
From Principles to Programming Languages (and Back)

Shriram Krishnamurthi
Computer Science Department, Brown University

sk@cs.brown.edu

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory – semantics; D.2.4 [Soft-
ware Engineering]: Software/Program Verification

Keywords semantics engineering, democracy of languages

The Democracy of Programming Languages
While budding linguists have always had the freedom to tinker, the
Web has revolutionized linguistic experiments in two key ways.
First, the language-neutrality of network abstractions have made
it possible for Web-deployed applications to be written in any lan-
guage at all, allowing new languages to show off their capabilities.
Second, the Web has greatly facilitated the dissemination of these
experimental languages. As a result, new languages crop up almost
daily, lovingly tended by their designers and user communities and
vigorously debated on popular forums. This is a far cry from the
programming languages world of just over a decade ago.

Most of these languages are not designed and developed in for-
mal settings. As a result, they lack many of the tools that this con-
ference’s audience takes for granted: static analyses, type systems,
verification engines, and so on. As we know, these tools not only
improve usability, their construction serves as a design check: odd
spots in the language design usually manifest themselves asdiffi-
culties in building or proving properties about the tool. This leads
to a virtuous co-development cycle, or at least forces the language
designer to justify the inclusion of such difficult elements.

A cynic might question why every language experiment de-
serves these tools. Because many of these languages will never see
widespread adoption, they may not be worth a significant invest-
ment of formal effort. To this, there are three counter-arguments:

1. A language may be intended for in-house use or only to solve
a particularly vexing problem in some important system. Thus,
the size of its user-base is not a good measure of significance.

2. By the time a language becomes popular, it often already has
frameworks, applications, or both, and hence already needs
these tools.

3. Because tools are often vital to convincing users to employ the
language—all the more given the physical distance between
designer and user that the Web enables—the absence of such
tools means promising language design experiments may never
see the light of day.

Copyright is held by the author/owner(s).

POPL’13, January 23–25, 2013, Rome, Italy.
ACM 978-1-4503-1832-7/13/01.

It is therefore worth considering a research program that simultane-
ously serves the democracy of languages while upholding theval-
ues we hold dear, such as sound tools that are backed by theorems
about their properties.

The Challenges of Programming Languages
Languages that developers use to write non-trivial programs rarely
resemble the elegant cores we formalize. To have direct impact,
threesemantics engineering questions deserve special attention:

1. Beyond natural language specifications and de-facto normative
implementations, language designers increasingly provide con-
formance test suites. These suites are formal objects (unlike
natural language specifications), probably thoughtfully decom-
posed (unlike many implementations), and kept current (unlike
many specifications). How can we ease the transition from con-
formance suites to formal semantics that match them?

2. Programs are increasingly a rich mix of code in a base language
and code written atop frameworks. How can we formulate a
semantics for the implicit languages of these APIs? How do we
determine the invariants of these languages, to check that base
language programs don’t violate them?

3. In practice, programs in one language often depend on pro-
grams from other languages. While it is tempting to union the
semantics of all these languages to reason about such programs,
this approach usually leads to an intractable mess of details. Can
we define a family of semantics so that we can “zoom” in to
the appropriate level of detail? Can such a family accommodate
both sound and tractable cross-language reasoning?

Going beyond core languages means also focusing on the needs
of the users who employ them. Because programming languages
are a developer’s primary human-computer interface, the human
writing the programs deserves as much attention as the language.
In principle, in a complex system with mutual dependence, the two
components must be co-designed; but when one of those compo-
nents is a human, change can usually only be achieved at evolution-
ary pace. Programming languages, and their environments, there-
fore need to better account for the established cognitive abilities
and disabilities of their users.

The democracy of languages means the future for program-
ming language research is brighter than ever. Furthermore,linguis-
tic thinking applies broadly and is in urgent need. My own group
has spent the past decade applying a linguistic mindset—andgener-
ating some core results in return—not only to traditional program-
ming and specification languages, but also to industrial access-
control languages, Web servers, Web browsers, Excel spreadsheets,
Internet routers and firewalls, social networks, and Alice-and-Bob
cryptographic diagrams. In all these areas, and more, thereis a great
need for the clarity and focus on primitives and compositionthat is
characteristic of programming languages thought.


