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Abstract
The privacy policies of many websites, especially those de-
signed for sharing data, are a product of many inputs. They
are defined by the program underlying the website, by user
configurations (such as privacy settings), and by the interac-
tions that interfaces enable with the site. A website’s security
thus depends partly on users’ ability to effectively use secu-
rity mechanisms provided through the interface.

Questions about the effectiveness of an interface are typ-
ically left to manual evaluation by user-experience experts.
However, interfaces are generated by programs and user in-
put is received and processed by programs. This suggests
that aspects of usable security could also be approached as a
program-analysis problem.

This paper establishes a foundation on which to build for-
mal analyses for usable security. We define a formal model
for data-sharing websites. We adapt a set of design princi-
ples for usable security to modern websites and formalize
them with respect to our model. In the formalization, we
decompose each principle into two parts: one amenable to
formal analysis, and another that requires manual evaluation
by a designer. We demonstrate the potential of this approach
through a preliminary analysis of models of actual sites.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.4 [Software
Engineering]: Formal Methods; D.2.0 [Software Engineer-
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ing]: Protection Mechanisms; H.1.2 [Models and Princi-
ples]: Human factors

Keywords usable security; static analysis; human factors

1. Motivation
Creating secure systems is one of the great computing chal-
lenges of our time. Thoughtful people recognize that an im-
portant part of security is the human in the system, who uses
it and hence makes the decisions it enacts. Consequently,
usable security—the application of human-computer inter-
action to security, especially to the design of interfaces—
has become a significant area of study. Several influential
papers [1, 15, 30, 31] have shown that this concern is not
merely academic: interfaces really do affect the behavior of
users, and thus play a key role in whether a system is used
securely (and hence behaves securely).

Ultimately, however, these interfaces are (usually) im-
plemented by programs. Therefore, it is reasonable to ask
whether at least part of the task of analyzing these interfaces
can be turned into the task of analyzing the programs that
implement them. Whitten and Tygar’s “Why Johnny Can’t
Encrypt” paper [31], one of the classics of usable security,
laid down four principles for secure interface design. Quot-
ing that paper:

Security software is usable if the people who are ex-
pected to use it are reliably made aware of the security
tasks they need to perform, are able to figure out how
to successfully perform those tasks, don’t make dan-
gerous errors, and are sufficiently comfortable with
the interface to continue using it.

This definition hints at the potential interplay between static
analysis and usability analysis. Successful performance of
a task occurs along program paths, which can be identified
with static analysis; whether people take actions through the
user interface (UI) that keep them on desirable paths requires



human-factors analysis. Reliable awareness depends both on
which information is displayed to the user (static analysis)
and whether people notice and understand that information
(human-factors analysis). Generally speaking, static analysis
can identify conditions that lead to secure outcomes, while
human-factors analysis checks whether human users can
satisfy those conditions.

This paper explores the potential for using static anal-
ysis to aid usability analysis. Our discussion focuses on
web applications in which people directly or indirectly share
potentially-sensitive data with other users. We look at sev-
eral usable-security principles for this domain, decomposing
each into two parts: one part amenable to automation and
the other, residual, part still requiring user-interface evalua-
tion expertise. The hope is that an analysis of the former part
can be automated and routinely run during program design
and development, leaving the (expensive and specialized)
usability analysis of the latter part to be done less frequently
and targeted to specific situations that the static analysis has
identified as potentially leading to problems.

2. Usable Security in Data-Sharing Systems
Many modern applications—such as social networks, cloud-
based filesystems, and conference managers—result in users
sharing potentially-sensitive data. Often, end-users are re-
sponsible for configuring the sharing settings on data. These
systems are strong candidates for usability analysis because
users can leak their own or others’ data if they misunder-
stand the security and privacy implications of their inter-
actions with the system. Regardless of whether data shar-
ing is a primary (social network) or secondary (conference
manager) goal, applications must provide appropriate pro-
tections on data, while enabling users to complete intended
(non-security) tasks.

End-user sharing configurations complicate the design
process for developers and user-interface engineers. Devel-
opers must reason about the entire space of configurations
that users could make, and when those configurations could
change. Individual users’ configurations interact with the ap-
plication’s overall sharing configurations. In the case of con-
ference managers, for example, PC members could declare
conflicts of interest after reviewing assignments have been
made, at which point the software needs to restrict access
to existing reviews accordingly. A static analysis could help
developers reason about the corner cases and interactions in
this complex system. Interface designers must ensure that
users have the information they need to make well-reasoned
decisions (without overwhelming them); this requires that
designers understand the various ways in which sharing oc-
curs in complex systems. Static analysis should be able to
help designers identify which of these situations is critical.

Leaks arising from complex and multi-facted sharing
policies are not just a theoretical concern: they happen in
practice. Consider the widely-publicized incident in which

Facebook revealed the sexual orientation of two university
students who had taken strong measures to conceal this
information [11]. The students friended the president of a
homosexual chorus to which they belonged. The president
added the students to the chorus’ Facebook group (an action
which did not require the students’ permission because of the
existing friends relationship). The owner had configured the
group to make membership public, so Facebook published
the students’ group membership to their friends (including
their parents). Our focus is not on whether Facebook’s policy
is reasonable. Rather, it is whether analysis tools could have
assisted user-interface designers in ensuring that the users
were aware of the potential effects of their settings (perhaps
by informing the owner of the group that setting the group
to public would inform its members’ friends that they had
joined the group).

Ideally, static-analysis support for usable security should
not require developers to formulate properties that define us-
able security. In 2004, Ka-Ping Yee proposed ten principles
of usable security [32], many of which focus on whether an
application gives end-users sufficient information to make
informed decisions about data access and sharing. This paper
adapts several of Yee’s principles to modern social-sharing
sites, then looks at how static analysis can support devel-
opers and interface designers in assessing usable security
through these principles.

3. Representative Websites
We frame our discussion of static analysis for usable security
around five specific web-based sharing applications. Each
of the five is an example of a modern data-sharing system,
but collectively they represent systems with different broad
sharing goals and different authority-granting features. We
will refer to these examples throughout the paper to illustrate
aspects of our program model, property formalizations, and
proposed analyses.

GitHub, a version-control system: GitHub manages repos-
itories of files. Each repository has an owner who can grant
other users authority to take from (“pull”) or add to (“push”)
the repository. The owner can also transfer her ownership to
another user. GitHub represents systems with simple shar-
ing models: an owner of a datum grants or revokes access to
others through a single action.

Facebook, a social network: Facebook users share per-
sonal details, photos, and comments with other users. Users
share individual data either publicly or with select groups of
other users. Groups include Facebook’s built-in options for
“Friends” and “Friends-of-Friends”, as well as user-defined
groups (such as “Co-Workers” or “My Football Team”).

Facebook’s information-sharing model is interesting be-
cause it involves roles (through groups), limited delegation
(through friends-of-friends), tags, and many different types



of content on which a user might want different sharing poli-
cies. The friends relation also induces a two-step authoriza-
tion process, since certain authority is only granted after one
user issues a friend request and another user accepts it.

Google Drive, a service for collaborative editing and
file sharing: Drive users create, edit, and share files (such
as spreadsheets, presentations, and documents) with self-
defined groups of other users. Drive represents systems de-
signed for fine-grained access control (separate policies are
often defined per document), as well as systems in which
many users may configure access to the same content. File-
sharing systems are a common case study in capability-
based access-control [17].

Continue, a conference paper manager: Continue is a con-
ference manager (developed by one of the authors) with the
usual features for handling conference submissions and re-
views. Authors submit papers, reviewers declare conflicts,
and chairs assign papers. Authors can delegate work to sub-
reviewers. Continue represents systems in which authority
can change according to phases: after submission authors
can no longer modify their papers, and they get access to re-
views only after the reviewing phase terminates (after which
reviews can no longer be modified).

Resumé, a job-application manager: Resumé (a private
system developed by one of the authors) manages submis-
sion and review of applications for faculty positions. Ap-
plicants and reference-letter writers upload materials to Re-
sumé. An applicant can create an account and add materials
to it before formally submitting her application. Following
submission, members of the department can see the mate-
rials but neither the applicant nor the reference-letter writ-
ers can edit them further. Department members may submit
comments on applications. The applicant never has access
to the comments or the reference letters. Applicants and let-
ter writers may email materials to a staff member who has
authority to upload materials on behalf of others.

Resumé is typical of systems with rich access-control
policies whose rules take effect at different points in a
broader workflow; in this sense, it is similar to a confer-
ence manager, but the surrounding workflow raises more
interesting security and privacy issues. The richness in the
policy arises from rules that consult several user and sys-
tem attributes. The delegation of tasks to support staff also
raises questions about least authority and the trust bound-
aries within which software systems get deployed.

4. System Traits that Impact Analysis
Several traits of our sample systems have implications for
usable-security analysis. Some traits are relevant for build-
ing models that help identify potential security and privacy
flaws (the static-analysis side), while others affect usability

decisions (the human-factors side). Thus, system character-
istics affect how we state and formalize principles for usable
security analysis. Enumerating them helps scope our work.

Articulating these characteristics also helps clarify the re-
lationship between our versions of the principles and Yee’s.
When Yee developed his principles, massive-scale, cloud-
based, web-based applications such as our benchmark sys-
tems were nascent or non-existent. His principles thus im-
plicitly codify the expectations of closed, corporate systems;
many of his underlying assumptions no longer directly ap-
ply to social sharing-based applications. Readers interested
in seeing how our principles (presented in Section 7) differ
from Yee’s versions can align our summary descriptions of
each principle with those from his paper [32].

4.1 Massive Scale in Users and Data
Github, Drive, and Facebook manage massive numbers of
users and amounts of data; in Facebook, users and data are
richly connected. At these scales, users cannot manage au-
thorities at the level of individuals. All three systems support
user-defined groups and multiple classes of data; users con-
figure access at the level of groups, as in a role-based access-
control (RBAC) policy. Simply seeing these systems as in-
stances of RBAC, however, misses the more critical point that
RBAC can be as much a problem as a solution in these sys-
tems. In an effort to control sharing, users might create more
groups than they can manage at a cognitive (or temporal)
level. To mitigate that, users often choose to violate least-
privilege; they share with a superset of their desired audi-
ence to save the hassle of creating and managing yet another
group. Attempts to reason about end-user sharing must ac-
count for the over-approximation of groups and other forms
of labeling.

Implications: Massive scale in users and data does not sig-
nificantly impact static analysis: only a handful of users and
data should suffice to identify problems in program logic, so
these scales should not induce state-space explosion. Mas-
sive scale in users and data does, however, have significant
consequences for user-interface design. As connections be-
tween users and data grows, users are required to make de-
cisions about more information than they can manage on a
cognitive level. Interface designers must compress this infor-
mation, but without sacrificing users’ abilities to understand
security and privacy consequences of their decisions.

4.2 Data Sharing versus Data Protection
Facebook and other social networks have different goals than
many more traditional data-sharing systems in that they em-
phasize sharing data rather than protecting it. This is in part
due to the type of data being shared. Users on social net-
works are often sharing data they consider non-sensitive,
such as photos from public events. However, while most
Facebook users want to share much of their data with a wide
selection of users, they still expect some “reasonable” level



of privacy or protection. What constitutes a reasonable level
of protection may depend on the perceived sensitivity of the
data in question. For example, it may be acceptable for pho-
tos to be widely disseminated, whereas access to personal
messages between users should be much more tightly con-
trolled. Different social networks provide different mecha-
nisms for users to control their privacy levels over various
types of data; some provide more usable security than oth-
ers. A useful analysis must therefore be able to encompass
the range of sharing postures of social networks.

Implications: This characteristic suggests that usable se-
curity analysis cannot fall back on standard metrics such as
“least privilege” to find sharing violations. Rather, develop-
ers need analyses to help identify what sharing does occur.
Developers can then assess whether that sharing is “reason-
able,” and whether the interface makes that sharing appar-
ent to the user. Analyses that triangulate how different forms
of data are shared within the same system may also be im-
portant to help developers assess whether data that are more
sensitive are indeed more restricted.

4.3 Delegation and Privacy
All five systems support some form of delegation (friends-
of-friends in Facebook, granting administrative privilege in
Github, etc). By design, users who delegated authority no
longer have sole control of others’ access to their data. In the
absence of control, however, questions arise as to whether
owners should have knowledge of how their data is accessed
and managed. This rapidly gets into privacy considerations:
in Facebook, for example, knowledge of how data propa-
gates might effectively expose a user’s list of friends. The
naı̈ve approach of always allowing a user to know about who
has access to their data thus may well violate another user’s
privacy. This suggests that analyses will need tunable param-
eters about which situations constitute or violate privacy.

Implications: Delegation expands the space of users with
authority over data; as such, static analysis should be particu-
larly useful in identifying corner cases of authority that arise
from delegation. On the human-factors side, interfaces must
help users understand how delegations—which they should
control—affect authority over their data. Static analysis can
help developers compute the systems-level implications of
delegation (such as the implicit delegation in the Facebook
example in Section 2).

4.4 Privacy Across Organizational Boundaries
Resumé and conference-management systems raise privacy
and confidentiality concerns. In general, some details of how
an organization performs certain tasks should be withheld
from users who have provided data, which in turn limits
users’ access to information about who sees their data. (In a
conference, authors are expected to not know who reviewed
their papers.) Other types of organizations may have dif-
ferent data-boundary requirements. Health-care policies, for

example, are subject to transparency regulations that require
releasing some of this information to users.

Implications: Information about organizational bound-
aries can often be codified such that static analysis could
help check whether systems respect intended boundaries.
A combination of organizational policy and human-factors
analysis must determine how much of the boundary deci-
sions should be accessible to users.

4.5 Workflow-Based Systems
In systems that support complex workflows, authority can
vary with the phase of a workflow (e.g., conference review-
ers may not modify reviews after decisions have been sent
out), or change as a result of user actions (e.g., a reviewer
can only read the reviews of others after they have submitted
their own review). This raises questions about what access,
control, or information users should retain across phases,
and also what happens once they lose effective control of
data such as job applications.

Implications: These questions affect modeling ownership
of resources: does an owner retain rights to a resource even
when the system no longer provides control over access, or
should ownership somehow imply a degree of access? Re-
gardless of how a given system approaches these issues, the
user interface must make clear to users how their control
over their data may change with time. Static analysis can
help determine how permissions align with workflow bound-
aries, and help identify implicit workflow boundaries that
may need to be communicated to users. Workflow systems
are also interesting because people often circumvent security
measures that interfere with completing needed tasks. Static
analysis can identify whether there are different paths that
complete tasks, but that have different security implications.

4.6 Ascribing Ownership
Interpretations of ownership of “a user’s resources” must ac-
count for tagging, a social network feature in which one user
(or an algorithm within the social network itself!) associates
a resource or attribute with another user. In the interest of
privacy, tagged users should have revocation access over the
tag (i.e., the should be able to untag themselves) and be no-
tified of tagging.

Implications: Tagging shows that the traditional notion
of ownership is not sufficient for modeling or reasoning
about data sharing. The interface should make clear the
consequences of tagging to both the tagger and the tagged
user. In addition, tagging should behave consistently across
data types within a system. Static analysis could help a
designer guarantee this consistency.

5. Requirements on a Program Model
The static-analysis component of usable security analysis
will need to reason about how authority over data changes



within a running system. This reasoning requires a suitable
program model. To explore what information such a model
demands, consider the following simple usable data-sharing
principle (from Yee): it checks whether data owners control
other users’ access to their data:

Access to a user-owned datum is granted or revoked
only with permission of the owner.

The challenge in formalizing this statement lies in defining
“permission of the owner”. In many systems, users do not
grant permission through a single action with that express
purpose. Assume that a Facebook user configures a photo
album to be shared with her friends. If she issues a new
friend request that is later accepted, the new friend will be
able to see the album. The album owner did not directly edit
a configuration such as an access-control policy; in fact, the
access-control policy didn’t even change in order to grant
the new friend access to the album. This indicates that our
program model must encompass more than just an access-
control policy.

Three aspects of this example are particularly interesting
when we consider how to reason about users granting au-
thority to one another:

• Multiple actions from multiple users were required to
grant the new friend access to the album: issuing the
friend invitation (by the album owner), and accepting the
invitation (by the new friend). Thus, enabling new per-
missions is a multi-step process. In the model, this will
manifest in access-control rules with conditions beyond
simple RBAC-style role/action/resource triples.

• The action that corresponds to the owner granting per-
mission (here, issuing the invitation) is not necessarily
the last user action that occurs before the new permission
is active on the website. Thus, permission-granting ac-
tions may be temporally separated from activation of
permissions. Our model therefore needs to capture the
sequences of actions taken in the program, as well as in-
formation on how users’ actions update the conditions
referenced in access-control rules.

• User actions may have implicit consequences for data
sharing. The link or button to invite a friend says noth-
ing about sharing the album: sharing is an implicit con-
sequence of adding a friend. Users are responsible for
understanding what information new friends will be able
to access. Thus, some aspect of the model and analy-
ses must connect user actions with data-sharing con-
sequences. The model must capture the consequences of
actions and perhaps information about how the interface
presents these to users; analyses will need to consider
whether users understand actions’ consequences.

How permissions are granted across program actions lies
at the heart of all of these issues. This suggests that an ef-
fective program model for our analyses must allow ready

access to the permissions in a system, the conditions under
which permissions are granted, and the program actions that
set those conditions. We propose a model that captures these
interactions through rich access-control policies and the pro-
grams that use them. This model resembles one we devel-
oped in prior work [8], but is adapted to capture elements of
client/server applications that are relevant to usable-security
analysis.

6. Our Program Model
Intuitively, we base our analysis on a model of client/server
systems in which users access shared data stored on the
server, and initiate operations through elements on (web)
pages. At its core, our model views a web application as
a transition system augmented with access-control policies
and multiple web pages per client. An informal descrip-
tion of the model suffices to understand how to apply static
analysis to usable security. This section therefore describes
the model components carefully but informally, with formal
versions of each component following the informal descrip-
tions. The informal version should suffice to understand the
analyses in Section 7.

6.1 Access-Control Policies
Section 5 argued that usable-security analysis requires rea-
soning about how permissions on data evolve through sys-
tem execution. Access-control policies capture rules under
which users may act on various data. For our purposes, we
need a policy model that captures not only which users may
act on which data, but also the conditions that must be met
to enable such access.

As an example, consider two sample rules from confer-
ence managers. Suppose that during the review phase, a user
can read a review only if (a) the user is assigned the paper,
and (b) the user has already submitted their own review for
it. Such a rule would be:

Permit(u, r, readRev()) if
∃r2, forp : r 6= r2 ∧Review(r) ∧ Paper(forp) ∧

Assigned(u, forp) ∧
SubmittedReview(u, r2, forp) ∧
∃u2 6= u : SubmittedReview(u2, r, forp)

The predicates Assigned and SubmittedReview in the rule
body capture the conditions for granting permission to read
the review. The contents of each of these predicates are set
through user interactions with the application: when a re-
viewer submits a review, for example, the application stores
a tuple in the SubmittedReview relation. Looking ahead to
static analysis, the policy cleanly captures conditions for ac-
cess, while a program analysis would identify paths that sat-
isfy those conditions.

As a second example, the following rule allows a program
chair to upload a review on behalf of a reviewer. The action
(submitting a review on behalf of a reviewer) requires aux-



iliary data as arguments: who the review is being submitted
on behalf of (pc) and what paper it is reviewing (forp).

Permit(u, r, submitRevFor(pc, forp)) if
Chair(u) ∧ reviewer(pc) ∧ Paper(forp) ∧
Assigned(pc, forp)

We assume that each web application has an access-
control policy comprising rules of the style shown here.

Formal Model Formalizing access-control policies re-
quires formalizing the data domains and relations referenced
in policy rules. These data and relations capture the infor-
mational core of a website. Formally, we bundle the data,
relations, and policy into a model of applications as follows:

DEFINITION 1. An Application contains:

• A set D of Domains, representing system-specific infor-
mation of relevance to the application.

• A distinguished element Users ∈ D, representing poten-
tial users of the system.

• A set R1, . . . , Rn of Relations maintained by the appli-
cation. Each relation has a type D1, . . . , Dk where each
Di ∈ D.

• A set Data = D1 ∪ . . . ∪ Dj where each Di ∈ D. This
distinguishes domains corresponding to securable data.

• A setAct of Actions. Each action has a typeD0, . . . , Dn

where each Di ∈ D and n ≥ 0.
• A list of Access-Control Rules of the form

Permit(u, d0, act(d1, . . . , dn)) if ∃v : φ

where act is an action of type D0, . . . , Dn and φ is
a conjunction of terms over u, d0, . . . , dn, v, and the
domains and relations in A.

Our definition of actions and the form of access rules
are closely linked. Permissions typically capture actions of
a single user on a single resource, but actions may require
multiple inputs. Our action model assumes that the primary
resource is the first argument to the action; the access rules
separate this argument from the others. Rules may need to
reference data on the server that are not inputs to the action;
the existentially-quantified variables capture these.

6.2 Servers
Servers store data and relations on data (including attributes
of data, captured as unary relations). We assume that servers
have a subset of data called Users which captures the set
of users of the corresponding application. For instance, in
the case of GitHub, the server would store sets of Files
and Folders, as well as a relation such as Owns (on Files
× Users). Servers contain sufficient information to evaluate
access-control rules. Intuitively, a user has the authority to
perform an action if the body of some rule permitting them to
do that action evaluates to true under the domain and relation
contents in the server.

Formal Model The server for an application contains ac-
tual data elements and tuples corresponding to the domains
and relations defined in the application.

DEFINITION 2. A Server for Application A consists of:

• A set KnownUsers ⊆ Users
• A distinguished element UnknownUser ∈ Users that is

not in KnownUsers
• A set KnownData ⊆ Data
• For each domain Di in A, a set DEi of elements of Di

• For each relationR ∈ D0× . . .×Dn inA, a set of tuples
over DE0 × . . .×DEn

The data in the server is adequate to evaluate the access-
control rules laid out in the application.

DEFINITION 3. Given a server S, user u, action act, and
data d0, . . . , dn from S that respect the type signature of
act, S permits 〈u, d0, act(d1, . . . , dn)〉 if there exists an
access-control rule such that Permit(u, d0, act(d1, . . . , dn))
returns true when the rule’s formula φ is interpreted under
the domain and relation contents of S.

6.3 Clients and Pages
Clients correspond to website users; each user has a set of
active pages, which intuitively correspond to different tabs
or windows in a web-browser. In an actual website, pages
contain descriptive text, information stored in the server, and
ways to execute actions. Our model of pages abstracts away
descriptive text, leaving only bits of server data and sum-
maries of current permissions that would otherwise be em-
bedded within free-form text. Our model also uses a generic
concept of Links to cover links, buttons, and other UI ele-
ments that execute actions against the server. Links are dis-
tinct from informational content (Contents) and summaries
of permissions (Permissions) that can appear on a page.

The distinctions among Links, Contents, and Permissions
are key to our model. Links represent actions that the user
viewing the page is permitted to take (or was, at the time
the page was generated). Permissions, in contrast, purely
convey information about the state of authority in the system
(as it was when the page was generated). In the context of
Facebook, the ability to invite a friend would be a Link; that
another user, Susie, is allowed to view the page-viewer’s
vacation album would be a Permission. If a page chose to
embed Alice’s photo in the user’s page, that photo would lie
in Contents. In the context of GitHub, a repository would
be available to a user as Contents; indications of what kinds
of access the user has to that repository, in contrast, would
appear as Permissions.

Formal Model Pages containing links, contents, and per-
missions capture the formal details of clients.

DEFINITION 4. Let S be a server for an Application. A page
for S contains



• A set of Links, each corresponding to an action

act(d0, . . . , dk)

and supplying a concrete value for each di from the
corresponding domain Di as given in the type for act,

• A set Contents ⊆ S.Data, and
• A set of Permissions of the form 〈u, d0, act(d1, . . . , dn)〉

for u ∈ Users, act in Act, and di elements that respect
the type signature of act.

As the state of the server may change while a page is
open on a client, some of the links on a page may become
invalid (meaning that the corresponding client user no longer
has permission to execute the corresponding actions). Defi-
nition 7 addresses this issue at the point when a user attempts
to take an action through a page.

6.4 Transition Function and Page Generation
The state of an application consists of a server and a set
of clients (each with their own set of pages). Applications
generate pages dynamically in response to users’ requests
to execute actions. Executing an action yields both a new
page to display to the client and an updated server. The
generated page must reflect the authority of the user who
took the action (and hence receives the new page). Authority
is determined by the rules of the access-control policy: a
page should only contain Links, Contents, and Permissions
that the policy permits for the user receiving the page.

A transition between application states occurs when a
user takes a permitted action by clicking a link on a page.
The resulting next state replaces the old page with a new
one and updates the server state according to the action per-
formed. When multiple users interact with a site simultane-
ously, the actions of one user can affect the permissions of
another: in particular, a user action can invalidate a link that
is currently displayed on another user’s page. In Facebook,
for example, Alice might have a link to view her friend Bob’s
photo album. If Bob changes the settings on the album to
exclude Alice, her subsequent attempt to use her link should
fail to access the album. Our model of transitions accounts
for such TOCTOU (time-of-check versus time-of-use) viola-
tions by checking, at the time a user clicks a link, that they
are still eligible to execute that action.

Formal Model Transitions occur when users click on links
on their client pages. When a page is generated for a user,
every link should correspond to an action that the user is au-
thorized to perform: we refer to such pages as valid. Links
may become invalid due to changes in the server state be-
tween when the page was generated and the action was at-
tempted. Our formal model must capture valid changes, still-
authorized actions, and the impact of actions on server state.
The following definitions capture these concepts.

DEFINITION 5. Page P is valid for user u and server S iff
P.Contents ⊆ S.KnownData, and for every act(d0, . . . , dk)
in P.Links, S permits 〈u, d0, act(d1, . . . , dk)〉.

DEFINITION 6. Let S be a server, P be a page on client
C for user u, and act(d0, . . . , dk) be in P.Links. act is
authorized for C in S iff S permits 〈u, d0, act(d1, . . . , dk)〉.

The model captures the effects of actions in two func-
tions: Actpg maps each user u, action invocation, and server
S to a valid page for u and S. Actop maps each user, action
invocation, and server to a new server, reflecting how actions
change the server state (e.g., adding friends or documents).

Given Actpg and Actop, we can define the transition
system for a website. The website state reflects the contents
or pages and the server state. A transition occurs when a user
takes a permitted action by following a link on a page. The
resulting next state replaces the old page with a new one and
updates the server state according to Actop.

DEFINITION 7. An Application State consists of a server
and a set of clients. Let 〈S, {C1, . . . , Cj}〉 be an Applica-
tion State and act be an action linked to some page P in
some Ci. If act is authorized for Ci in S, then the next Ap-
plication State is 〈Actop(act, S), {C1, . . . , Cj , C

′
i} − Ci〉

where C ′i is identical to Ci except P has been replaced with
Actpg(act, S). If act is not authorized for Ci in S, then the
next Application State is the same as the given Application
State.

7. Properties and Analysis for Usable Data
Sharing

With a model in hand, we now propose and formalize several
properties for usable end-user data-sharing over the model.
These properties derive from usable security principles pro-
posed by Yee [32], who in turn distilled them from several
real systems he had built or studied, some of which are now
landmarks in usably-secure system-design. These properties
are interesting because they emphasize different ways that a
website might help end-users make data-access decisions.

We present a high-level description of each principle, dis-
cuss how the system traits from Section 4 affect its interpre-
tation, and formalize the principle to a level suitable for anal-
ysis. We then decompose the formalization into two parts:
one part that will be computed automatically, and the other
requiring manual analysis. From the perspective of this pa-
per, we will call the latter human-factors residuals. These
residuals are an important part of of the analysis, because
any work with respect to usability will be incomplete with-
out consideration of human factors. The residuals thus help
designers focus on the aspect of their design that have a bear-
ing on users’ ability to operate the system securely. In prac-
tice, we would expect the static analysis to occur over the
program model from Section 6, while the residual analysis
occurs over the actual system implementation.



The formalizations depend on certain definitions about
how authority over data evolves in a running system. These
definitions are relative to the transition system model de-
scribed in Section 6. The informal description should suffice
to understand the spirit of each definition.

Several of our properties reference user actions that con-
tribute to the granting or revocation of data-access authority.
Thus, we begin by defining how actions in the model can af-
fect authority. First, we define what it means for authority to
change on a single transition, and on a path:

DEFINITION 8. A transition from state s to s′ grants per-
mission p if s does not permit p but s′ permits p. Similarly,
a transition revokes permission p if s permits p but s′ does
not permit p. Action act is authority editing from state s if a
transition from s on act grants or revokes some permission.
A path of transitions is authority preserving if no permissions
are granted or revoked along the path.

Next, we define what it means for a transition to make
progress towards granting permission. The computation un-
derlying this definition is local to the access-control pol-
icy within the model; had our model captured access con-
trols without explicit policy rules, this definition would
have been more complicated. Once we identify actions that
make progress towards permissions, we can examine paths
to states that eventually grant permissions to determine
whether an action effectively constitutes a user’s consent.
Some of the properties in this section will address whether
the effective consent is intentional or sufficiently informed.

DEFINITION 9. Let s be a state with server S, p be a per-
mission that does not hold in S, act be a valid action for
user u in S, and s′ be the state (with server S′) that would
result if u took act from s.

• act advances p in S if for some access rule r for p, more
conjuncts of r are satisfied in S′ than in S.

• act is consent granting for u and p in S if act advances p
in S and there exists a path from s′ on which p is granted
without further actions from u.

We now discuss candidate properties and their formaliza-
tions against our model. Each of the following subsections
starts with an informal description of a property, then for-
malizes its concepts. Within each formalization, underlined
terms represent parameters that must be instantiated relative
to data and relations in a particular website, while boldface
terms represent human-factors components to the property.

7.1 Change Authority Only with Consent
Grant or revoke authority to others in accordance
with user actions indicating consent.

The key concepts to formalize here are “who can consent”
and “what constitutes consent”. Our definition of consent-
granting actions (Definition 9) captures the latter. For the

former, we assume that each site has a notion of which users
administer or manage each datum: Github tracks repository
owners, Google Drive tracks document owners, Facebook
users own data that they uploaded. To use this property,
a developer would instantiate the administers term in the
formalization below with references to whichever relations
in the data schema reflect this concept. For simplicity, we
formalize the property in terms of granting authority; the
version handling revocation is similar.

Formalization: For every state s, every permission p =
〈u, d, act〉 that does not hold in s, and every path Π from
s to a state s2 in which p first holds: Π contains a transition
t by a user ua such that ua administers d and either (1) the
action on t is consent-granting for p by ua, or (2) the action
on t gave administrative privilege for d to a user ud, who
subsequently took a consent-granting action for p within Π.
In either case, ua understood that the action on t would
grant consent or delegate authority, respectively.

This first formalization illustrates our notions of prop-
erty parameters and human-factors components. Parameters
should be instantiated in terms of data and relations in the
model. Whenever a formalization raises a human-factors
component, that component could be ignored (by omitting
a clause of the property) during a traditional static analysis,
then handled as discussed in Section 9. In this case, the anal-
ysis would not attempt to determine if the interface makes
clear to the user that they are granting authority, but could
tag the granting action as a place that must be carefully con-
sidered by a developer or UI designer.

Static Analysis Component: Compute the consent-granting
actions for each permission.

Human-Factors Residual Component: For each consent-
granting action a for each permission p, assess whether users
understand that a would grant p.

7.2 Allow Reduction of Authority
Offer the user ways to revoke others’ authority to ac-
cess the user’s resources unless the user previously
took an action he understood would (eventually) re-
linquish that authority.

The previous property checked that revocation of access
only happens with the consent of an appropriate user; it did
not mandate that users have access to actions that revoke
permissions over their data. This property requires the latter.
Exceptions to this property can arise in workflow-based sys-
tems, as users take actions that are expected to relinquish au-
thority. In Resumé, for example, once a candidate submits a
job application, the candidate no longer controls its propaga-
tion (though the candidate may retain rights to withdraw the
application). Our formalization therefore requires users to
maintain access to actions that revoke authority unless they



took actions specifically intended to relinquish their admin-
istrative control.1

One other subtlety arises in this property: users should
have final say as to whether access to their data is revoked.
With multi-step permissions, users may consent to an per-
mission, but actions of other users are required to realize
the permission. With revocation, an action by an administer-
ing user should suffice to revoke another’s permission (oth-
erwise, a user might be in a position to prevent having his
authority revoked). When access-policy rules all specify per-
mits (rather than permit/deny/not-applicable) and have only
conjunctions in their rule-bodies, this requirement simply
needs a revoking action to falsify a conjunct in the policy
rules. Our formalization, however, uses a more general state-
ment that applies to a wider range of policies.

Formalization: In every state s, if user ua administers da-
tum d and s has permission p = 〈u, d, act〉, then there exists
an authority-preserving path from s on which ua can revoke
p unless ua previously took an action that he understood
would eventually revoke p and that revoking action has oc-
curred. Furthermore, on all paths from s, ua can reach an
action to revoke p, ua stops administering d, or the action
that revokes p occurs.

Here, the analysis can determine if a consent-revoking
path exists, but the designer must ensure that that path is
discoverable by the user and that it is clear that taking that
path revokes consent.

Static Analysis Component: Compute paths that a user
can take to reduce authority, as well as combinations of
permissions and states for which no such paths exist.

Human-Factors Residual Component: Confirm that users
find their way to paths that reduce authority. Assess whether
unreachable authority-reductions were intentional by devel-
opers and are acceptable to end-users.

7.3 Summarize Others’ Authority
Maintain accurate awareness of others’ authority at a
granularity relevant to user decisions, without violat-
ing others’ privacy.

Imagine that a Google Drive user has several folders,
each of which is shared with a different group of other
users. She needs to share a somewhat sensitive document
with some other users. In order to decide whether to upload
the new document to an existing folder or to a new one,
she needs to review who can access each of her shared
folders. This property checks that the user can view this
information. Formally, we capture ability to view as having
access to a web page that contains the information (through
the Permissions component of a page from Definition 4); the

1 We distinguish between users relinquishing their own authority from re-
voking the authority of others, as a system might take different steps to
educate users about how these two losses of authority occur.

path to such a page should not be guarded by the actions of
other users.

In systems with massive numbers of users and data, direct
presentation of others’ permissions could be overwhelming.
Furthermore, relevant information might infringe on another
user’s privacy (such as if a Facebook user wants to know who
her friend’s friends are before using the “friends-of-friends”
setting). Our formalization must account for these nuances.

The key challenge in formalizing this property lies in
defining when an existing permission is “relevant to a user’s
decision”. We restrict “user decisions” as “choosing to take
a consent-granting action”. A narrow interpretation of “rel-
evance” to a consent-granting action for a specific permis-
sion would look at the conditions on that permission in the
access-control policy: information that affects those condi-
tions would be deemed relevant. Such a definition would
not, however, capture concerns about higher-level connec-
tions between system data. For example, a user might be
willing to share anonymized medical data in a corporate file-
sharing system (a private version of Google Drive), as long
as the viewers did not also have access to the file with the
mapping from anonymous tags to names. Given the chal-
lenge of a suitable general definition, we leave “relevance”
as a parameter for developers to tailor relative to the data and
relations in a particular website.

Formalization: In every state s, if user uc can take a
consent-granting action for permission p = 〈u, d, act〉 in s,
then for every related permission p, there exists an authority-
preserving path to a page for uc that summarizes p, unless
doing so would violate u’s privacy. Furthermore, on all
paths from s, either uc can reach a page that summarizes p
or some action revokes p.

The formal analysis can determine that all related permis-
sions are reachable by the user. However, these permissions
may be numerous or difficult to understand, or they may re-
veal information about other users. Designers must then en-
sure that this information is presented to the user in a com-
prehensible way, and confirm that the privacy of other users
is maintained.

Static Analysis Component: Compute the consent-granting
actions for each permission.

Human-Factors Residual Component: For each action
that grants consent to some permission, assess which of
those permissions a user needs to be warned about prior
to taking the action.

7.4 Explain Consequences
Indicate clearly the consequences of decisions that
the user is expected to make, without violating others’
privacy.

As with the principle on others’ authority, we focus on
users’ decisions to execute actions within the website. User



actions can have one of three kinds of consequences relative
to data access: an action can change a permission, an action
can consent to changing a permission, or an action can ad-
vance a permission. In each case, the effect could be either
on the user executing the action or on some other user. Un-
der even moderate numbers of users and data, the set of all
potentially-affected permissions for an action could be over-
whelming. As a result, our formalization focuses on changes
and consent. The formalization is easily adapted, however,
to include advances of particular permissions.

As when summarizing others’ authority, naı̈vely showing
permissions has the potential to violate others’ privacy. Our
formalization leaves privacy violation as a parameter, as in
the case for others’ authority.

Formalization: For every state s and action act available
to user u, u has an authority-preserving path to a page dis-
playing all of the permissions that will change between s and
the next state s′ of s on act and that do not violate another
user’s privacy. If act is consent-granting for u and permis-
sion p, then u has an authority-preserving path to a page
displaying p.

Again, a static analysis could determine that a page dis-
playing all the permissions and potential changes exists and
is reachable. This page (or set of pages) would then be re-
viewed by a UI designer to ensure that the information is pre-
sented in a comprehensible way and that any consequences
of actions that a user might take are sufficiently emphasized.

Static Analysis Component: Compute the permissions that
change by virtue of taking each consent-granting action.

Human-Factors Residual Component: Assess whether
end-users understand how each consent-granting action will
affect the permissions. Assess which of these impacts the
interface needs to explicitly convey to users versus which
can be left implicit.

7.5 Encourage Least-Privilege
Match the most comfortable way to do security-
oriented tasks with the least granting of permissions.
Match comfortable ways to do sharing-oriented tasks
with acceptable granting of permissions.

A “task” corresponds to a user’s goal, such as creat-
ing a new document or sharing specific photos with certain
friends. While some tasks correspond to atomic actions in a
system (such as “create a document”), others correspond to
sequences of actions (“upload photos and share them”). We
therefore view tasks as paths to goal states within a system.
Accordingly, we interpret this principle as asking whether
paths that grant the least authority are also sufficiently easy
that users will take them (a site that made it difficult to share
with individuals instead of everyone would, for example, vi-
olate this property).

This principle is interesting for two reasons: first, the
human-factors issues are harder to separate out from a core
information-based principle; second, massive scale of users
and data often makes least-privilege an impractical standard.
One could certainly approximate this principle by weighing
the number of permissions granted along a path against
the number of actions required of a user along that path.
In practice, we expect developers will need more nuanced
interpretations of “comfort”.

Finer-grained formalizations of comfort would also re-
quire finer-grained models of pages. Our page model (Defi-
nition 4) could be expanded to include link styling informa-
tion (bold fonts, colors, position on the page, etc). Given that
modern web systems codify many of their design choices in
CSS stylesheets, models that at least partly draw on UI deci-
sions seem feasible, and worthy of additional investigation.

DEFINITION 10. A path’s authority-weight is the total num-
ber of permissions granted along its transitions.

Formalization: Given an end-user task, the commonly
followed paths that accomplish the task should be least-
authority-weight paths. Furthermore, every comfortable
path to a goal state for a task yields acceptable author-
ity for that task.

The static analysis can determine the least-authority-
weight paths for completing a task. Designers must then
determine that these paths are comfortable. The tool can also
present alternate paths, and designers can assess that there
are no comfortable paths that grant an excess of authority.

Static Analysis Component: For each end-user task that the
application supports, compute the set of paths that accom-
plish the task from various states, including the collection of
permissions that change along each path.

Human-Factors Residual Component: When an applica-
tion offers users multiple paths to accomplish a task and
those paths impact permissions differently, assess whether
the UI guides users to take those paths that have the least
impact on authority changes.

8. Applicability to the Representative
Systems

An important measure of this work is whether it would de-
tect actual errors in real systems. This question has two com-
ponents: whether our model can reflect errors that occur in
real systems, and whether one can obtain instances of our
model from real systems. The latter problem is standard in
model-based analysis research; we offer no new ideas or in-
sights on it, and thus do not discuss it further. This section
focuses on the former question about the suitability of our
model. Violations of the principles from Section 7 exist even
in widely used and, presumably, well-tested and -designed



systems. Take, for example, two of our representative sys-
tems: GitHub and Google Drive.

GitHub offers both public and private repositories. In
private repositories, the repository owner must explicitly
grant other users the ability to push and pull the repository.
The principle stated in Section 7.3 requires that any user with
push access be able to view the list of users with pull access.
However, this is not the case in GitHub. The repository
owner has access to this list, but other users with push access
do not. This particular violation could be addressed purely
by static analysis, because it is a reachability problem. Either
no page with such a list exists, or it is not reachable through
links available to users with push access.

In Google Drive, document owners may grant several lev-
els of access to other users: read, comment, or edit. How-
ever, edit access has two potential meanings: edit the doc-
ument, or edit the document and share it with others. The
current meaning of edit for a given document is presented in
small grey text at the bottom of the document’s share page,
below the button the owner must click to confirm changes.
We argue that this is a violation of the principle presented
in Section 7.4, which states that the interface must clearly
explain the consequences of their actions to users, because
the term “edit” is misleading and inconsistent. Static analy-
sis alone cannot address this issue because, technically, the
user interface presents all the consequences of the sharing
action to the user. However, the way that information is pre-
sented does not ensure that the user sees or registers the con-
sequences of granting another user edit permissions. A static
analysis could assist a designer in addressing this issue by
recognizing that sharing the document with edit permissions
is a granting action for a set of privileges, and flag this ac-
tion for evaluation by a user experience engineer. The en-
gineer could then easily review the action and the compare
privileges it grants against the information presented in the
user interface and, hopefully, realize that the interface does
not make the consequences sufficiently clear and apparent.
They may then choose to rename one or both of the edit lev-
els to distinguish them, or to display the current meaning of
edit more prominently.

Examples like these make clear the need for static analy-
sis for secure user-interface development. Furthermore, they
reinforce the necessary interplay between formal analyses
and interface evaluation. Improving the usable security of in-
terfaces requires providing designers with tools that accom-
modate both these modes of analysis.

9. Building Tools on This Work
This work strives to provide foundations for useful analysis
tools for developers. We want to see our models and proper-
ties used to create tools that help developers identify subtle
bugs in the complex interactions that underlie modern web-
based data-sharing systems. The combination of our model

(Section 6) and preliminary properties (Section 7) suggest
two broad categories of tools.

First, one might build a verification tool that could verify
properties (ours or others’) against instances of our model.
We have begun building such a tool ourselves within the Al-
loy analyzer [14]. To date, we have a model of GitHub with
repositories as data, basic push and pull operations as al-
lowed accesses, and various actions that affect users’ author-
ity to act on repositories. The model differs a bit from that
in Section 6, most notably in embedding the access-control
policy in specifications of actions (rather than model a stan-
dalone policy); this simplifies the state space, though we can-
not yet quantify the impact of this modification. Against the
embedded access-control model, we have been able to check
the “authority with consent” property against this model on
traces up to five states in length, with each check requiring a
few minutes in real time. Work on this tool is ongoing.

Second, one could build tools that compute data-sharing
consequences of model instances without performing veri-
fication. For example, one could compute all sequences of
user-level actions under which a (kind of) datum gets shared
with a (kind of) user. Such an computation could start from
the access-control rules, compute the various requirements
for permitting an access under those rules, then compute the
program and user actions required to satisfy those require-
ments. Using such an approach against a model of Face-
book, for example, one might determine that “A user u will
be able to see a photo owned by user o if o sends a friend
request to u, u accepts the request, o uploads the photo, and
o sets the sharing permissions on the photo to her friends”.
(Some of these steps could also have been permuted, and
the analysis would report these alternatives as well.) Pre-
senting these data-sharing scenarios to a developer might
help her identify cases in which data-sharing is not guarded
by anticipated user actions, without burdening the developer
with stating formal properties. This is in the same spirit of
property-free analysis provided in policy-analysis tools such
as Margrave [10].

In all these cases, we believe the split between automated
and residual components is essential, because they represent
precisely complementary strengths. Humans are weak at rea-
soning about, e.g., all paths through a system. However, as-
pects such as comfort, awareness, etc., are best done through
human-subject studies and other mechanisms that involve
human intervention (if only for interpretation). Thus, we be-
lieve the long-term prospects of designing usably secure sys-
tems will depend on a careful division of labor between these
complementary strengths of humans and computers.

10. Related Work
Much research has been done on the interplay between us-
ability and security in computer systems. Several researchers
have shown that user actions can unwittingly circumvent
seemingly sensible security policies and mechanisms. Whit-



ten and Tygar’s classic case study [31], as well as other
usable-security projects [1, 15, 30], illustrate the challenge
to designing security features that people use properly.

Other researchers have proposed design guidelines for us-
able security or privacy. Lederer, et al. [18] present five de-
sign pitfalls when designing interactive systems with privacy
implications. Many of their principles resonate with Yee’s,
and could be similarly supported with static-analysis tools
that target residuals. One of their pitfalls explicitly raises
the need for security solutions to integrate into, rather than
compete with, established workflows. At Microsoft, Reeder,
Kowalczyk and Shostack [23] have developed guidelines for
developers on how to present decisions to users in a way that
encourages them to make secure choices. These guidelines
contain more human-factors advice than Lederer’s or Yee’s,
but also hint at avenues for formal tool support.

Yee’s original principles [32] lacked the nuances of gran-
ularity, delegation, groups of users, privacy, and workflows
that appear in our informal property statements. An inter-
ested reader should have no problem identifying which of
Yee’s principles corresponds to each of our informal proper-
ties. Our updating of Yee’s statements to modern systems is
a minor contribution of this work.

Usable security is often an underlying design goal in
capability-based systems. In particular, CapDesk [27], Po-
laris [26], and ScoopFS [17] co-evolved with or were in-
fluenced by Yee’s principles. In capability-based security,
a user’s access is embodied in references to objects, rather
than in access-control policies. The recent PubShare [25]
system demonstrates how tracking transfer of capabilities
provides users with fine-grained information about and con-
trol over data, in the spirit of Yee’s principles. Our sys-
tem model assumes an explicit access-control policy, rather
than capabilities. Discussions of capability- versus access-
control-based models frequently contrast the former with
access-control lists, which are less expressive than our poli-
cies, as ours can reference arbitrary domains and relations.

One could instantiate the relations and policy rules in
our model with the details that underlie user-driven delega-
tion in capability-based systems (using a relation to record,
for example, that Alice delegated to Bob, Bob delegated to
Carol, and that Carol can access a resource until Alice or
Bob revokes the access). However, our program model can-
not capture the fine-grained propagation of references that
occurs through function calls and system-level operations in
a capability-based system. Our model updates relations (and
hence propagates permissions) on transitions between Ap-
plication States, each of which is driven by a user-action on
a client (Definition 7). Capability-based systems would re-
quire a much finer-grained notion of transitions.

At a high-level, the choice between a capability-based
program model and an access-control-based model is or-
thogonal to our main point that usable security should be
able to leverage static analysis. That said, we believe a pro-

gram model based on access-control is better suited to our
work. In our prior research on reasoning about policies [10]
and their interactions with programs [8], an explicit access-
control policy is an essential artifact for formal analysis:
many interesting analysis questions can be answered (at least
in part) on the policy alone, leaving lighter-weight analyses
for the full system model. In contrast, in a capability sys-
tem reasoning about the policy reduces to the harder prob-
lem of reasoning about dynamic program behavior. We sus-
pect the best way to reconcile capability-based systems with
our work is to view capabilities as a way to implement a
separately-declared policy (at the modeling level).

Cognitive walkthroughs enable usability evaluation with-
out expensive and time-consuming user studies. Walk-
through frameworks propose questions for developers about
their systems’ expectations of users’ mental models and
goals. Rieman et al. [24] and Blackmon et al. [3] propose
automated tools to support walkthroughs, but their tools au-
tomate only the process of conducting a walkthrough. They
do not automate the artifact analysis within the walkthrough,
which is arguably the promise and purview of static analysis.

Automated formal analysis tools have been applied to
specific usability concerns. Both Leveson et al. [19] and But-
ler et al. [4] proposed design metrics and tool support for
detecting mode confusion in interfaces. Curzon and Bland-
ford [7] analyzed usability design criteria themselves against
a formal model of human cognitive processes. Other tools
formalize user task models for systems [16] or log all user
interactions with the system and check whether these corre-
spond to expected usability patterns. Ivory and Hearst [13]
provide a detailed summary of projects on the latter.

These earlier techniques focus mainly on the users’ inter-
actions with the interface, not the users’ interactions with the
underlying system model via the interface. Our work tackles
the latter. A system model is essential for reasoning about us-
able security: the system controls how permissions are used,
while the user ideally controls how they are granted and re-
voked. Our formalization can be used to check that (a) users
have the expected control over how permissions are granted
and revoked, and (b) the system applies those permissions in
ways that the user expects. Formal modeling and analysis of
interface components alone is likely a useful complement,
but not a substitute, for our work.

User-Managed Access (UMA) [21] is an OAuth-based
protocol that provides users with centralized control of web-
accessible resources such as their online personal data. UMA
targets usable security in providing users with a single point
of specification for their sharing preferences. In a UMA-
based system, a web application provides access to infor-
mation that is hosted on a third-party server. End-users pro-
vide centralized policies that regulate release of information
from the third-party server. UMA-based applications thus
effectively have two servers–the host server and one more
inside the web application (storing application-specific data



and state information)—as well as a central authorization
manager that stores and manages users’ policies.

Extending our program model to support externally-
hosted policies and data should be straightforward: Defi-
nition 3, which defines which actions are permitted, could
consult an external service with a similar type signature on
access requests. Extending our model, however, is not the
interesting issue. The interesting questions lie in how UMA
changes the permissions workflows in applications, what
impact that has on program-policy interactions (which are
at the heart of our static analyses), and whether UMA ar-
chitectures demand different principles for usable security
than those presented here. For example, if one argues that
users can always revoke others’ permissions by editing the
centrally-managed policy (a task outside of the application’s
core workflow), then some other principles must govern
whether users are able to edit policies to achieve desired
behavior in the UMA-based application (whose details the
user does not understand, as in our Facebook privacy leak
from Section 2). UMA thus poses interesting questions for
future work.

Garg, et al. [12] analyze audit logs for compliance with
security and privacy policies. Their work uses formal anal-
ysis to discharge objective components of the compliance
checks, leaving a subjective residual for manual analysis.
Our residual tools are in the same spirit, but with a focus
on residuals about human-factors decisions.

Several projects have used formal analysis to explore the
impact of access-policy settings on data sharing. Besmer
et al. formalize access-control policies of social networks
with a specific eye towards the permissions of third party
applications on those networks [2]. They focus on limiting
the permissions of applications so that those permissions
align more closely with users’ privacy settings. Carminati
et al. [5] and Mika [22] use ontologies in the semantic web
to design such a formalization. Those works represents user
actions as well as user data and relationships between users.
However, while they model which actions are available to
each user, they do not investigate the effects of those actions
or tie them to usability analysis.

Several social-network researchers have developed tools
to help end-users manage access to their resources. Cheek
and Shehab’s tool leverages users’ existing social-network
contacts to inform policies for other contacts [6]. Wang et al.
also incorporate user relationships in order to suggest appro-
priate privacy settings, as well as offering users fine-grained
controls [29]; Fang and LeFevre use limited user input to
craft potential privacy settings [9]. These tools are designed
to help users navigate the existing privacy controls of so-
cial networks. Our work focuses on helping developers and
designers ensure that the access-control policy and privacy
controls interact as expected.

Wang and Jin propose a system for minimizing the leak-
age caused by user error in cloud collaboration [28]. Their

work relies heavily on the ability to instate company-wide
mandatory access controls and to require company employ-
ees to adhere to file tagging standards. These restrictions
would be infeasible in the context of a social network, where
the data is owned and administrated by arbitrary users.

Targeting end-users’ control of data-access seems rem-
iniscent of ARBAC [20], a formalism for administrative ac-
cess control. Including an ARBAC policy in our model would
not address the core problem in this paper, which is the con-
nection between user-facing actions and actual permission
changes. ARBAC also says nothing about the human-factors
issues discussed in this paper.

11. Discussion and Future Work
As this paper has shown, data-sharing systems raise inter-
esting opportunities to apply static analysis to usable secu-
rity. Usable security is a fascinating and difficult problem be-
cause its two goals can sometimes seem at odds, though, as
authors like Yee point out [32], sometimes this is an artifact
of our interface designs and methods for designating author-
ity. When these two are brought closer together, seemingly
conflicting requirements can actually become harmonious.

Our paper has shown how usable-security principles can
be formalized against a model of data-sharing applications.
The nature of the formalization decomposes these principles
into a computation that is amenable to static analysis and
a residual question for traditional human-factors analysis.
Our formal principles are parameterized over application-
specific notions of security and privacy. This enables cre-
ation of analysis tools that help designers identify important
cases for human-factors analysis without the burden of de-
veloping their own formal properties.

Reasoning effectively about usable security demands sys-
tem models that readily reveal the connections between
user actions and authority. This paper argues for a separate
access-control policy as part of the system model: the policy
rules provide a clear starting point for computing informa-
tion about authority within a system. Policies for mainstream
web applications, however, consult information stored in the
system state as well as in the request for access. Accord-
ingly, we propose a fairly rich system model, in which indi-
vidual states are effectively first-order relational models. We
believe such models are essential in order to capture multi-
step permissions and other complexities of authority in web
applications. The richness of this model also supports our
claim that static analysis can benefit usable security analy-
sis, by identifying corner cases that need particular attention
to user-interface design.

Our discussions hint at several areas for ongoing work:

• Security versus privacy: Security and privacy are widely
accepted as different concerns with different norms, but
the line between them can be blurry. Principles about “ac-
curate awareness” clearly raise privacy issues. Our cur-
rent formalizations of the principles leave developers to



flag privacy violations. Extending the system model with
a privacy policy could better support this task. Such a
policy would affect our definition of valid pages (Defini-
tion 5) to not leak private information.

• Principles based on cognitive factors: Yee’s principles
strive to give users information about and control over
all of their data. Massive scale, delegation, organizational
boundaries, and workflows—common features in sys-
tems built since Yee’s work—all increase the amount and
complexity of such information. Interfaces cannot rea-
sonably present all of this information directly; rather,
information gets summarized, abstracted, or staged. This
in turn calls for usable-security principles inspired from
the user’s cognitive perspective, rather than just the per-
missions perspective. We expect a deeper study of the
human-factors literature could suggest interesting princi-
ples about issues such as maintaining consistency when
compressing presentation of permissions.

• Administrative Permissions: The notion of administrative
control is our model is coarse: it does not distinguish
between different operations on a datum. In practice,
administrative controls are finer-grained: someone may
have control over who edits, but not who deletes a file.
Administrative access-control policies [20] capture these
nuances in separate policies from the access controls.
We consciously chose to interpret administrative control
coarsely in this paper, to allow us to focus on a coherent
set of principles. A more realistic model, however, might
include an administrative access policy (which would in
turn affect the formalizations of the presented principles).

• Usability Over Time: Time introduces subtle complica-
tions in the management of information. It is tempting to
look primarily at the availability and impact of actions
that change authority in individual system states. Opti-
mizing for temporally local usable security, however, can
make the system less usable over time. In a system for
small-scale collaboration within a large set of users, cre-
ating many groups (to maintain local security) increases
the effort needed later (as users have to search for the
right group for their task). Furthermore, there exist stud-
ies showing how too many security choices lead users to
use systems insecurely [30]. We are, however, not aware
of proposed principles that balance immediate and long-
term usable security.

• Accounting for Human Processes and Behavior: Soft-
ware tools are often used within rich systems of interac-
tions between people and software. In social sharing sys-
tems, many aspects of security lie in the human processes
rather than in the software: operating policies, incentives,
and trust relationships are good examples. The princi-
ples we’ve discussed focus on usable security within the
software. How would the residuals or our proposed tools
change if we extended our model with process models

of surrounding workflows, or task models of users with
different security expertise?

• Formalizing Presentation: Web-based applications con-
tain layout and formatting specifications through CSS
stylesheets. If our model of pages included CSS-like
styling tags on individual data, automated analyses might
be able to flag certain formatting concerns, such as a more
secure action being presented in smaller, lower-contrast,
text than a less secure one. Given the plethora of usabil-
ity design rules in the literature, it is worth exploring
which affect security and which, if any, could be ana-
lyzed against the tools and languages used to actually
build production web applications.
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