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ABSTRACT

We present a general method for fault localization based on abstracting over program traces, and a tool
that implements the method using Ernst’s notion of potential invariants. Our experiments so far have been
unsatisfactory, suggesting that further research is needed before invariants can be used to locate faults.
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1 Introduction

Suppose a programmer receives a report of a bug in a thoroughly tested program. The report takes
the form of an input on which the programmer expects the program to work correctly. This paper
describes a generic method, and a corresponding tool, to help programmers in this situation. The
method requires the following three pieces of information:

• a source program, to instrument;

• an input that exposes a bug (the “bad input”); and,

• a set of inputs on which the program executes successfully (“good inputs”).

The first two are natural requirements for debugging. The assumption that the program has been
thoroughly tested guarantees the existence of good inputs.

Given this information, the method

• instruments the program to garner execution traces;

• produces a spectrum, i.e., a concise description of the program’s behavior, of each input’s exe-
cution;

• combines the spectra of the successful runs to generate a single, summary model of their behav-
ior; and,

• contrasts this model with the spectrum from the failing run and reports the difference.

If the spectra of the runs and the model of the good runs are accurate enough, the difference will re-
flect the bug. This paper presents preliminary experiments that evaluate this method for a particular
category of spectra, namely potential invariants.
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bool isIsosceles (x, y, z) {
if (x == y) return 1;
else if (y == z) return 1;
else return 0; }

(a) Sample Program

after 〈x=1,y=2,z=3〉: x<y , x<z , y<z
after 〈x=2,y=5,z=5〉: x<y , x<z
after 〈x=2,y=2,z=3〉: x<z

(b) Live Invariants for isIsosceles

Figure 1: Sample program and live invariant sets.

2 Debugging in Principle: An Example

Potential invariants, developed by Ernst et al. [ECGN01], relate variables at static program loca-
tions. A “live” invariant is one that has not yet been falsified by a run. To tractably identify potential
invariants, a tool must limit them to a fixed set of schemata.

Consider the function isIsosceles in figure 1(a), and suppose we have only one invariant
schema: a<b where a and b are metavariables. Instantiating this schema at the entry of isIsosceles
yields six concrete potential invariants:

x<y x <z y <x y <z z <x z <y

Each line in the table in figure 1(b) shows the set of invariants that have not been falsified by all the
runs preceding and including that line. The last line therefore shows the potential invariants that
survived all three executions of the function.

Observe that these three inputs do not expose the error in the function, which is that it fails to com-
pare x with z . Now suppose we are given an input that does expose the error, such as 〈x=2,y=3,z=2〉.
For the bad input, the set of live potential invariants after only this input is

x<y z <y

We can use the potential invariants for any input (starting with all six potential invariants) as its
spectrum of the run with that input. We must now contrast the spectrum of the bad run with a model
for the successful runs. The set of invariants left at the end of the three good runs, i.e. the intersection
of their spectra, constitutes a plausible such model. Computing the set difference between the model
of the good runs and the spectrum of the bad run produces

x<z

This invariant clearly demonstrates that the program relies on the condition x<z being true, which
the fault-inducing input violates.

3 Debugging in Practice

We have developed a program, Carrot, that implements the debugging technique presented in sec-
tion 2. The potential invariants, in the style of Daikon [ECGN01], are drawn from the following
relational schemata, instantiated on function entries and exits:

• The equality invariant checks whether two variables are always equal.

• The sum invariant checks whether two variables always sum to the same value.

• The less than invariant checks whether a variable is always less than another variable.

• The constant equality invariant checks whether a variable is always equal to a constant.
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In addition, Carrot generates value sets, which record the set of all values bound to a variable. In
contrast to potential invariants, which are falsified by runs, value sets are initially empty and acquire
values over the course of execution.

This simple form of value sets, however, can lead to needless inaccuracy in estimating program
behavior. Suppose a function f has two formal arguments, x and y. If f is called twice, once on 〈1, 3〉
and the second time on 〈2, 4〉, the value set for x contains 1 and 2, and the value set for y contains 3
and 4. The cross-product of these sets contains the pair 〈1, 4〉, which incorrectly suggests that the call
f(1, 4) occurred in the program’s execution. To diminish this form of inaccuracy, we also maintain
sets of pairs of values that occurred during execution.

Carrot uses Daikon’s instrumenter to annotate programs, then executes them to generate traces.
It analyzes these traces to compute spectra. Carrot then generates the model from these spectra, and
then computes the difference between the model and spectrum for the bad run. Specifically, Carrot
incorporates the bad run’s spectrum into the model and observes which components of the model
change.

It appears to be possible to employ Daikon to compute these spectra and models through a judi-
cious use of command-line flags (to, for instance, disable Daikon’s use of confidence levels in report-
ing potential invariants). Future experiments should therefore use Daikon for this purpose, so they
may exploit its wider range of invariant schemata.5

4 Experiments

To evaluate Carrot’s effectiveness, we must determine whether

1. the model eventually converges to a “steady state”, i.e., additional good runs do not signifi-
cantly alter it;

2. contrasting the model of good runs with the spectrum for a bad run produces anything at all;
and,

3. the difference holds a clue to the actual error.

Comparing a premature model of good runs against a bad run can result in the tool reporting many
more potential invariants than comparing with a steady state model. The first item is therefore im-
portant for minimizing the number of invariants the programmer would need to examine.

We tested Carrot on two programs in the Siemens suite [HFGO94, HRWY98]:

• tcas (140 lines of code) implements an airplane collision avoidance decision process. It is essen-
tially a large predicate on 13-tuples of integers.

• print_tokens (615 lines of code) tokenizes its input file and outputs the set of tokens.

For each program there are a correct version, a number of versions with a single inserted fault (41
for tcas, 7 for print_tokens), and a large set of inputs (1592 inputs for tcas, 4072 inputs for print_tokens).
Each faulty version manifests its error on at least one input.

To check the eventual stability of the model, we experimented with the correct versions of tcas
and print_tokens6. The results are different for value sets and relational invariants. We find that the
size of the set of relational invariants decreases rapidly, and eventually reaches a steady state. In
contrast, even the last five runs of the programs cause hundreds of value set extensions.

To check the second and third requirements, we examine all faulty versions available for tcas and
print_tokens. We found that contrasting the faulty run to the steady state model does not always result
in invalidations. In particular, there is no invalidation for any of the 568 faulty runs of versions of tcas.

5Note, however, that Daikon currently does not support pairs of value sets.
6Further experiments with a third program from the Siemens suite, replace, which performs regular expression substitution in
strings, produced similar results.
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For print_tokens, out of 484 faulty runs, only one (of version 5) invalidates relational invariants. The
two invalidated invariants are not related to the bug.

We then created a new faulty version of print_tokens, with the explicit purpose of uncovering the
bug in it. print_tokens contains a partial identity function, which returns its argument if the argument
is in a specific set of values, and terminates the program otherwise. In our version, the function
returns its argument if the argument is in the set of values, otherwise (to inject a fault) it returns the
largest value of the set. The result is that the function is not an identity function anymore. This bug
should be identified by the invariant schemata we implemented.

Our manufactured version of print_tokens exposes its bug on 48 inputs. Each faulty run invalidates
the same two invariants, which point directly to the bug, except one run which invalidates two more
invariants, which are unrelated to the bug.

5 Conclusions

Our very preliminary experience based on this work is naturally negative. We were unable to real-
istically locate any bugs in the many variants of the Siemens suite. This failure could be caused by
any number of shortcomings in our approach: Carrot doesn’t implement a sufficiently rich set of in-
variants; the style of invariants used by Carrot is mismatched with the programs we’re analyzing; or
potential invariants are not suitable for debugging. Our experiments are too premature to conclude
the last point. On the one hand, the potential for success clearly exists, as the manufactured version of
print_tokens suggests, and as tools more closely hewn to a particular domain, such as Diduce [HL02],
demonstrate. On the other hand, a similar technique used by Groce and Visser [GV03] has not been
shown to bear fruit.7
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