
Avoiding Recomputation in Linkage Analysis

Alejandro A� Sch�a�er �

Department of Computer Science

Rice University

Houston

Sandeep K� Gupta y

Department of Computer Science

Rice University

Houston

K� Shriram z

Department of Computer Science

Rice University

Houston

Robert W� Cottingham Jr� x

Department of Cell Biology

Baylor College of Medicine

Houston

January �� ����

Keywords� Genetic linkage analysis� algorithms� recombination classes� check�
pointing� crash�recovery�

Address for correspondence� Robert W� Cottingham Jr�� Department of Cell
Biology� Baylor College of Medicine� One Baylor Plaza� Houston� TX ������ USA�

�schaffer�cs�rice�edu
yskgupta�owlnet�rice�edu
zshriram�cs�rice�edu
xbwc�bcm�tmc�edu



Abstract
We describe four improvements we have implemented in a version of the genetic
linkage analysis programs in the LINKAGE package� subdivision of recombination
classes� better handling of loops� better coordination between the optimization and
output routines� and a checkpointing facility� The unifying theme for all the im�
provements is to store a small amount of data to avoid expensive recomputation
of known results� The subdivision of recombination classes improves on a method
of Lathrop and Lalouel �Amer� J� Hum� Genetics �	
��

�� pp� ��
������ The new
method of handling loops extends a proposal of Lange and Elston �Hum� Hered�
	�
������ pp� ������� for loopless pedigrees with multiple nuclear families at the
earliest generation� From a practical point of view� the most important improve�
ment may be the checkpointing facility which allows the user to carry out linkage
computations that are much longer than the mean�time�to�failure of the underlying
computer�

	



� Introduction

Linkage analysis was fully thrust into the computer age by the discovery of
the Elston�Stewart ��� algorithm for pedigree traversal and its implementation in
LIPED ����� From a computer science perspective� the reason the Elston�Stewart
algorithm works e�ciently is that it avoids recomputation on subtrees of the pedi�
gree by traversing bottom�up towards the root� In this paper we further advance the
theme of avoiding recomputation in linkage analysis by describing four improvements
of that genre that we have implemented in programs in the LINKAGE package�
Although the Elston�Stewart algorithm made a host of linkage problems compu�

tationally tractable for the �rst time� geneticists still want to solve computationally
intractable linkage problems� The computational requirements caused by better
data collection methods and the desire to do multilocus analysis have grown at a
much greater rate than the speed of readily available computers�
We continue an investigation started in �	� concerning better sequential algo�

rithms for linkage analysis� That paper showed signi�cant hope that better algo�
rithms can make much bigger linkage analysis problems computationally tractable�
As in �	�� we demonstrate the improvements described herein by implementing them
in some of the programs in the LINKAGE software package and show the improve�
ments in computation time experimentally� LINKAGE ��� �� is one of the most
popular linkage analysis packages and is particularly useful for multilocus analysis
of large disease pedigrees�
The four improvements described herein are�

�� Subdivision of recombination classes�

	� More e�cient multiple traversals of pedigrees with loops�

�� Better coordination between the optimization routine and the output routine�

�� A checkpointing facility that allows the user to restart a �crashed� computa�
tion near the point where the crash occurred�

The �rst two improvements can be viewed as general algorithmic improvements
based on proposals in the literature� while the latter two improvements correct
weaknesses speci�c to programs in LINKAGE� The subdivision of recombination
classes improves on a proposal of Lathrop and Lalouel �
� that was implemented in
LINKAGE� The new loop algorithm extends a proposal of Lange and Elston ��� for
handling loopless pedigrees with multiple nuclear families at the earliest generation

Lange and Elston called such a pedigree complex��
All four improvements help by avoiding recomputation of already known val�

ues� The �rst three improvements speed up uninterrupted runs� The checkpointing
facility avoids signi�cant recomputation when the computer crashes�
In terms of practical bene�t to the LINKAGE user� the checkpointing facility

may be the most signi�cant of the improvements� because it drastically increases
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the size of linkage problems that can be solved reliably on inherently unreliable
computers�
We have implemented the changes described herein in the already improved

versions of the LINKAGE programs described in �	�� however they are essentially
independent of our previous work� Our modi�ed programs are in C� The improved
LINKAGE programs are available by anonymous FTP from a computer at Rice
University 
Current instructions� ftp softlib�cs�rice�edu� cd linkage�fastlink� get �les
from that subdirectory� contact the �rst author by e�mail at scha�er�cs�rice�edu for
further assistance��
The rest of this paper is organized as follows� Section 	 gives relevant background

on the LINKAGE programs� Sections � through � describe the four improvements�
Sections � and 
 validate the improvements� We conclude with a short discussion�

� Summary of LINKAGE and Related Work

A thorough treatment of genetic linkage analysis� including a summary of the LINK�
AGE programs� is given in Ott�s monograph ��	�� In this section we review a few
facts about LINKAGE relevant to this paper� The most fundamental goal in linkage
analysis is to compute the probability� �� that a recombination occurs between two
genes G� and G��
The LINKAGE package contains four linkage analysis programs� LODSCORE�

ILINK� LINKMAP� and MLINK� The improved sequential algorithms in �	� are
applicable to all the programs� The four changes described here are applicable to
LODSCORE and ILINK� The improved handling of recombination classes and loops
are also applicable to LINKMAP and MLINK�
The LODSCORE program searches for the maximum likelihood estimate� ���

of the recombination probability between two genes� For each candidate �� its
likelihood is computed with respect to the input pedigree
s�� Given a set of loci�
LODSCORE will estimate � for each pair of loci�
The notion of recombination can be generalized to more than two loci� Suppose

G�� G�� � � � � Gn are multiple gene loci occurring in that order� Then we can de�ne
a vector 
��� ��� � � � � �n���� where the component �i is the recombination fraction
between loci Gi and Gi��� We use superscripts here because later ��i will represent
the ith estimate� in a sequence of estimates� to the � vector� We will use n to repre�
sent the number of loci� The ILINK program searches for the maximum likelihood
estimate of the multilocus � vector�
Both LODSCORE and ILINK start from an initial solution and use an iterative

procedure called gemini ��� to �nd the estimate ��� Like many iterative optimization
procedures� gemini can only guarantee to �nd a local optimum and not a global

optimum� After gemini computes a locally optimal ��� an output procedure outf is
called to report ��� the likelihood� and a variety of other statistics� The interaction
between gemini and outf will be discussed more in Section ��
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The function that computes a combined likelihood for all the pedigrees and
reports the value �	 � log
likelihood� 
o�set by an additive scaling term� is called
fun� The programs try to maximize the value of the likelihood� but because of
the minus sign� this corresponds to minimizing the value of fun� Each time a
new candidate vector ��i� provably better than previous candidates 
���� � � � � ��i���� is
generated this is called an iteration and the value of fun at the new ��i is reported
on the screen along with some diagnostics�
In di�erent iterations there may be a variable number of calls to fun� We denote

a call to fun by FE� short for function evaluation� Each iteration of gemini has
two phases� The �rst phase searches for a new estimate to �� that improves on the
estimate from the previous iteration� The second phase estimates the gradient at the
the current �� by perturbing one dimension at a time� Our experiments suggest that
the �rst phase often takes two FEs� but there is no upper bound on the number of
FEs needed� The gradient estimation usually takes n� � FEs if forward di�erences
are used and 	 � 
n� �� if central di�erences are used� The two gradient estimation
methods are discussed in �
�� There are a few exceptions� e�g�� if � for males and
females are assumed to be distinct then the number of FEs for the second phase is
doubled�
In contrast to LODSCORE and ILINK� LINKMAP and MLINK take multiple

values of the � vector and computes the likelihood for each one� The computation
of the likelihood for each input value and for each pedigree are essentially indepen�
dent except for some shared input�output� Thus if the computation crashes in the
middle� all the likelihood calculations that were completed do not need to be redone

provided the results were written to a �le before the crash�� This explains why
there is little need to use a checkpointing scheme within LINKMAP and MLINK�
The basic structure of the likelihood computation is outlined in the section on

Numerical and Computerized Methods in ��	�� Inside the loop over pedigrees� the
programs traverse a pedigree updating the probabilities of each joint genotype for
each individual� There are several di�erent updating routines� but they all start
with a double nested loop over the possible genotypes for one parent and then the
other parent�
Associated with each individual is an array genarray indexed by joint genotype

numbers� We assume that the alleles at each locus� the haplotypes� and the geno�
types are encoded by numbers� The speci�c encoding scheme used in the programs
is not important here� We denote the number of haplotypes by h� The number of
genotypes is denoted by g � h � 
h � ���	� The reason for this formula is that a
genotype is formed by choosing two haplotypes to make the two strands� If the two
strands are di�erent and we think of drawing the genotype as a diagram� then the
strand that has the lower allele number at the �rst heterozygous locus is declared
by convention to be the left strand� and the strand with the higher allele number
at the �rst heterozygous locus is declared to be the right strand�
The size of a genarray is g� For our �rst improvement it is useful to understand
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that generally h is at most in the hundreds� even on long runs� but g may be in
the tens or hundreds of thousands� The entry genarray�j� initially stores a scaled
version of the probability that the individual has the phenotype associated with
genotype j given the joint genotype j� After traversing the part of the pedigree
including the individual� genarray�j� stores the probability that the individual has
genotype j and its associated phenotype� conditioned on the genotypes of relatives
already visited in the traversal and the recombination fraction� Following the no�
tation of Lathrop and Lalouel �
�� suppose we are updating the probability that
individual with phenotype X has joint genotype G� conditioned on the collective
joint genotypes Y of the relatives that have already been traversed and a candidate
�� Then the update rule is�

P 
X�G j Y� �� � P 
X j G�P 
GjY� ���

If we could compute with arbitrary precision� then P 
X j G� would be the contents
of genarray�G� before the update� and P 
X�G j Y� �� would be the contents after�
However� the probability computed is generally so small that under�ow is a danger�
Therefore� LINKAGE scales all the values in genarray and undoes the scaling at
the very end of the likelihood computation�

� Subdividing Recombination Classes

In this section� we describe how we improved the use of recombination classes� as
previously proposed in �
�� We �rst need to review what recombination classes are
and how they are used inside the likelihood computation� Throughout this section�
we assume that all sample parental genotypes are heterozygous at all loci� In the
issues discussed here� the homozygous loci can be ignored since we know what the
child will inherit at homozygous loci� For this section we assume we are working on
a computation for an autosomal chromosome�
We de�ne a recombination pattern to be a vector of length n�� with value � or �

at each position� Given a genotype for a parent� the recombination pattern restricts
which haplotypes the child may inherit� If we �x the allele inherited at locus �� we
then interpret � in position i to mean that the child inherits the allele from locus
i� � from the same strand as the allele from locus i� i�e�� no recombination occurs
between loci i and i � �� We interpret � in position i to mean that recombination
does occur between loci i and i� ��
For example� suppose that the parent has a ��locus phase known genotype of


� j 	� � j �� � j ��� If inheritance follows the recombination pattern 
�� ��� then
the child could inherit either of the haplotypes 
�� �� �� or 
	� �� �� depending on the
choice of allele at the �rst locus�
Recall from Section 	 that the update of a nuclear family starts with two loops

over the possible genotypes of each parent� Let G� be a possible genotype for parent
� and G� a possible genotype for parent 	� Let R� and R� be recombination patterns�
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Let the two haplotypes that an untyped child can inherit from G� consistent with
pattern R� be H�l and H�r� with the second subscript indicating whether the allele
at locus � is inherited from the left strand or the right� Similarly� let H�l and H�r

be the two haplotypes that the child can inherit from G� consistent with R��
Lathrop and Lalouel de�ned a recombination class to be the set of four genotypes

formed from the haplotype pairs fH�lH�l� H�lH�r� H�rH�l� H�rH�rg� These are the
four genotypes that a child might inherit from parents with genotypes G� and G��
if recombination patterns R� and R� apply�
For each recombination class� inside an inner loop we need to compute the sum

genarrayc�H�lH�l��genarrayc�H�lH�r��genarrayc�H�rH�l��genarrayc�H�rH�r��

where genarrayc is the array of genotype probabilities for a child c� Such a sum is
done for each child in a nuclear family� except possibly the �rst� Many recombination
classes 
viewed as unordered sets� contain exactly the same genotypes� Therefore�
in very early versions of the LINKAGE programs the same sum was being redone

for every identical class� By rearranging the order of the computation� Lathrop and
Lalouel did all the identical classes consecutively� so that for each di�erent class the
four�term sum is done only once�
It should be emphasized that the above sum involves � �oating�point additions

and is in a deeply nested loop� versions of the sum 
with di�erent array indices and
di�erent children� are done tens of millions of times� or more� on long LINKAGE
computations� Therefore� we look at the sum very� very closely and �nd more
opportunity to eliminate duplicate additions� In the sex�linked case� the four�term
sum becomes a two�term sum and there is no better way to compute it�
Suppose we consider a di�erent possible genotype G�

� for the second parent� while
keeping the �rst parent the same� In practice� such a change happens frequently
because� we loop over all possible genotypes for parent 	 is inside the genotype loop
for parent �� The new ��term sum will be

genarrayc�H�lH
�
�l��genarrayc�H�lH

�
�r��genarrayc�H�rH

�
�l��genarrayc�H�rH

�
�r��

The change from G� to G�
� may change all four genotypes in the recombination class�

but it can be more usefully viewed as a substitution of the haplotype H �
�l for H�l

and a substitution of the haplotype H �
�r for H�r� To promote the latter view� let us

reorganize the previous quadruple sum as follows


genarrayc�H�lH
�
�l��genarrayc�H�rH

�
�l���
genarrayc�H�lH

�
�r��genarrayc�H�rH

�
�r���

Notice that if we �x G�� R�� and c� each parenthesized pair sum depends only on a
haplotype for parent 	� Three important consequences are�

�� Even though� each quadruple sum like our �rst sum is done only once� the
pair sums parenthesized in our third sum occur in many quadruple sums and
are being redone many times�
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	� If we could precompute each possible pair sum� the sum in the inner loop
would become a single �oating point addition of two terms rather than a triple
�oating point addition of four terms�

�� If we �x G�� the number of possible pair sums needed is at most

number of recombination patterns � number of children � maxhap��
which is reasonable as long as the number of loci is � or less�

Therefore� once inside the �rst loop� where G� is �xed� we compute a table of
all the possible pair sums� Inside the innermost loop� the triple sum becomes a sum
of two terms from our table�
In pseudocode� the old algorithm looks like�

For each possible genotype G� of parent �
For each possible genotype G� of parent 	

Do probability update with many ��term sums

and the new algorithm 
calling the table for child c Tc� looks like�

For each possible genotype G� of parent �
For each haplotype H

Tc�H �� genarrayc�H�lH � � genarrayc�H�rH �
For each possible genotype G� of parent 	

Do probability update with 	�term sums

where the typical ��term sum�

genarrayc�H�lH�l��genarrayc�H�lH�r��genarrayc�H�rH�l��genarrayc�H�rH�r��

becomes the 	�term sum�
Tc�H�l� � Tc�H�r�

In this simpli�ed pseudocode� if there are h haplotypes and q quadruple sums
to be computed for a given choice of G�� then the old code does �q sum operations�
while the new code does h� q� where h are done to build table T and q are done in
the inner loop� In the actual code� there is a second index to the table depending
on the choice of recombination pattern for parent � 
which determines the values of
H�r and H�l�
The number of entries in the table is 	�n���� 
number of haplotypes� � 
number

of children�� For example� in ��locus problem� with allele product 
i�e�� number of
haplotypes� 	������ � �	�� and at most �� children in a family� the table would
have 
� �	�� �� � ���� entries�

� Handling Loops

One of the causes of long LINKAGE runs is loops in the input pedigree
s�� The
algorithm used in LINKAGE to handle loops was �rst proposed by Lange and El�
ston ��� and is also described on pages ������� of ��	�� We review it here to keep
the paper self�contained�






Suppose for simplicity that there is just one one loop in the pedigree� this is by
far the most common case� LINKAGE expects the preparer of the input to designate
one individual in the loop as the loop breaker � b� This is done by making two copies
of the individual b� which we call b� and b�� Person b� is shown as the child of b�s
parents� but b� has no spouse or children� Person b� has b�s spouse and children�
but has no parents�
If person b can have only one joint genotype then the modi�ed pedigree is com�

puted in a manner equivalent to having no loop declared� If person b can have
several genotypes� fG�� G�� � � � � Gpg then the algorithm iterates over all these geno�
types� For each possible genotype Gi� the likelihood is computed conditioned on
both b� and b� having genotype Gi� Ott ��	� denotes this by P 
x�Gi�� where x
stands for the phenotype data observed on the pedigree members� Then the overall
likelihood is given by

pX

i��

P 
x�Gi�

Each computation of P 
x�Gi� does a fresh traversal of the entire pedigree up�
dating genarrays� In each nuclear family� there is a single representative� r� such
that the genarray of r is updated during the traversal� the update for r is condi�
tioned on the probabilities for the other members of the nuclear family� so that their
probability updates are done implicitly� We observed the following recomputation
happening and found a simple way to avoid it� Suppose that the loop does not
encompass the entire pedigree� Then there may be certain nuclear families where
the genarray values are computed independently of b�s genotype� These nuclear
families do not need to be revisited on each traversal� since the update done will be
the same for each Gi� We have modi�ed the pedigree traversal algorithm� so that
during the traversal for the �rst possible genotype of b� which we called G�� the set
of nuclear families that do not have to be revisited is identi�ed�
There is a colorful biochemical metaphor that captures precisely how the decision

of whether a nuclear family needs to be revisited is made� Imagine that we take
some radioactive dye that we can �inject� into the pedigree� so that some members
will be radioactive and others not� If a nuclear family representative r is radioactive
and is updated on the �rst traversal� then that nuclear family must be revisited�
and r updated again� for each Gi� If r is not radioactive� then its nuclear family
does not need to be revisited� Here are the rules we use for updates�

Rule �� Before the �rst traversal for G�� b�� b�� and all the descendants of b�

b� has no descendants� by de�nition� are made radioactive�

Rule �� During the traversal for G�� for each nuclear family� if any member of
the nuclear family is radioactive� then the representative is made radioactive�

Rule �� During later traversal for G�� G�� � � �� we update the representative of
a nuclear family if and only if the representative is radioactive�
The reason for Rule � is that LINKAGE takes into account which genotypes

an individual can inherit when initializing genarray� Thus for b�� b�� and all the

�



descendants of b�� the initial genarray for each traversal depends on the choice of
genotype for b� and b� and must be recomputed�
When there are multiple loops� each loop is broken separately� The algorithm

iterates over all vectors of genotypes� where component j of the vector is a possible
genotype for the jth loop breaker� We apply our traversal algorithm to the loop
whose component is the least signi�cant or innermost in the vector iteration� This
is the component that always changes from iteration to iteration�
The ordering of loops from inner to outer is determined by numbers that the

user supplies in the input pedigree� Running times for all versions of LINKAGE can
vary widely depending on the loop order chosen by the user�
There is another user�speci�ed parameter that can cause the running time to

vary signi�cantly� This parameter is the root 
in LINKAGE this is referred to as the
proband� of the pedigree� The traversal order �peels� the pedigree towards the root
so that the root belongs to the last nuclear family updated� A variety of peeling
orders are possible ��� �	�� We have not changed the peeling order in LINKAGE�
but we make no claim that the current order always minimizes the running time� A
good� but overly simplistic heuristic to minimize running time� is to choose the root
as high as possible and the loop breaker
s� as low as possible in the pedigree� but
this choice is not provably optimal in all cases�
Automating the choice of proband and loop breakers� and varying the peeling

order are interesting research questions beyond the scope of this paper� Neverthe�
less� our idea of not updating pedigree members whose probability update does not
depend on the genotype of the loop breaker
s� will save time on some pedigrees� for
any method of choosing root� loop breaker
s�� and traversal order� However� the
time saved may depend signi�cantly on those choices�

� Coordinating Optimization and Output

The previous versions of ILINK and LODSCORE do several wasteful FEs� We
identi�ed three distinct sources of wastefulness�

�� When it is decided that the previous estimate ��i is better than the new estimate
��i��� the gradient at ��i�� is still calculated but never used�

	� The output function evaluates fun at the optimal ��� even though this was
already done by gemini�

�� The function which reports lodscores reevaluates the likelihood for each pedi�
gree at the optimal ��� even though this was already done inside fun when
gemini called fun with the optimal ���

The extra FEs for cause � can be eliminated because the gradient at the nonop�
timal ��j�� is not needed�
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The extra evaluations from causes 	 and � can be eliminated simply by storing
the values when the same calls are made from gemini� The only subtlety is that
gemini does not decide until shortly after the call to fun whether the value used
in the most recent call is best so far� Thus the likelihood and fun values are stored
provisionally pending that decision�
The number of FEs in cause � is typically n � � if forward di�erences are used

to compute the gradient and 	
n� �� if central di�erences are used� Which method
is used� and whether the number of FEs matches the typical number� both depend
on some program constants and the speci�c structure of the problem instance�
Cause 	 saves � FE and cause � saves an amount of computation which is almost

the same as for an FE� It should be noted that the old versions of the LINKAGE
programs did not count the computations for output when they reported a number
of FE�s 
in the �le final�dat�� Thus when comparing the �les produced by old and
new versions only the savings from cause � are seen in the reduced number of FE�s�
In the course of testing our code to save these FE�s we found and repaired a bug

in ILINK and LODSCORE� In some situations the old version was deciding correctly
that ��j was the local optimum� but then reporting the slightly non�optimal ��j�� and
its lodscore as the �nal value� Our new code to coordinate optimization and output
corrects this problem�

� Checkpointing

In this section we describe how we save partial computations of LODSCORE and
ILINK� so they can be restarted if the computer crashes� For the purposes of
checkpointing� these two programs are almost identical� LODSCORE is slightly
more complex because we must store which pair of loci we are working on� while
ILINK only works on one locus ordering per run�
There are publically available packages that can checkpoint a general application

by taking a core dump of the system state� However� the packages we have seen are
designed for speci�c implementations of UNIX and are not portable� Therefore� we
implemented checkpointing by modifying the LINKAGE source code in a portable
fashion�
The programs perform checkpointing before some calls to fun�
The functions that make calls to fun are� initialize� firststep� increaset�

decreaset� gforward� and gcentral� After the changes described in the previous
section� the output function outf no longer makes any calls to fun� It does eval�
uate the likelihood at �� � ��� for every dimension� to report what is called �Ott�s
generalized LODSCORE�� The function initialize is called at the beginning of
the �rst iteration and generates one FE� The function firststep is called in every
subsequent iteration and generates one FE� In each iteration� either the function
increaset or decreaset is called� they generate a variable number of estimates of
�� and call fun to evaluate each one� In the vast majority of iterations we have seen
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increaset and decreaset generate one or two estimates� but there are exceptions�
At the end of each iteration either gforward or gcentral is called to estimate
the gradient by generating FEs with a slightly perturbed ��� Both gforward and
gcentral have a loop in which one dimension is perturbed at a time� gforward
makes one FE per loop iteration and gcentral makes two FEs per loop iteration�
We take a checkpoint at the start of initialize� firststep�increaset�

decreaset� outf� each iteration of the loop in gforward� and each iteration of
the loop ingcentral� Our rough goal is to take at least one large checkpoint be�
tween every two FEs� the only time this goal is not met is when a call to increaset
or to decreaset makes more than two FEs� When a crash occurs� we can restart
the computation from the last place where a checkpoint was completed� Since this
is usually at most two calls to FEs away� it means that we can have reasonable hope
of doing runs where the mean�time�to�failure of the computer is about the time it
takes for two FEs�
Checkpointing is done by storing all the relevant program variables in a �le� A

typical checkpoint �le on the SunOS operating system has length roughly ������
bytes� which is very small by modern checkpointing standards� The �le includes
some control �ow information� so we can tell where the checkpoint was taken during
the recovery process� The �le contains a special string at the end so we can tell if
the checkpoint is complete� The reason this is needed is that there is a small chance
that the computer may crash while a checkpoint is being written out� To prepare
for this situation we keep a backup copy of the preceding checkpoint �le after the
next checkpoint is taken� If we detect during the recovery process that the principal
checkpoint �le has been corrupted� then we advise the user as to where to move the
backup checkpoint �le so we can recover from an earlier point in the execution and
still not lose too much�
When the programs complete their linkage computations successfully� the check�

point �les are deleted at the very end of the execution� When the programs start
up� they determine whether to start from a checkpoint or start from the beginning
depending on whether the checkpoint �le exists in the working directory�
Because ILINK estimates the � vector for only one order of loci per run� it is

common practice to make scripts that execute multiple runs of ILINK one for each
order� It is also possible to make scripts that execute multiple runs of LODSCORE�
although this is not nearly as common because LODSCORE during a single run
estimates � for all pairs of loci speci�ed� If a crash occurs during the fourth run
in a script say� we would like to be able to keep the results from the �rst three
runs and have the machine know that when the script is restarted� it should start
from a crash recovery for the fourth run� We call this script�level checkpointing� It
is important to realize that script�level checkpointing is essentially external to the
programs themselves� and has been integrated mainly for the convenience of the
user� who might not be as aware of the state of the computation as the computer is�
The process introduces a small auxiliary program that we call ckpt� which be�
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haves as a front�end to the user desiring such checkpointing� In collaboration with
the individual programs ILINK and LODSCORE� the ckpt program keeps track
of the number of invocations of the respective program made during the current
script� This count is written to a disk �le� In addition� during execution� the pro�
grams store information on script�level output� namely the state of the two key
output �les final�out and stream�out� which are needed to get the results� The
�le �nal final�out stores a description of the run� the �nal �� and some diagnos�
tics� The �le stream�out store the �nal �� and the �nal likelihood values for each
pedigree�
Suppose now that a script prematurely terminates� when execution is resumed�

the mechanism knows which invocation of LODSCORE or ILINK in the script was
last in force� Thus� the script is executed again from the beginning� but completed
invocations of the above programs exit immediately without contributing any out�
put� Further� since the state of the output �les was saved before the crash occurred�
these �les can merely be copied into from the stored versions� thus yielding no
indication that the script had to be re�started�

� Methods

We compared the LINKAGE programs described in �	� to the modi�ed new versions
described here on some sample runs� We �rst installed the three changes that im�
prove the speed of the programs and measured the improvement� Then we installed
the checkpointing facility and tried to measure how much it slowed down the pro�
grams under crash�free operation� but the slowdown was too small to measure with
any precision� The timing experiments were run on an unloaded Sun SPARCsta�
tion 	 computer with �	Mbytes of RAM� This machine runs the operating system
SunOS� version ����	� which is an implementation of UNIX� To compile all versions
of the programs we used the gcc compiler� version 	���� using the �O �ag for op�
timization� The times reported in the next section are the user time given by the
time command� Since our test runs were usually the only user processes running�
this is a pretty good estimate of the actual time taken�

� Results

We present results to show the performance obtained by our improved implemen�
tation� We did a variety of sample runs always comparing the version of the code
reported in �	� with the version described here� We tried to measure the cost of
checkpointing by using new versions both with and without checkpointing� We were
pleased to �nd that on our computers� the extra time for checkpointing in any non�
trivial run is less than the time variation between di�erent executions of the same
run� In a few cases the time we measured for a run with checkpointing was as much
as � less than the time measured without checkpointing�
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! Data Set Program No� of Alleles Old Time
s� New Time
s� Speedup

RP�� LODSCORE 	� � ��	� ��
 	���
RP�� ILINK 	� �� � 
��� ��
� 	��	
RP�� ILINK 	� �� � ����� 	��
� 	���
RP���� ILINK 	� �� � ��	� ���� ���

RP���� LINKMAP 	� �� �� � ��	�� ����� ����
BAD ILINK 	� �� � ��
� 	
�
 ����
CLP ILINK 	� �� �� � ���	 �	
� ���	
CLP ILINK 	� �� �� � ���� ���� ����
CLP LINKMAP 	� �� �� � ���� ���� ����

Table �� Execution Times in Seconds

For simplicity and consistency� we report the times taken by the versions in �	�
and the new version with checkpointing� Those are the two versions we have been
and will be distributing�
We used the three following disease data sets for our experiments�

� RP��� data on a large family� UCLA�RP��� with autosomal dominant retini�
tis pigmentosa 
RP�� from the laboratory of Dr� Stephen P� Daiger at the
University of Texas Health Science Center at Houston� This pedigree has �
generations with ��� individuals containing 	 marriage loops ���� As shown
in ���� this pedigree had to be split into three pieces because desired computa�
tions with large allele products on the whole family together took prohibitively
long� In the tables of results� RP���� denotes analysis with the family split in
three pieces�

� BAD� data on a portion of the Old Order Amish pedigree ��� 
OOA �����
with bipolar a�ective disorder 
BAD� from the laboratory of Drs� David R�
Cox and Richard M� Myers at the University of California at San Francisco�
This pedigree spans � generations with �� individuals and contains � marriage
loop �����

� CLP� Data on �	 families with autosomal dominant nonsyndromic cleft lift and
palate 
CLP� from the laboratory of Dr� Jacqueline T� Hecht at the University
of Texas Health Science Center at Houston� Diagrams of the families are shown
in ���� The families include ��� individuals in all� Pedigrees ���� and ���� are
signi�cantly larger than the rest� Pedigree �	�� has a loop� but it encompasses
the entire family� so our new loop algorithm does not help�

In most cases� we achieved noticeable speedups� The speedups here are not
nearly as large as the speedups we obtained in going from LINKAGE ��� to the
faster version in �	�� but are still worthwhile� Our changes helped the most on the
RP�� pedigree because its second loop covers only a small part of the pedigree� The
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above computations on the full RP�� pedigree are feasible in part because of the
algorithmic changes in �	� and because the allele products for the loci we chose are
not too high� Our changes had the least e�ect on CLP because the loop change
is irrelevant there and its genarrays are not dense enough to bene�t much from
subdividing recombination classes�
By comparing some pairs of runs in the above table we can see how the three

di�erent changes a�ect the speedup on speci�c pedigrees� For example� the last
LINKMAP run shows that CLP does not bene�t from either of the �rst two changes�
of course� this run cannot bene�t from the iteration saving change in LODSCORE
and ILINK� The loci used in the last two runs are the same� The non�disease loci
in the two CLP ILINK runs are completely di�erent� although they have the same
number of alleles� Thus we see that the iteration saving change saves about ���
seconds on each CLP ILINK run� The speedups are di�erent because the two runs
have di�erent numbers of iterations� but the absolute amount of computation saved
is approximately the same�
Comparing the RP�� runs versus the RP���� runs� we see that the new way of

handling loops must account for most of the savings on RP��� Since RP���� has no
loops� it bene�ts only from the �rst and third changes�
We see no e�ective way to estimate on paper what the speedup from the three

speed improvements will be for a new run because�

�� The savings from our change to recombination classes depend on the sparsity
patterns of the genarrays of di�erent individuals in the pedigree� which are
hard to determine without running the program�

	� The savings from our better loop traversal algorithm depend on the loop struc�
ture� the choice of proband� and the sparsity patterns� Knowing the loop struc�
ture and proband� it is possible to compute by hand which nuclear families
will not be revisited for each genotype of the loop breaker� However� it is not
easy to estimate� how much time will be saved by not visiting those families�

�� The savings achieved by better coordination between optimization and output
depend on details of the numerical convergence of the � estimates� These
details cannot be determined without actually doing the run�

� Discussion

One of us 
RWC� recently asked Elston what led to the breakthrough Elston�Stewart
algorithm� Elston replied��That�s the way I had always done the �linkage� computa�
tions by hand�� One of the key principles of successful pencil and paper computation
is to write down a few intermediate values� so they do not have to be recomputed
and so they can be checked in case of errors� The principle of avoiding recompu�
tation was well understood before the time of Newton� it was the stimulus for the
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hand�computation and publication of vast logarithm tables� for example� Unfortu�
nately the principle is too often forgotten by late 	�th century programmers when
they assume incorrectly that�

�� Having the computer recompute intermediate results does not add signi�cantly
to the computation time because the computer is so fast�

	� If the computer crashes� it is satisfactory to restart the program�

We have corrected three places where the LINKAGE programs were spending
nontrivial amounts of time recomputing known values internally� We have made
it possible for the LODSCORE and ILINK programs to recover from a crash by
restarting from a recently completed likelihood function evaluation�
To stress the importance of the last improvement� consider the following sce�

nario which is realistic based on our experience with LINKAGE� We wish to do a
multilocus ILINK run where every function evaluation takes roughly a day� We have
available to us a workstation whose mean�time�to�crash is roughly a week� Given
that the ILINK computation will surely take at least 	� function evaluations� it does
not seem worth trying because the workstation is sure to crash during the 	� days
it would take to �nish the run�
With the checkpointing facility in place� we now see no signi�cant impediment

to doing our desired ILINK run� Because operating systems such as UNIX allow
processes to run in the �background� at low priority� we can do long runs without
interfering with other high priority computations�
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