
Desugaring in Practice: Opportunities and Challenges

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

Abstract
Desugaring, a key form of program manipulation, is a vital tool
in the practical study of programming languages. Its use enables
pragmatic solutions to the messy problems of dealing with real
languages, but it also introduces problems that need addressing. By
listing some of these challenges, this paper and talk aim to serve as
a call to arms to the community to give the topic more attention.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

Keywords Desugaring; Resugaring; Semantics; Optimization

The Need for Desugaring
Concise core languages have a venerable place in the study of pro-
gramming languages. By providing a means to reduce languages
to an essence, they help us focus on important details and eschew
ones irrelevant to the purpose of study. Furthermore, the difficulty
of reducing some features may point to places where the language
suffers from design flaws.

The use of core languages is not only of theoretical value. Prac-
tical systems also benefit from having a smaller number of features
to work with: interpreters, compilers, type-checkers, program anal-
yses, model checkers, and so on. Indeed, lurking inside every one
of these systems is usually a smaller core fit for that purpose.

Unfortunately, the process of reducing a language to a core—
which we loosely dub desugaring—has not received the attention
it deserves, perhaps because it is not usually considered of theoreti-
cal interest.1 As programming language research is increasingly ap-
plied to large languages (usually of industrial importance), the need
to shrink languages—and hence for desugaring—has increased sig-
nificantly, and with it the challenges faced.

1 I use the term “loosely” for the following reason. In principle, a close
reading of the term “desugaring” implies that the core language is a strict
subset of the source. In practice, it is often useful for the “core” to be a
slightly different language, better suited to the task at hand: for instance, for
semantic analysis, we might map some object languages to a λ-calculus. In
such cases, the desugarer is technically a compiler. However, it is rarely a
general-purpose compiler, and the term “desugar” better evokes its intended
purpose. This justifies our abuse of language.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PEPM ’15, Jan 13–14 2015, Mumbai, India.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3297-2/15/01.
http://dx.doi.org/10.1145/2678015.2678016

P Program
desugar //

P evaluator

��

λP Program

λP evaluator

��
P out oo

difference (none!)
// λP out

Figure 1. Testing Strategy for λP

Desugaring in Semantic Specifications
Figure 1 illustrates a process that is now used for many real-world
languages such as JavaScript and Python. For the language P ,
researchers define a core language, λP . Does λP really captures the
essence of P : i.e., cover all of P and when translated, with the same
behavior? It is usually easy to produce an evaluator for λP , while P
evaluators are already available. Using test suites, programs found
in the wild, etc., we can check for this conformance.

Once a suitable λP and desugaring pair have been found, the
result is of practical value. Writing tools for λP is much easier than
dealing with the full details of P itself. Therefore, even research
groups with limited resources can—with the help of desugaring—
try to apply their tools to real programs, thereby improving the
utility of their research and the quality of their evaluation.

Challenges
While this picture is attractive in theory, there are many practical
problems that confront the widespread use of desugaring. While
some research has made progress on many of these fronts, general
solutions that apply widely remain out of reach and are therefore
ripe areas for future investigation. Some of these are described
below, arranged in the order I conjecture to be the simplest to the
most sophisticated.

Shrinking output in a semantics-preserving way The first and
most persistent problem a user of any desugaring output con-
fronts is the often large size of the output. Even simple ex-
amples can produce very large output: for instance, in the
JavaScript semantics S5 [2], console.log("Hello world")
produces the output shown in Figure 2. This code blow-up can
frustate attempts to understand the output and to subsequently
debug programs that process it.
Two main factors result in this blow-up: the inherent complexity
of the source language, and the consequence of using a context-
insensitive recursive-descent code generation process. The for-
mer is essential complexity from the perspective of preserving
the language’s behavior. We believe the latter can be addressed



{let

(%context = %nonstrictContext)

{%defineGlobalAccessors(%context,

"console");

{let

(#strict = false)

{let

(%obj1 = %context["console" , {[#proto: null,

#class: "Object",

#extensible: true,]}])

{let

(%fun2 = %ToObject(%obj1)["log" , {[#proto: null,

#class: "Object",

#extensible: true,]}])

{let

(%ftype3 = prim("typeof", %fun2))

if (prim("!", prim("stx=", %ftype3 , "function")))

{%TypeError("Not a function")}

else

{%fun2(%ToObject(%obj1),

%mkArgsObj({[#proto: null,

#class: "Object",

#extensible: true,]

’0’ : {#value ("hello world") ,

#writable true ,

#configurable true}}))}}}}}}}

Figure 2. Desugaring of console.log("hello world")

by various program optimization techniques that can usefully
shrink this output without altering its semantics. However, tech-
niques designed for source programs can often perform weakly
on generated code and vice versa. We are experimenting with
the viability of different techniques for this purpose.

Shrinking output by altering semantics It is both worthwhile
and uncontroversial to apply semantics-preserving optimiza-
tions. A more controversial idea is to engage in semantics-
altering transformations.
A fully semantics-preserving desugaring must contain code that
handles every possible corner case; the more complex the lan-
guage, the more cases there are. This will include cases that are
being disregarded in the current application. For instance, most
static analyses assume away the presence of dynamic features
like eval or reflective ones like Python’s locals. By remov-
ing support for some features, we can have a noticeable effect
on the size of desugared output. Furthermore, this interacts with
semantics-preserving optimizations by exposing new opportu-
nities for reduction.

Resugaring Desugared programs can be hard to work with. By
having control over the desugaring process, it should be pos-
sible to at least partially “reverse” the desugaring process—in
effect, to “resugar” programs. This becomes especially interest-
ing in the presence of black-box transformations such as evalu-
ation, optimization, and so on: to still present the new program
in terms of the source that the author wrote. While there have
been many ad hoc proposals to do this (e.g., for debugging op-
timized code), there are relatively few approaches that formally
specify the properties expected of the resugaring process.

Relating multiple desugarings Desugaring is always relative to
some purpose. In practice, different purposes often rely on dif-
ferent desugarings. For instance, a type-checker will want al-
gebraic datatype definitions preserved; a type-inference system
might want a let-like construct to also be preserved to perform
polymorphic generalization; while an interpreter might want all
these eliminated. Therefore, there is rarely the core of a lan-
guage, but rather many cores.
Because all these desugarings correspond to the same surface
language, it would be ideal to relate them to one another. While
a testing approach (as in Figure 1) offers one way to relate
them, it would be helpful to also do so formally, especially by
focusing on the differences between them and identifying how
these differences are semantics-preserving.

Learning desugaring from examples Finally, it is worth asking
how much the process of generating a desugaring can be au-
tomated. In our experience, creating a semantics—with most
of the time spent on desugaring—can be enormously time-
consuming: from 6 to 28 person-months of highly-trained labor.
This level of effort makes it infeasible to tackle the semantics of
the large number of languages and systems in widespread use.
However, as Figure 1 suggests, we can think of this as a learning
problem where, because of the presence of the evaluators acting
as ground truth, we can generate new examples to improve the
quality of learning. We have tried to apply a variety of machine
learning techniques to this task, with distinctly mixed results so
far. Nevertheless, it seems necessary to work on this if we are
to have the Next 700 Semantics.

Impact on Reproducible Research
Desugaring has a valuable role in presenting research in a repro-
ducible way. When researchers attempt to tackle large, industrial
languages, they rarely ever tackle the language as a whole. Rather,
it is common to pick some strict subset of the language. Unfortu-
nately, the precise parameters of this subset are usually left loosely
specified—or even unspecified—and need to be reconstructed from
a paper presentation. This makes accurate comparison of compet-
ing work difficult, giving too much credit to some work and not
enough to others.

Having a family of related desugarings, and semantics-altering
desugarings that formally restrict the language, offers a way out
of this dilemma. By picking and publishing a formally restricted
desugaring, authors can effectively advertise precisely what sub-
language they are actually working with. Because this is a com-
putational artifact, other authors can use it in their comparisons,
making it easier for authors, program committees, and third-party
researchers to arrive at a much more accurate understanding of how
different projects compare.

Desguaring in the Language
Finally, the Lisp family has a venerable tradition of providing des-
guaring features in the language itself. Recently, languages like
Racket have taken this to new heights, enabling the definition of
entirely new languages [1]. Though the challenges above have been
written in terms of desugaring for semantics, many of them apply
equally well to desugaring in the language, such as shrinking the
output in semantics-preserving and even semantics-altering ways
(for comprehension, debugging, and perhaps even performance),
resugaring, and applying different desugarings in different con-
texts. As this powerful idea ripples (in various guises) through
many other language families—from C++ to Scala to Haskell—the
need for research to tackle these problems will only increase.

Acknowledgments
The work reported here was primarily done in collaboration with
Arjun Guha, Joe Gibbs Politz, Ben Lerner, and Justin Pombrio. I
thank them for forming and shaping my perspective. I have also
benefited greatly by working with Claudiu Saftoiu, Junsong Li, and
my other co-authors. This work is partially supported by the NSF
and Google.

References
[1] M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR2010-1,

PLT Inc., June 2010. http://racket-lang.org/tr1/.
[2] J. G. Politz, M. Carroll, B. S. Lerner, J. Pombrio, and S. Krishnamurthi.

A tested semantics for Getters, Setters, and Eval in JavaScript. In
Dynamic Languages Symposium, 2012.


