the program
is being compiled” [2]

In short, every sound retrofitted type system makes a con-
scious and fixed choice about which exceptions it will catch
statically and which ones can still occur at run-time. We ar-
gue that this choice should instead be delegated to the user
of the type system. At one extreme, then, the programmer
can choose to have no exceptions prevented statically. This
reduces the “type checker” to a mere parser. This is, how-
ever, perfectly reasonable: type systems are syntactic dis-
ciplines (in Reynolds’s phrase [18]), and the simplest is a
check for adherence to a grammatical term structure. Thus
progressive types lay bare the progression from parsing to
rich type-checking.

2. Motivating Examples
As motivation, we present two examples where traditional
progress guarantees are unnecessary or are downright an-
noying, and a vision for a tool built with progressive types
in mind.

2.1 ADsafety: Safety without Progress
Typed JavaScript [7] is a typed version of JavaScript that
handles many idiomatic patterns found in that language. In
2010-2011, two of the authors used Typed JavaScript to
verify ADsafe [16], a Web sandboxing library.

The heart of ADsafe is a runtime library, adsafe.js.
It contains wrappers for built-in browser functionality that
block access to sensitive operations on the page (for exam-
ple, reading the user’s cookie or the content of the page
outside of an advertisement). The core of our verification
strategy was, roughly speaking, to annotate adsafe.js and

type-check it in Typed JavaScript to verify that it did not leak
sensitive data.

The crucial point of relevance here is that ADsafe’s sand-
boxing properties are only dependent upon untrusted code
not getting references to certain unsafe values. A runtime er-
ror is completely compatible with these goals, as a program
that halts before it leaks an unsafe value is a safe program.
Thus, it is sufficient for a type-based verification to be con-
cerned only with these values and how they are used, without
considering runtime errors.

Further, the runtime library of adsafe.js, and the un-
trusted programs that run against it, can actually produce
runtime errors. ADsafe doesn’t prevent programs from
trying to look up fields on the null value, for instance,
which signals an exception. To enforce such restrictions in
a verification with a traditional type-checker, the code of
adsafe.js would have required nontrivial refactorings that
were irrelevant to the properties we were trying to prove.
Instead, we elected to relax the rules in our type-checker to
admit runtime errors.

Our implementation of Typed JavaScript for verifying
ADsafety reflects this change, which we made by manu-
ally editing the appropriate typing rules. There are naturally
many problems with this implementation strategy:

• With each new configuration, we would need to re-do
our reasoning to ensure that the modified implementa-
tion matched our expectations of the allowed errors, and
doesn’t break soundness in some subtle way.

• The implementation doesn’t check a specific set of errors.
For verifying ADsafe this was not a problem, since we
were permitting all runtime errors. But this does not
generalize to a more nuanced setting.

• Changing which errors are allowed requires editing and
recompiling the type-checker.

For ADsafe’s verification, we cared about specific type-
based arguments of safety that were dependent on preser-
vation only, and completely ignored the typical progress
lemma. Other projects using Typed JavaScript are similarly
exploring weaker variants of the traditional, strong progress
result backing Typed JavaScript. Ideally, therefore, Typed
JavaScript would be a type-checker parameterized over the
specific progress guarantees a user wants.

2.2 Typed Racket
Typed Racket [26] is a type system for the Racket program-
ming language [15], a large and sophisticated descendent
of Scheme. Because Typed Racket intends to type all of
Racket, it has a very complex type system. Indeed, typing
each of several Racket features has led to individual pa-
pers [21, 23, 28]. Each of these complex type extensions
offers an irreplaceable benefit to the developer who hopes
to bless the use of that feature, but can become an enormous
burden to the developer who does not care about it.



For instance, consider Typed Racket’s numbers [21].
Racket numbers are derived from the complex numeric hier-
archy of Scheme [4], including rational and complex num-
bers, (in)exactitude, fixed- and floating-point, and more.
Typed Racket encodes this entire hierarchy, resulting in a
limited form of dependent types [21]. Thus, even though
Typed Racket’s + is not overloaded as in other languages—it
consumes and produces only numbers—the listing of its type
can be dozens of lines long! In fact, reflecting Racket, there
is no universal number type that a programmer can use in all
numeric contexts. (There is a built-in type called Number,
but this is an alias for the union of Complex and several
other types, and complex numbers are not comparable (e.g.,
by <).)

As a result, we have personally experienced situations
where over half the time spent converting an untyped Racket
program to Typed Racket is spent on numbers alone. This
can be very frustrating in programs where numeric reason-
ing is largely orthogonal to the point of the program. A pro-
grammer who has some means to validate—e.g., through a
user interface that lies outside the type system—that “bad”
numbers will not arise can painstakingly place casts in every
relevant location to ask the type system to circumvent check-
ing. But this is not modular, and anyway hardly inviting to
a programmer who (at least for now) does not care about
(say) numeric errors. In principle, every powerful extension
of Typed Racket deserves its own progressive relaxation.

2.3 Progressive IDEs
We envision progressive types as a particularly powerful fea-
ture when embedded in a progressive-aware IDE. Figure 1
shows a prototype design for such an interface.

The panel on the right lists errors, and lets the program-
mer indicate which ones should be allowed. Inline examples
give the programmer context about what to expect—if the
error is checked statically, the type error is shown, and if the
error is allowed at runtime, an example that shows the run-
time error is shown. Buttons let programmers toggle check-
ing for specific errors on and off, and aggregate buttons tog-
gle checking for entire groups of errors.

The interface might extend to REPLs, too. When the
programmer encounters a type error that corresponds to a
progress error (top of the figure), she should be presented
with a button that lets her explicitly allow the error. If she
allows it, the error panel should update. Conversely, if the
program evaluates to an error that isn’t statically checked,
the IDE presents the programmer with the option of turning
on checks for that error.

3. Progressive Types: An Example
In this paper, we don’t try to prescribe a metatheory for all
progressive type systems. Instead, we demonstrate our ideas
through a candidate design for a progressive type system.
We choose a simple call-by-value λ-calculus with math op-

e := e(e) | c(e) | v | err-ω
v := λx : (τ ; Ω).e | n
n := R
c := ÷ | add1
ω := app-n | app-0 | div-0 | div-λ | add1-λ
Ω := ω

τ, σ := types, see figure 4

Figure 2. Syntax of λτΩ

erations, inspired by Typed Racket, which we dub λτΩ. By
working through several concrete examples of typing simple
programs with errors, we outline what capabilities we ex-
pect of progressive systems. Section 3.1 outlines the syntax
and semantics of the language we consider, then section 3.2
provides examples, and describes a type system for the lan-
guage. Section 3.3 discusses the formal guarantees we get
from the system, section 3.5 shows how to type the exam-
ples, and section 4 discusses some uses of and extensions to
the system.

3.1 Syntax and Semantics
Figure 2 shows the syntax of λτΩ, the core language we con-
sider. The language supports two numeric operators: recipro-
cal (÷) and increment (add1 ). The language is also equipped
with first-class functions, which have an explicit type anno-
tation τ . The language of types is presented later in figure 4;
we defer their explanation until then.

Errors are expressions in their own right in λτΩ, with ω
ranging over the possible error labels. We use Ω to range
over sequences of error labels (indicated by the overline).
We use angle brackets to write particular sequences; for
example, 〈app-n, div-0〉 is the sequence containing the two
labels app-n and div-0. These sequences have meaning in
typing expressions, but no bearing on the semantics of λτΩ:
The semantics only ever leads to error expressions with a
single error label.

Figure 3 shows the semantics of λτΩ. Evaluation contexts
E enforce left-to-right, call-by-value evaluation of expres-
sions. Evaluation within contexts, applying abstractions via
substitution, and deferring primitive operations to a δ func-
tion are standard. Type annotations τ are uninterpreted and
have no effect on a procedure’s evaluation.

Unlike many formal languages, λτΩ pays extreme atten-
tion to error cases. Misapplication of a number n in the pro-
cedure position results in a specific error, err-app-n, rather
than getting stuck. Division by 0 or a procedure results in an
error, and the errors are distinguished by their labels ω. The
only case of reciprocal that succeeds is the expected one:
when the numerator is a number and the denominator is a
nonzero number. The add1 operator succeeds on numbers
(including zero), and has an error case for procedures.



Figure 1. Design for a Progressive Type-Aware IDE. A click on the prompt button leads to the other state in either case.



E := • | E(e) | v(E) | c(E)

e→ e

E[e]→ E[e′] when e⇒ e′

E[err-ω]→ err-ω

e⇒ e

(E-Apply)
(λx : (τ ; Ω).e)(v)⇒ e[x/v]

(E-Apply-0)
0(v)⇒ err-app-0

(E-Apply-Num)
n(v)⇒ err-app-n | n 6= 0

(E-Op)
c(v)⇒ δ(c, v)

c× v → v + err-ω

δ(÷, n) = 1/n | n 6= 0
δ(÷, 0) = err-div-0
δ(÷, λx : (τ ; Ω).e) = err-div-λ

δ(add1 , n) = n + 1
δ(add1 , λx.e) = err-add1-λ

Figure 3. Semantics of λτΩ

Both operations’ errors for invocation with procedures
are distinct and mention the operator: this matches how
the runtime of Racket (and many other untyped languages)
reports error messages.

These errors cover all evaluation cases.1 That is, λτΩ en-
joys untyped progress: For every expression e, either:

1. e is a value v;

2. e = err-ω; or,

3. e 6= err-ω, and there exists some e′ with e→ e′.

The proof is a straightforward case analysis of the syntax
and reduction relation, and we don’t present it here. Rather,
we mechanize the semantics with PLT Redex [5], and use its
testing tools [9] to check this.

Untyped progress is a useful model of what Racket’s
existing safe runtime enforces for untyped programs. Rather
than having behavior that is completely undefined for the
misuse of operators, it returns well-defined errors; this says
quite a bit more than just “getting stuck.” As we present

1 We require that expressions be closed—a different formulation might
allow unbound identifiers to evaluate to a particular kind of error.

progressive types, we will see how to reason about these
error states, and what it takes to guarantee that they will not
occur in well-typed programs.

3.2 Typing λτΩ
In typing λτΩ, we should be able to address the entire spec-
trum of programs, from the fully untyped, which may evalu-
ate to any error, to the fully typed, which can provably only
evaluate to a programmer-selected subset of errors. To do
this, we need our type system to:

1. ascribe meaningful types to programs that evaluate to
errors, and

2. be parameterized over a selectable subset of the errors in
the language.

The first criterion means typing programs such as these
(where the type annotations are intentionally left unspecified
for now, with the τs as placeholders):

÷(0)

(λx : τ.÷ (x))(0)

(λx : τ.÷ (add1 (x)))(−1)

(λf : τ1.f(2)(4))(λx : τ2.add1 (x))

The first program results in an immediate error: it divides by
0 directly, resulting in err-div-0. In the second program, 0
is substituted for x in the procedure body, and the program
results in err-div-0 on the next step. The third program is
similar, but has an addition that succeeds before the division
by 0. In the fourth program, the procedure that increments
its argument is correctly called and yields 3, but then 3 is
applied to 4, resulting in err-app-n.

What types should these programs have, and what do
those types mean? In the first case, we can easily prove
that it will evaluate to an error. The second example is
less clear. Typical compositional type-checking would have
us type-check the function in isolation, using information
from its annotation τ to make conclusions about its body.
Separately we would have to ensure that only τ -typed values
are substituted for the argument. If we choose a type that
allows 0 to flow into the body, we would need to allow for
err-div-0 errors. If we choose a type that excludes 0, then the
application to 0 won’t type-check.

The third example is more subtle. If we want to statically
prove the lack of err-div-0, we’d need to reason about the
behavior of add1 , and the possible arguments to it that might
yield 0. Most type systems don’t accept this burden, and
programmers live with the possibility of division-by-zero
errors, guarding them with dynamic checks as best they can.

In contrast, most type systems would not give a type to the
fourth program, which could (and does) result in err-app-n.
It’s difficult to say what it even means to give a type to this
program; we’ll see one possible typing in section 3.5.



τ, σ := 0 | N | ⊥ | τ ∪ τ
| τ

Ω−→ τ
Γ := • | Γ[x : τ ]

Figure 4. Types for λτΩ

Choosing Types There are myriad type systems we could
imagine for type-checking λτΩ, given these examples and
many others. However, our examples do highlight an impor-
tant feature of the dynamic semantics of λτΩ that can inform
our design of a type language. The δ-function and reduction
relation considers values of three distinct kinds: procedures,
the value 0, and nonzero numbers. It does not distinguish
them further, and makes decisions based on this partitioning
of values alone. We take this distinction as a starting point
for designing types: our type language should be able to rep-
resent procedures, zero, nonzero reals, and any combination
of them.

Figure 4 shows the complete type language for λτΩ. We
use τ to range over types. The type 0 represents the number
0 and N represents all other numbers. A union of two types,
τ ∪ τ , represents the type of all values of either type. We
employ a bottom type,⊥, to represent computations that can
only terminate in an error. Type environments Γ are standard.

Arrow types, τ Ω−→ τ , include an error set. We read a type
τ

Ω−→ τ ′ as a function from values of type τ to values of type
τ ′, or any of the errors in Ω. That is, a function type includes
the kinds of errors that may occur during the evaluation of
values that inhabit the type.

Typing Programs Now we consider typing expressions
that evaluate to different kinds of errors, and parameterizing
the type system over different sets of errors. We do this in a
straightforward way. We define not only type environments,
Γ, as assumptions of each typing derivation, but also a set of
allowed errors, Ω, which ranges over all the subsets of error
labels in ω. The type system proves judgments of the form:

Ω; Γ ` e : τ

which means that ewill evaluate to a value of type τ , diverge,
or terminate with an error in Ω. The rest of this section walks
through the typing judgments for λτΩ, focusing on where Ω
is used to make the type system progressive.

Typing Simple Expressions Typing numeric values can
never result in an error, so their typing holds for any Ω and Γ.
Typing variables is standard lookup in the type environment
Γ. These straightforward rules are in figure 5.

To type-check an error, we check that the error’s label is
in Ω. If they are typable, error expressions always have type
⊥ (figure 6).

T-Zero
Ω; Γ ` 0 : 0

T-Num
n 6= 0

Ω; Γ ` n : N

T-Var
Ω; Γ ` x : Γ(x)

Figure 5. Typing Constants and Identifiers

T-Err
ω ∈ Ω

Ω; Γ ` err-ω : ⊥

Figure 6. Typing Errors

δτ : c× τ × Ω→ τ

δτ (c,⊥,Ω) = ⊥
δτ (c, τ1 ∪ τ2,Ω) = δτ (c, τ1,Ω) ∪ δτ (c, τ2,Ω)

δτ (÷,N,Ω) = N
δτ (÷, 0,Ω) = ⊥ when div-0 ∈ Ω

δτ (÷, τ1
Ω1−−→ τ2,Ω2) = ⊥ when div-λ ∈ Ω2

δτ (add1 ,N,Ω) = N ∪ 0
δτ (add1 , 0,Ω) = N
δτ (add1 , τ1

Ω1−−→ τ2,Ω2) = ⊥ when add-λ ∈ Ω2

T-Op
Ω; Γ ` e : τ

Ω; Γ ` c(e) : δτ (c, τ,Ω)

Figure 7. Typing δ

Typing δ When we get to less inert expressions, typing be-
comes interesting. In order to support progressive typing, we
need to provide types for unconventional expression forms,
like ÷(λx(τ ; Ω).e), where a procedure is used as the argu-
ment to a primitive operation. This program should be ty-
pable conditioned on whether err-div-λ is an allowed error
or not, since

÷(λx(τ ; Ω).e)→ err-div-λ

Generalizing fully, we want to be able to type an application
of a primitive operation to any value, as long as the appro-
priate error labels are in Ω.

This full generalization is captured in δτ in figure 7.
To ascribe a type to a primitive operation expression, c(e),
we must have a type for the subexpression e, assuming the
same bindings and allowed errors. Then, δτ takes this type



and distributes it over unions, yielding ⊥ when the type
guarantees that the expression will evaluate to an error ω
that is in the set of allowed errors Ω. This lets us give a type
to our the first example if we choose Ω correctly:

Ω = 〈div-0〉

δτ (÷, 0, 〈div-0〉) = ⊥ div-0 ∈ 〈div-0〉

〈div-0〉 ; • ` 0 : 0
〈div-0〉 ; • ` ÷(0) : δτ (÷, 0, 〈div-0〉)

If we had chosen an Ω that didn’t include div-0, δτ would
have been undefined for 0, and no typing would have been
possible for this expression (using ↑ to indicate that δτ is
undefined on its inputs):

Ω = 〈app-0〉

δτ (÷, 0, 〈app-0〉) ↑ div-0 6∈ 〈app-0〉

〈app-0〉 ; • ` 0 : 0
〈app-0〉 ; • ` ÷(0) : undefined

Procedures and Application We now need to tackle pro-
cedures and their application. The rule for procedures is in
figure 8:

T-Fun
Ω2; Γ[x : τ1] ` e : τ2

Ω1; Γ ` λx : (τ1; Ω2).e : τ1
Ω2−−→ τ2

Figure 8. Typing Procedures

To type-check procedures, we use the typical strategy of
extending the environment, but we replace the Ω1, the cur-
rent set of acceptable errors, with the procedure’s annotation
Ω2 to type- check its body. The annotated error set is then
included in the type for the function.2

Type-checking application is the most subtle operation. A
number of factors come into play:

1. We need to ensure that a function, when applied in a
particular environment of allowed errors Ω, cannot cause
errors outside of Ω.

2. We need to give types to programs where a number ap-
pears in procedure position, but only if the appropriate
errors are allowed.

3. To ensure the usual correctness guarantees for fully-typed
programs, we require the usual guarantee of type preser-
vation; namely, that the type of the parameter matches the
expectation annotated on the formal argument.

2 If all procedures were not already annotated with error sets, we could
imagine nested procedures closing over the ambient error set. This would
allow one procedure, perhaps acting as a module, to dictate the allowed
errors for all the procedures defined within it.

apply : τ × τ × Ω→ τ

apply(⊥, τ2,Ω) = ⊥
apply(τ1,⊥,Ω) = ⊥

apply(0, τ ′,Ω) = ⊥ when app-0 ∈ Ω
apply(N, τ ′,Ω) = ⊥ when app-n ∈ Ω

apply(τ1
Ω1−−→ τ2, τ

′,Ω2) = τ2 when τ ′ = τ1
and Ω1 ⊆ Ω2

apply(τ1 ∪ τ2, τ ′,Ω) = apply(τ1, τ
′,Ω)

∪ apply(τ2, τ
′,Ω)

T-App
Ω; Γ ` e1 : τ1 Ω; Γ ` e2 : τ2
Ω; Γ ` e1(e2) : apply(τ1, τ2,Ω)

Figure 9. Typing Application

As with primitives, we employ a metafunction to type-
check applications. The apply metafunction is shown in fig-
ure 9. It propagates ⊥ as in δτ . If number- or zero-typed
values appear in the function position, it allows them if the
appropriate error is in Ω, resulting in ⊥.

For arrow types, apply checks: (1) that the argument
expression will evaluate to a value of the same type as
the annotation, and (2) that the set of errors Ω1 that the
application can result in is contained within the errors in Ω2

that the context expects.
Finally, apply distributes over unions in the procedure

position. For example, take this application of apply to the
union of a number and an arrow type:

apply(N ∪ 0
〈〉−→ 0, 0, 〈app-n〉)

= apply(N, 0, 〈app-n〉) ∪ apply(0
〈〉−→ 0, 0, 〈app-n〉)

= ⊥ ∪ 0

Note that the function type, 0
〈〉−→ 0, doesn’t have to

have the error label app-n: only the context in which the
application is being performed does. It is sufficient that 〈〉 ∈
〈app-n〉: the function’s application causes no errors, which
is allowed in a context that accepts app-n errors.

Subtyping We introduced union types, but no introduction
mechanism for them. Further, we cannot type some pro-
grams that should intuitively type-check. For example, we
cannot handle

(λx : ((0
〈〉−→ 0) ∪ N; 〈〉).x)(5)



τ 6 τ

S-Bottom ⊥ 6 τ S-Refl
τ 6 τ

S-Union-L
τ 6 τ1

τ 6 τ1 ∪ τ2
S-Union-R

τ 6 τ2
τ 6 τ1 ∪ τ2

S-Union-Join
τ1 6 τ τ2 6 τ

τ1 ∪ τ2 6 τ

S-Arrow
τ3 6 τ1 Ω1 ⊆ Ω2 τ2 6 τ4

τ1
Ω1−−→ τ2 6 τ3

Ω2−−→ τ4

T-Sub
Ω; Γ ` e : τ1 τ1 6 τ2

Ω; Γ ` e : τ2

Figure 10. Subtyping λmath

because we lack a mechanism for expressing that 5 is substi-
tutable for not just N, but for any union of types that includes
N. To remedy this, we introduce a standard subsumption
rule, and subtyping rules for determining when a value of
one type is substitutable for another (figure 10). The notable
addition to the subtyping relation is the covariance of the er-
ror position in S-Arrow. That is, a procedure that produces
fewer errors is substitutable for one that produces more.

3.3 Soundness
Our soundness theorem differs from the traditional one by
taking progressivity into account:

Progress: If Ω; Γ ` e : τ then

1. e ∈ v, or

2. e = err-ω where ω ∈ Ω, or

3. e 6= err-ω, and there exists e′ such that e→ e′.

This proof has a similar structure to untyped soundness
from section 3.1, but it ensures that the error is one of the
allowed errors.

We also prove a more classical preservation theorem:

Preservation: If Ω; Γ ` e : τ and e→ e′ then Ω; Γ ` e′ : τ .

We include proofs of these lemmas in the supplemen-
tal materials at http://www.cs.brown.edu/research/
plt/dl/progressive-types/.

3.4 Discussion
Some of the features of λτΩ and its associated theory warrant
highlighting.

Type “Errors” Informally, there are exactly two reasons
why a λτΩ program might not have a type. In an untypable
program, it is always the case that the type system can’t
prove one of:

1. All errors the program may evaluate to are in the Ω
declared for type-checking.

2. In all applications, the type of the argument is compatible
with the left-hand side of each arrow type (if any) in the
type of the procedure.

The first is a progress error: the program might fail to
make progress in a way the programmer didn’t intend. It
arises in apply, δτ , and T-Err when the appropriate error isn’t
present for a case that goes to ⊥, and also in apply when
the error set of the procedure’s annotation is checked against
the current context’s error set. The second is a preservation
error: the program might compute a result that isn’t what
the programmer intended. This occurs only in apply, in the
case of matching an arrow type with its argument’s type.
Our progressive type system for λτΩ allows us to relax any
and all progress errors, with the assumption that preservation
remains intact.

The goal of progressive types is to provide control
over different kinds of terminating errors. It cannot relax
preservation—which, if violated, results in a program that
computes nonsense from the type system’s point of view.
Thus, in order to provide these guarantees, the progressive
type-checker may still report a type error when configured
to allow all runtime errors.

Delayed Evaluation of Errors T-Fun (figure 8) allows the
annotation on a procedure to express the intended errors that
should be allowed to occur when the function is applied. The
type checker is not concerned about the relationship between
the outer allowed errors and the errors allowed in the body of
the function at the time of the procedure’s definition. There
are two points of interest here:

1. The static declaration of runtime errors is similar to the
throws clause in Java, which enumerates the exceptions
a method might throw. Progressive types make this man-
ifest for all the errors in the system. This is in contrast to
Java, which has errors that avoid the need for annotation,
like NullPointerException.

2. A procedure that might cause a particular error when
applied can be successfully type-checked in a context that
does not allow that error. This makes sense for functions
that may be exported across module boundaries into more
lenient contexts.

3.5 Type-checking the Examples
We return to the examples from the beginning of section 3.2.
We have already seen how we can type-check the simple
division by zero, so we start with the slightly more compli-
cated second example, which needs an annotation:

(λx : (τ?; Ω?).÷ (x))(0)

To type-check the function, it needs to allow div-0. The
smallest type that we can use for τ is just 0. With those types:



〈div-0〉 ; • ` 0 : 0

〈div-0〉 ; • ` (λx : (0; 〈div-0〉).÷ (x)) : 0
〈div-0〉
−−−−−→ ⊥

apply(0
〈div-0〉
−−−−−→ ⊥, 0, 〈div-0〉) = ⊥

〈div-0〉 ; • ` (λx : (0; 〈div-0〉).÷ (x))(0) : ⊥

The third example also needs annotations:

(λx : (τ?; Ω?).÷ (add1 (x)))(−1)

The number type N is required for τ , and div-0 is required to
type-check the body of the function. To recur into the body,
the proof proceeds as in the last example, but type-checking
the body requires two uses of δτ :

[x : N](x) = N δτ (add1 ,N, 〈div-0〉) = N ∪ 0
〈div-0〉 ; [x : N] ` add1 (x) : N ∪ 0

δτ (÷,N ∪ 0, 〈div-0〉) = N ∪ ⊥
〈div-0〉 ; [x : N] ` ÷(add1 (x)) : N ∪ ⊥

The use of add1 results in a union N ∪ 0, since the type
system can’t prove anything more specific. The second use
of δτ distributes over this union, yielding N for the left
branch, and ⊥ for the right branch, thanks to the presence
of div-0 in the error set passed to δτ . If we use subsumption,
we can get a final type of N, and the typing judgment can be
read as a single statement: This program will evaluate to a
number, not terminate, or result in a div-0 error.

Next, we consider the final example:

(λf : (τ1; Ω1).f(2)(4))(λx : (τ2; Ω2).÷ (add1 (x)))

One assignment that makes this program typecheck is:

τ1 ≡ N
〈div-0〉
−−−−−→ N

Ω1 ≡ 〈app-n, div-0〉
τ2 ≡ N

Ω2 ≡ 〈div-0〉

This example shows that the function with parameter f
needs to allow the div-0 error, because it will invoke the other
function in its dynamic extent. It needs to include the app-n
error because it applies the result of the application of f(2),
which is a number.

These examples show typing a program that immediately
evaluates to an error, a program that abstracts procedures
over errors, a program that abstracts the typing of the δ
function over a union of error-causing and acceptable values,
and a program that misapplies a number as a function. They
demonstrate the flexibility that progressive typing provides,
and the strategy used to maintain the guarantees of staying
within a declared set of errors.

4. Uses and Extensions
Having worked through the development of a progressively-
typed language, we now discuss the relationship of progres-
sive typing to programming and other typing strategies.

4.1 Unityping
Scott pointed out that languages like Scheme can be implic-
itly typed in terms of a single type that encompasses all their
expressions [19]. The “unityped” argument implies that ev-
ery step of execution goes from a well-(uni-)typed state to
another. All the stuck states (errors) are simply more in-
stances of unityped expressions. This strategy has been used
before in mixing typed and untyped code by Matthews and
Findler, who mix a Scheme-like language and an ML-like
language [11]. They do so by using unityping rules to ascribe
TST (the Scheme type) to all of the Scheme expressions in
the computation.

To illustrate how this is useful, we outline some of the
properties of a slightly richer, almost-unitype for λτΩ. If we
add equirecursive types to λτΩ, we can express a useful, broad
type:

U = µx.0 ∪ N ∪ (x
Ω∗

−−→ x)

where Ω∗ is the set of all possible errors. Note that U is not
quite the type of every value in λτΩ. For example, the value

λx : 0.x

does not type to U : the contravariance of arrow subtyping
(S-Arrow) precludes using subsumption to go from the cal-
culated type 0 → 0 to U . The unityping property of U is a
bit more subtle:

Unityping Completeness: Let Ω∗ be the set of all errors.
For all expressions e, let e′ be e with all instances of (λx :
(τ ; Ω).e′′) replaced with (λx : (U ; Ω∗).e′′). Then Ω∗; · `
e′ : U .

That is, every program doesn’t necessarily type toU , but if
we replace all the type annotations with U , the program will
type-check to U . If all we want is the statement of unityping,
this replacement of type annotations with the unitype is a
simple inference strategy indeed!

We obtain confidence in the above claim via specifica-
tion and automation in PLT Redex [5]. Our Redex model
extends λτΩ with equirecursive types, and defines a proce-
dure that replaces all type annotations with U and all error
annotations with Ω∗.3 Then, for one million randomly gen-
erated expressions, we test that replacing their annotations
in this way yields an expression that type-checks, and satis-
fies the single-step progress and preservation lemmas above.
This experiment required that we produce an algorithm for
subtyping, which we did by applying a subtyping check at

3 In our implementation, the unitype-annotation procedure is affectionately
named harperize.



procedure applications. We do not know if our implementa-
tion is complete with respect to the declarative presentation;
providing such an algorithm is valuable future work.

A similar “inference,” with analogous restrictions for
preservation, was extremely useful in our verification of AD-
safe. First, we showed via testing that untrusted widgets are
effectively U -typed. Then, we annotated ADsafe’s runtime
library, where security-sensitive checks are implemented,
with much more precise types. The runtime of an ADsafe
computation is an untrusted widget composed with calls into
the runtime library, which involves passing U -typed values
into ADsafe’s reference monitor.

One subtle point of the verification is that untrusted wid-
gets can provide ADsafe with callbacks for event handlers,
and ADsafe will pass wrapped values into the callbacks.
In order to securely use the untrusted callbacks, ADsafe
needs to avoid passing non-U typed values into these call-
back functions. While the type-checker will allow nearly any
operation on U it will prevent the application of a U -typed
value to a value that is not a subtype of U . This guarantee
helped us establish ADsafety, and it was merely a statement
of preservation, not one of traditional progress.

Our progressive presentation of λτΩ lets us clearly under-
stand what tradeoff the unityping strategy is making. It is
trading away all guarantees about progress in exchange for
the ability to say something meaningful about types being
preserved, even if the types are quite coarse.

4.2 If-Splitting
Type systems for dynamic languages now feature some
form of if-splitting [7, 26, 27], which was proposed by
Reynolds [17], and has been implemented in several sys-
tems [6, 31]. This allows the type system to refine types in
the branches of a conditional, based on static knowledge of
the runtime type test information. It allows programmers in
Typed Racket and Typed JavaScript to split apart unions of
types with tag tests, and use the pieces of the union in differ-
ent branches. For example, Typed Racket can statically type
the following type-safe program:

(define: (get-seconds [millis : Number]) : Number
(if (not (real? millis))

(error "get-seconds: millis was complex")

(floor (/ millis 1000))))

This works because Number is really a union of several nu-
meric types, including Complex. Typed Racket’s if-splitting
allows the type-checker to refine the type of millis in the else
branch, instead of yielding a type error.

In this example, the conditional inside get-seconds en-
ables its author to provide a useful error message. A seem-
ingly better solution, however, would be for get-seconds
to take only non-Complex types in the first place. How-
ever, this would potentially require changing the callers of
get-seconds, possibly by having them include if-splits, un-
til the input source of the value that reaches get-millis is

reached. Somewhere, the program needs to either allow the
error of taking the floor of a complex number; if-split, and
provide alternate functionality; or else prove (or assert) that
the input cannot yield complex numbers.

If-splitting is a useful tool in this chain of refactoring and
reasoning, allowing the programmer to choose where they
provide alternate functionality. However, they ultimately
force these decisions, which may be a distraction, onto the
programmer if they wish for the type-checker to succeed. In
contrast, progressive types enable the programmer to eschew
this style by explicitly making a conscious choice to allow
particular errors rather than check for them. Since Typed
Racket is retrofitted onto a system that performs the runtime
safety checks already, the programmer is not sacrificing any
(dynamic) safety. The provision of choice therefore gives
programmers a wide range of options for bringing code into
the typed world.

4.3 Intersection and Dependent Types
The operators÷ and add1 in λτΩ are first-order: they can’t be
passed as values and used in any context other than primitive
operation expressions. In other presentations, such as for
Typed Racket [27], primitives are first-class values with rich
arrow types, and Racket’s numeric primitive have a weak
form of dependent types through intersection types [21].
The primitives of λτΩ could be expressed with similar rich
types, leveraging intersections. For example, ÷, which has
different behavior for all three different kinds of type, could
be expressed as (again with Ω∗ as the set of all errors):

÷ : N
〈〉−→ N

∩ 0
〈div-0〉
−−−−−→ ⊥

∩
(
⊥ Ω∗

−−→ >
) 〈div-λ〉
−−−−−→ ⊥

That is, for a N-typed argument, it yields a number with no
errors; for a 0-typed argument, it doesn’t return and causes a
div-0 error; and for function arguments, it doesn’t return and
causes a div-λ error. This formulation is reminiscient of the
latent predicates of Hochstadt [27], and the cases that only
lead to errors could even potentially be used to if-split on
computations that are guaranteed to terminate in an error.

This formulation is useful because it allows a function
that causes an error only on particular inputs to be used
safely in other contexts. Without some form of dependent
types, the only type in our current system for ÷ as a value
would require adding a > type and defining:

÷ :
(

N ∪ 0 ∪ ⊥ Ω∗

−−→ >
) 〈div-0,div-λ〉
−−−−−−−−−→ N

This is too broad to type-check safe uses like ÷(5) in an er-
ror environment that doesn’t expect div-0 and div-λ. We are
therefore interested in pursuing the applications of intersec-
tion types more fully.



4.4 Generalizing Progressive Types
We have presented progressive types strictly with respect to
runtime failures. Our extensions to traditional systems are
the addition of error contexts Ω, and their use as “switches”
within metafunctions used by the typing rules. Because our
calculus has only a single reduction rule for each error, this
actually means that adding or removing an error corresponds
to allowing or disallowing a single case of the reduction
relation. For example, we can state:

If

• app-0 6∈ Ω,
• Ω; · ` e : τ , and
• e� e′,

then (E-Apply-0) was not used in e � e′. This is a simple
corollary of preservation and an inspection of the reduction
relation.

In Typed JavaScript, we statically prevent certain opera-
tions that are not runtime errors. For example, subtracting
strings in JavaScript doesn’t lead to an error, but rather to
IEEE NaN:

"subtract" - "a string" → NaN

We disallow string subtraction because we believe it is
unlikely that the programmer intends it. This runs contrary
to the progressive philosophy: Simply because it is unlikely
doesn’t mean that it should be disallowed by fiat. This is
quite a specific step in the reduction relation, and we have
just seen how to disable specific steps that correspond to
errors. It would be useful to have a similar toggle for matters
of judgment such as this.

We could make the toggle switch be the string subtraction
case of the δ function. This would suggest that each reduc-
tion rule (and case of the δ function) get its own switch, and
place in the extended “type environment.” We could also, in
the style of declaring allowed errors, declare allowed values,
and declare that no expression should evaluate to NaN. In
JavaScript, this would cross-cut a number of rules, but might
actually be a useful summary of what the programmer would
like! (For instance, the production of the value Undefined is
often indicative of the program taking an undefined step.)

5. Related Work
Modern gradual type systems prevent the program from exe-
cuting until the portion being typed has passed all checks. In
contrast, the work on soft typing [31] was built on the prin-
ciple that the type system may not be rich enough to type
a particular program. As a result, when a program fails to
type, a soft type checker inserts checks corresponding to the
unproven primitive applications. The user is then free to exe-
cute the program, secure in the knowledge that any primitive
not proven safe statically will be checked dynamically (but
others need not be [8]). Progressive typing shares with soft

typing the philosophy that programmers should be free to ex-
plore program behavior not only with types but also through
dynamic execution.

Progressive typing differs from soft typing in at least
two ways. First, only certain kinds of run-time checks are
permitted to remain in the progressively-typed program, so
the developer has a guarantee that all other kinds of checks
have been checked statically and can be eliminated. Second,
while soft typing is based on the idea that the type system
may be too weak (and hence does not offer means to weaken
it further), progressive typing is based on the idea that the
type system may be too strong (and hence too onerous).

As modern variants of soft typing, the Glasgow Haskell
compiler has recently added type errors that can be deferred
until runtime [29] and DuctileJ does much the same for
Java [1]. Instead of the compiler signalling a static error,
these systems defer the proof failure that the type checker
observes until runtime, using casts that do runtime type-
checking to yield a runtime failure. These systems share the
progressive philosophy that sometimes the type system may
be “too strong”; but they start with a static typing discipline.
In contrast, progressive types draw their design from the
errors in the underlying untyped language. This focus on
the failure cases in the language makes progressive typing
suitable for retrofitting, and suggests a design for new type
systems that need this flexibility.

Like types [32] focus on the values a program computes
with, rather than its eventual result. A like-type annotation
of τ for an identifier allows values that are not of type τ to
be bound to that identifier. If the program misuses the like-
typed value, a runtime error results. Thus, a like-typed pro-
gram delays errors until the program would produce non-
sensical results. This is a relaxation of both preservation and
progress, in that more runtime errors are possible, and some
identifiers may be substituted for incorrect values. The addi-
tional errors can only occur on like-typed variables and, in
return, more programs are like-typable. In contrast, progres-
sive types only relax progress and give guarantees about the
result of the computation.

Pluggable type systems [3] lay out desiderata for optional
type systems. They have been instantiated for Java in the
Checker Framework [14] and JavaCOP [10]. Each additional
feature in a pluggable system may either admit more pro-
grams, or reject more. For example, there are many choices
of type systems that prove the lack of divide-by-zero errors
at runtime, with varying levels of utility. Thus, progressive
types could guide the choice of which type system features
need to be “plugged in”.

Our semantics of errors is based heavily on the presenta-
tion in Semantics Engineering with PLT Redex [5, Chapter
7]. That work doesn’t present a type system to accompany
the errors, but clearly lays out error labels’ interaction with
evaluation contexts.
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