WWYV 2005 Preliminary Version

Web Verification:

Perspective and Challenges

Shriram Krishnamurthi?

Computer Science Department
Brown University

Providence, RI, USA

Abstract

The Web poses novel and interesting problems for both programming language
design and verification—and their intersection. This paper provides a personal
outline of one thread of work on this topic.

Key words: Web applications, temporal verification, access
control, program analysis

1 What is a Web Site?

The term “Web site” contains a hidden ambiguity. Is a site a static entity,
to be viewed as a program source, or is it a dynamic entity, to be viewed
through the lens of user behavior? This distinction significantly impacts what
it means to analyze and verify a Web site. All the traditional trade-offs be-
tween static and dynamic analyses apply: a static analysis can quantify over
all program behaviors, but will usually be less specific; a dynamic analysis
can only offer guarantees relative to the behaviors it has examined, but the
additional contextual information can often yield more informative answers.
This distinction potentially matters more on the Web, due to the nature of
Web interactions.

2 Web Interactions

In a console or even a cur application, a user cannot choose to go back or
forward, to clone a window and submit responses from both clones, and so on.
These user interaction capabilities distinguish Web applications from many
other kinds of interactive programs. Indeed, many Web sites are notorious for

I This work is partially funded by NSF grants CCR-0305949 and CCF-0447509.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs



KRISHNAMURTHI

their poor handling of such interactions. For instance, on some travel Web
sites, viewing the list of hotels, viewing one choice in a new window, examining
a second in another new window, then switching back to make a reservation
for the first hotel, will result in a reservation at the second hotel [5].

A Web application must not only be sensitive to the possibility of these
actions, it must often detect them without help from the browser (which
does not report every user action). Furthermore, the availability of rendering
platforms is likely to spark innovation, meaning the set of browsers—and,
consequently, of interaction behaviors—will grow over time. This makes Web
site analysis especially exciting and challenging.

3 Web Verification

My work has focused on static analyses of Web programs. Specifically, I have
studied Web applications from two complementary perspectives. All this work
has been driven by a desire to build a robust application that has value in its
own right, in addition to serving as a generator of research problems.

3.1 A Driving Application

The concrete application is Continug [7,9], a Web-based application for con-
ference paper management. CoNTINUE is similar in spirit to several programs
in this genre (though it has had considerably more investment into its user
interface quality), so familiarity with one of those applications is sufficient for
understanding it at a high level. It has several useful features not found in
many other conference applications, covering soliciting sub-reviews, helping
chairs with assignments, and changing user identity. My goal is to create an
application that is not only usable, but has also been verified along as many
dimensions as necessary for sufficient reliability. After all, when a community
has the creation of papers—as an expression of research—as a primary goal,
the safe handling of those papers should be considered mission-critical!

3.2 Temporal Behavior

Web applications must satisfy many temporal specifications. For instance,
on a travel reservation site, a user expects that the hotel they reserve is the
same hotel that they selected—even if they chose to investigate other hotels
along the way. In a virtual bookstore, a user might have a “shopping cart”
into which they place their selections. They—or, at least, the storel—would
want that every book placed in the cart is purchased upon final check-out.
(In fact, the actual property would be more subtle: the books purchased
must be all those that were placed in the cart and not subsequently removed,
creating an additional level of temporal quantification.) There are several
similar expectations of “reasonable” behavior in CONTINUE.

2



KRISHNAMURTHI

The statement of temporal properties naturally suggests the use of a model
checker [1]. This proves to be somewhat complex in practice. A naive use of
model checking will not, for instance, capture some of the interaction-induced
errors mentioned in section 2. Why not? Because the natural model that one
would construct from the Web application fails to capture the many behaviors
that users can perform through the browser; colloquially speaking, nowhere
in the source code of a Web application does it say, “Here the user clicks the
Back button”.

The problem of building accurate models is further hampered by the prob-
lem of accounting for the many kinds of Web interactions. Not only do
browsers offer a plethora of choices, even the popular browsers have differ-
ent feature sets—and this doesn’t account for the possibility of additional
features in the future.

To support the many interaction features of browsers, we employ prior
work that presents a core model of Web interactions [5]. This model presents
a small set of Web primitives that are sufficient for modeling all the known
Web interaction forms, and should cover many new ones as well. Given this
abstraction, we have been studying the problem of building a model checker
that can handle the subtleties of the Web [10]. Note that this is not a model
checker only for Web-specific interactions, but rather one that will also account
for Web interactions: that is, if the program violates a property independently
of any Web interactions, the checker will find those also.

The property language in this work is subtle and, therefore, interesting.
Specifically, properties need to be able to refer to elements of Web pages. To
index these elements, we refrain both from parsing urmr (a thankless activ-
ity!) and from using static distance coordinates (which would be too brittle).
Instead, we expect the developer to tag individual page elements using Cas-
cading Style Sheet (css) tags. These are not only part of most developers’
vocabulary, often the developer has already tagged interesting page elements
to highlight visually. While such ideas are not scientifically deep, I believe
they are essential for successfully deploying formal methods.

3.8 Information Safety and Visibility

Verifying a program for temporal behavior isn’t enough. In a conference server,
it is at least as important to ensure both the safety and availability of informa-
tion: e.g., program committee members can see reviews they should see, and
can’t see ones that they shouldn’t. These properties generally fall under the
rubric of access control. Once we discovered actual information access bugs
in Continue (which have since been fixed!), we embarked on a study of access
control policy specification and verification.

Access control has gained fresh popularity owing to the widespread avail-
ability of information on the Web. In particular, because many Web appli-
cations are interfaces over databases and provide the same data in different

3



KRISHNAMURTHI

circumstances to different users, access control has increasingly become role-
based. Industrial standards such as xacmr [3], which are effectively rule-based
languages, are being employed to describe—and their evaluation engines are
being used to enforce—such policies.

Our work in this area [2] has focused on two problems for a restricted
(but nevertheless useful) subset of xacmr. First, naturally, is the question of
whether a policy meets some set of properties; this is the traditional verifica-
tion question. The second is more intriguing. Given the simplicity of these
policy languages, it is easy to patch problems and quickly check that the
new policy does what it was intended—on a specific input. The patch may,
however, have both exposed private data, or made necessary information un-
available. This danger is exacerbated by the declarative nature of these policy
languages, for changes can have very non-local impact. As a result, a simple
syntactic difference is no longer sufficient; users require some form of semantic
differencing. This is the second problem our work addresses.

It is worth noting that the problems surrounding information access—
especially the danger of leakage—make a compelling case for static analyses:
no reviewer wants to hear that their confidential comments were leaked due to
a lack of good test cases. Wading through false positives is certainly onerous;
to be effective, this cost must be kept minimal. Nevertheless, this is an instance
where the universally quantified guarantees that a static analysis can provide
are worth reasonable costs.

4 The Structure of Web Programs

Focusing on Web programs (as static entities) raises an interesting subtlety. To
obey the stateless nature of the Web, the structure of Web applications has
traditionally been “inverted”, resembling programs written in continuation-
passing style [4,8,12]. Furthermore, important information is communicated
using hidden fields and other channels that are traditionally ignored by static
analyses. A traditional static analysis would, therefore, approximate a great
deal of the important information (particularly the values referred to in prop-
erties). The resulting models would simply not be useful for further analysis.

Not surprisingly, the same problems that affect analyses also plague devel-
opers. There has thus recently been a trend towards using continuation-based
primitives in the source program, which can be handled either by a specialized
server [6,12] or on a traditional server after compilation [11]. This means, for
instance, that lexical bindings remain as such in the source, rather than be-
ing transformed into hidden fields or other external storage. By avoiding this
program inversion, this form of source program is therefore a better input to
an existing program analysis.



KRISHNAMURTHI

5 Some Research Problems

There are numerous open research problems in this area. What follows is only
a small and eclectic sampling.

Some of the most interesting ones have to do with access control. For
instance, most of the access control verification work deals solely with the
policy. But to be truly effective, it must also take into account the program’s
behavior relative to the policy. (In an extreme case, if an application were to
rigorously consult a policy engine but always ignore its response, no amount of
policy verification would be useful. While this particular behavior may appear
extreme, it is not inconceivable during testing, and a lack of good test suites
will fail to uncover all the places where this prototype failed to grow from a
script into a program.)

Access control policies also need to address the temporal behavior of these
applications. While some research has studied temporal policies, it is un-
clear how well these results apply to the less structured world of the Web,
where a program potentially has several entry points and users can engage in
complicated interactions that the program cannot prevent.

One other important aspect of Web applications is that they are increas-
ingly no longer “on the Web”. A growing number of Web sites now make
extensive use of client-side scripting languages, especially JavaScript, to imple-
ment numerous user operations. In particular, whereas the use of JavaScript
tended to be limited to echoing browser operations or performing consistency
checks before transmitting data over the wire, now a non-trivial part of the
application source is downloaded with the page. This creates a challenge and
opportunity for cross-language analyses.

Acknowledgments

I thank the several co-authors with whom I've had the pleasure of conducting
this research. I especially thank Pete Hopkins, who helped transform Continug
from a very good prototype into a true product. Even his bugs are more
interesting than most people’s programs.

References

[1] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, 2000.

[2] Fisler, K., S. Krishnamurthi, L. A. Meyerovich and M. C. Tschantz, Verification
and change-impact analysis of access-control policies, in: International
Conference on Software Engineering, 2005.

[3] Godik, S. and T. M. (editors), eXtensible Access Control Markup Language,
version 1.1 (2003).



KRISHNAMURTHI

[4] Graham, P., Beating the averages (2001),
http://www.paulgraham.com/avg.html.

[5] Graunke, P. T., R. B. Findler, S. Krishnamurthi and M. Felleisen, Modeling Web
interactions, in: European Symposium on Programming, 2003, pp. 238-252.

[6] Graunke, P. T., S. Krishnamurthi, S. van der Hoeven and M. Felleisen,
Programming the Web with high-level programming languages, in: Furopean
Symposium on Programming, 2001, pp. 122-136.

[7] Hopkins, P. W., Enabling complex Ul in Web applications with
send/suspend/dispatch, in: Scheme Workshop, 2003.

[8] Hughes, J., Generalising monads to arrows, Science of Computer Programming
37 (2000), pp. 67-111.

[9] Krishnamurthi, S., The CONTINUE server, in: Symposium on the Practical
Aspects of Declarative Languages, 2003, pp. 2—-16.

[10] Licata, D. R. and S. Krishnamurthi, Verifying interactive Web programs, in:
IEEE International Symposium on Automated Software Engineering, 2004, pp.
164-173.

[11] Matthews, J., R. B. Findler, P. T. Graunke, S. Krishnamurthi and M. Felleisen,
Automatically restructuring programs for the Web, Automated Software
Engineering: An International Journal (2003).

[12] Queinnec, C., The influence of browsers on evaluators or, continuations
to program web servers, in: ACM SIGPLAN International Conference on
Functional Programming, 2000, pp. 23-33.



	What is a Web Site?
	Web Interactions
	Web Verification
	A Driving Application
	Temporal Behavior
	Information Safety and Visibility

	The Structure of Web Programs
	Some Research Problems
	References

