
Declaring Victory in a Declarative Datacenter:
Verification and Transferring Confidence

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

Abstract Operators may appreciate and adopt declarative ap-
proaches to defining datacenters, but they will still need sophis-
ticated tools to locate weaknesses, identify hot-spots, and catch er-
rors. Just as usefully, they need means to transfer their confidence
from one version of the system to the next. I outline some of these
challenges along with our preliminary work in this direction.

Languages If the datacenter (or datacentre, even) is the new
computer [6], what is the language for configuring it? The lure
of declarative languages is that they turn low-level, ad hoc lan-
guages into targets rather than sources. Just elevating the mean-
ing of existing operations helps: Mahajan, et al. [3] point out that
adopting a transactional semantics for configuration changes would
have avoided a significant portion of misconfiguration errors. But
declarative specifications will not eliminate errors, only move them
higher up the chain of abstraction. For instance, Anderson and Sco-
bie [1] say their current system supports “over 2000 parameters”
ranging from hardware to access-control. What are the odds opera-
tors will get their specifications right?

Analyses In their study of Internet service failures, Oppenheimer,
et al. [5] implicitly observe the value in three kinds of tools (the
names given to these categories are ours). It is instructive to con-
sider the impact of declarative specifications on each of these:

user-defined property preservation The first is to have high-level
properties of desired behavior, and ensure that individual cofig-
urations match these desired global properties. While this re-
mains a problem in “legacy” (i.e., current) systems, if individual
configurations are generated directly from a declarative specifi-
cation, this problem effectively disappears (or is subsumed in a
proof that the generator preserves the semantics of the specifi-
cation). Bravo!

smell tests The second is to check configurations against well-
known properties. These would include both desirable proper-
ties (those found in systems that function well) and undesirable
ones (those known to lead to faulty behavior). In a higher-level
language specification, these would most probably correspond
to types or other static analyses. Another win.

Let us pause momentarily to dig deeper.
Smell-tests are useful but fraught with difficulty. In a domain

as messy as datacenter configuration, the clean logical niceties of
“soundness” and “completeness” seem unattainable. In the absence
of robust properties, the best we must hope for is that analyses
will find situations frequently enough to be useful but infrequently
enough to not annoy. Designing such analyses—and their corre-
sponding user-interfaces—is daunting.

The other validation scenario is not as watertight as it seems, ei-
ther. When a datacenter configuration has thousands of parameters,

operators would benefit from analyses that probe their specifica-
tion instead of simply accepting it at face-value. Unfortunately, if
smell-tests are difficult to design, obtaining properties seems even
harder. The essence of any verification process is obtaining a redun-
dant statement of the system’s desired behavior. In our experience
in a more limited domain (access-control), when the specification
language is sufficiently declarative, users have great difficulty pro-
viding a duplicate statement of behavior.

The heart of this problem is obtaining a redundant specification.
If a redundant one isn’t available, is there any other?

Yes, indeed, except it describes a different system: the previous
version of this one. In reality, the typical operator often has a con-
figuration that is known to “work”; now he has a new configuration
that represents a desired change, either in response to new features
or, sometimes, as a result of an emergency (as when a security leak
is identified). As Anderson and Scobie say [op. cit.], “Small config-
uration changes also occur very frequently in a complex environ-
ment”. What the operator really needs to know is, Will something
break if I make this change? That is, he cares not about correctness
of the new system (which is too complex to comprehend authorita-
tively anyway), but rather about transferring confidence: i.e., how
to gain confidence in the new version relative to the confidence
placed in the old.

This idea is loosely manifest in Oppenheimer, et al. [op. cit.]:

change-impact analysis The third analysis is generalize their sug-
gestion to “help operators understand [...] how their changes
to one component’s configuration will affect the service as a
whole”. Here, a declarative language has direct value: informa-
tion that had to be reconstucted from lower-level specifications
is now expressed directly, making the analysis richer, more
tractable, and have fewer false-positives and/or false-negatives.

The Margrave Tool Computer systems of a scale that can benefit
from a datacenter teem with policies that govern their behavior.
These include:

• A configuration model with context-sensitive rules to determine
what components can, should, and can’t be combined.

• Access-control policies for the data in the datacenter.
• Firewall policies to determine which sub-networks may and

may not communicate with each other.
• User-defined routing policies to administer network traffic for

specific needs (e.g., QoS).
• Confidentiality and integrity requirements in systems such as

Security-Enhanced Linux (SELinux).
• Hypervisor rules that describe desirable and unacceptable inter-

operation between compartments.

These policies are, in turn, often modular and even distributed.



Many of these uses have evolved their own domain-specific no-
tation for expressing policies, thus enabling rapid system evolution
along a critical vector. Some of these apply so broadly that they
have evolved into industrial standards, such as XACML for access
control. In general, these languages can be treated quite uniformly
using standard languages such as first-order logic.

For several years we have been building Margrave [2], an analy-
sis suite for policy languages. Margrave began as a tool specifically
for XACML, but is evolving to support languages described more
generally. Margrave has two components:

1. A verification engine for checking policies against formal
properties. This is general enough to encompass both user-
defined properties and smell tests. In the access-control do-
main, for instance, the useful smell tests describe standard do-
main metaphors such as least-privilege, conflict-of-interest, and
separation-of-duty. These need not necessarily hold in a given
policy, but the designer may to ensure that they are violated
intentionally.

2. More usefully, Margrave offers change-impact analysis as a
property-free analysis. I will focus on this aspect of the tool
in the rest of this document.

Margrave presents changes as the set of inputs that yield a differ-
ence in output and, for each input, the corresponding output change.
This is an especially concrete representation that users can imme-
diately comprehend, matching a cognitive model called surprise-
explain-reward [7].

In practice this change can be quite large, so the user needs tools
to distinguish the important from the irrelevant. Margrave therefore
enables the user to probe this output. For example:

• Is the new policy equivalent to the old one?
• What are the changes when restricted to a certain type? (For

instance, restricting attention to those data formerly denied but
now permitted access can identify inadvertent leakage.)

• What are the “hot-spots”, e.g., one rule change that altered the
effect of a large percentage of outcomes?

• What roles or resources had their permissions changed?

While some of these questions are specific to the access-control
domain, others are universal to policy analysis.

The trained computer scientist will, of course, recognize that
these correspond to queries and views over the changes, but the op-
erator doesn’t need to understand these issues. Even more intrigu-
ingly, an operator can ask:

• Confirm that role X did not gain privileges as a result of an edit.

This is, of course, a form of verification. But didn’t we say opera-
tors have trouble expressing properties? In fact, what we’ve found
from talking with users is that, while people often have difficulty
expressing properties of a system, they have much less trouble stat-
ing properties of changes: at the very least, they can state the fram-
ing conditions that they expect to hold of their edit.

Change-impact analysis is, therefore, a particularly engaging
application of formal methods. It weds the benefits of formality—
soundness, coverage of a complex state space, etc.—to an informal,
inquisitive usage style. The choice of representation of output par-
ticularly helps, because operators can more readily work with con-
crete, extensional representations than intensional ones. This anal-
ysis modality has many different “what-if” uses:

Upgrade checking “If I make this change, what will break?”

Upgrade choosing “Will these two different ways of altering the
policy yield the same result?”

Refactoring checking “I intended only to improve the structure of
my policy; did I accidentally change anything?”

Some users have even adopted Margrave as an oracle for mutation
testing [4].

Looking Ahead Of course, this is only a beginning. There are
numerous ways in which Margrave must grow to accommodate the
needs of datacenters, such as:

• Analyzing these languages independently is one thing, but com-
bining their analysis is an entirely separate challenge, and one
we have not confronted. On the other hand, perhaps we won’t
need to if declarative languages for datacenters take off. There-
fore, I view great potential for the synergistic development of
such languages with these analyses.

• These languages operate in a very stateful environment. While
we have done theoretical work to extend Margrave to accom-
modate state, I believe the more fruitful direction would be to
run the process backwards: from the policies, derive monitors
on the state that warn when changes are about to occur.

• The worlds of numbers and of symbols are currently distinct.
We would like to integrate the logical power of these languages
with the hard numbers we obtain from dynamic analyses of
behavior to provide better analysis and prediction.

Ultimately, Oppenheimer, et al. [op. cit.] point to the predomi-
nance of misconfiguration errors and say about improving operator
interfaces, “This does not mean a simple GUI wrapper around ex-
isting per-component command-line configuration mechanisms—
we need fundamental advances in tools to help operators under-
stand existing system configuration and component dependencies,
and how their changes to one component’s configuration will affect
the service as a whole”. We couldn’t agree more: only thus armed
can the operator declare victory on the problem of managing the
datacenter. Margrave is our step in this direction.

Acknowledgments
I thank Don Batory, Dan Dougherty, Kathi Fisler, Leo Meyerovich,
and Michael Tschantz. The ideas described here (only the good
ones, that is) are the fruit of our collaborations. I appreciate support
from the US National Science Foundation, Cisco, and Google.

References
[1] P. Anderson and A. Scobie. LCFG: The next generation. In UKUUG

Winter conference, 2002.

[2] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz.
Verification and change-impact analysis of access-control policies. In
International Conference on Software Engineering, pages 196–205,
May 2005.

[3] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP
misconfiguration. ACM SIGCOMM Computer Communication Review,
32(4):3–16, 2002.

[4] E. Martin and T. Xie. A fault model and mutation testing of access
control policies. In International World Wide Web Conference, pages
667–676, 2007.

[5] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do Internet
services fail, and what can be done about it? In Usenix Symposium on
Internet Technologies and Systems, 2003.

[6] D. A. Patterson. Technical perspective: the data center is the computer.
Communications of the ACM, 51(1):105–105, 2008.

[7] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook,
M. Durham, and G. Rothermel. Harnessing curiosity to increase
correctness in end-user programming. In SIGCHI Conference on
Human Factors in Computing Systems, pages 305–312, 2003.


