Blocks Versus Text: Ongoing Lessons from Bootstrap

Emmanuel Schanzer, Shriram Krishnamurthi, Kathi Fisler

Bootstrap
www.bootstrapworld.org

Abstract

Block languages need to be studied from many perspectives.
One important viewpoint that we do not believe has been
explored in the literature is the effect on teachers during pro-
fessional development workshops. We have acquiring expe-
rience comparing the use of block languages against (paren-
thetical) textual ones in the process of training teachers for
the Bootstrap curriculum. We believe our observations are
not only interesting in context, but might also lead to dis-
covering interesting new subtleties about the use of blocks.

1. Context: the Curriculum

Bootstrap is a middle-school and high-school program
that combines algebra and programming. Students with no
prior programming experience begin by designing a simple
videogame (given a set of constraints), and then learn pro-
gramming and algebra concepts to implement it. In particu-
lar, the underlying programming language used in Bootstrap
is purely functional, mirroring the semantics of algebra.

In the past, Bootstrap has exclusively used functional,
student-friendly subsets of Racket (comparable to a func-
tional core of Scheme). Some institutions used the Dr-
Racket programming environment, which is desktop-based,
but most use WeScheme, a browser- and cloud-based en-
vironment. It’s noteworthy that Racket and Scheme have a
parenthetical syntax.

Two years ago, Code.org—a non-profit running a large
national effort to popularize computing education—chose
Bootstrap’s curriculum as its Middle School Mathematics
(MSM) module. For the first year they used the Bootstrap
curriculum verbatim. However, being strong believers in
block-based languages, Code.org created a block language

[Copyright notice will appear here once ’preprint’ option is removed.]

for MSM. They based their version on a Blockly-based pro-
totype that the authors built with a student, Spencer Gordon.

This block language is intended to go live in classes
in Fall 2015. During summer 2015, we have been training
teachers to prepare for this curriculum. Thanks to our ex-
tensive experience training Bootstrap teachers with textual
languages and the similar activities used in both curricula,
we have been able to compare the experiences with these
two languages in an apples-to-apples fashion. This docu-
ment presents some of our preliminary observations, which
we believe would be interesting to discuss at the workshop.
(We believe the issue of training teachers with blocks has
not been studied previously in the literature.)

2. Observations

* Blocks are more of an all-or-nothing pedagogical ap-
proach than we anticipated. The pedagogy of Bootstrap
makes extensive use of on-paper exercises (designed to
complement and extend math teachers’ existing prac-
tices, and also useful in school settings with limited com-
puting equipment). However, blocks do not lend them-
selves well to paper, and teachers end up wanting a “pa-
per syntax” for writing programs. Our own experience
with Bootstrap has found that the on-paper exercises are
an essential ingredient for learning, and Code.org has
also decided to provide an (optional) paper workbook.
However, this imposes two syntactic constraints for the
language used on paper:

* The paper syntax must be as close to the block de-
sign as possible. Otherwise, the translation steps from
problem to paper to code become a point of friction.

For example: Math notation includes ternary expres-
sions (b0 < z < 100), whereas a particular pro-
gramming language may require students to trans-
late that expression into three binary operators (50 <
xandxr < 100). This transition has been problem-
atic with our block language. In contrast, it has not
been problematic in Bootstrap, which also uses binary
comparison and logical operators (i.e., we do not ex-
ploit the Lispy ability to have variable arity operators,
such as (< 50 x 100)). What might explain this
discrepancy?

2015/8/27



When using a text-based language, this translation
must happen at the textual level. When using a block-
based language, this translation can happen at the mo-
ment that teachers write expressions on paper (text)
or at the moment when they move from handwritten
expressions into blocks. In our experience, the text-
to-block transition was much more difficult for teach-
ers than the text-to-text transition. This implies that a
block language designed to be used alongside written
materials may actually increase the need for rigorous
textual syntax, rather than reducing it.

Of course, there is another possible approach. One
could eliminate the restriction that these operators be
binary, and allow a more direct translation. However,
designing a block language that allows arbitrary arity
may involve subtle user interface effects, which we
have not thought through.

The syntax must be well-specified and unambiguous
in order for teachers to perform these translations
accurately, and to establish a shared vocabulary for
class- and group-discussion. This means confronting
the very syntax issues that blocks are designed to
gently avoid!

We conjecture that a similar need will be felt for writing
code on the board in class, too. We assume this issue
has been studied in the other literature on teaching with
block-based languages.

In short, pedagogical techniques that are especially com-
mon in mathematics appear to require a formal, textual
pseudocode—routing around the problem using blocks
on the computer only shifts this burden to what happens
on paper (and on the board).

Properly modeling the abstraction provided by functions
is not always a good idea! The Code.org language uses
modal windows for definitions, which nicely reflects
the function definition versus function use distinction.
(Named constants—a.k.a., “variables”—are also defined
modally.) In practice, this has proven to be a surprisingly
bad idea. When writing one function should make use
of another, teachers strongly resist the use of abstraction,
because they are unable to see what is inside the callee
block! This encapsulation trades visual space for working
memory, and it is a much more expensive trade than we
had anticipated. On the other hand, not having a modal
mechanism means it is much harder for learners to track
what it is they are doing on the screen at a given moment.

The goal of our prototype—subsequently adopted by
Code.org—was to explore the use of types represented
by colors. Naturally, there are only so many color gra-
dations that the eye can discern; our view was that once
students advance to more sophisticated types, they should
move beyond block-based programming anyway. There-

fore, the language intentionally offered only a fixed set
of types, represented by distinguishable colors.

That said, some amount of type sophistication appears
surprisingly early. Consider a conditional construct: what
“color” is it? In fact, it’s polymorphic: it takes on a
type—and hence a color—based on the content of its
branches. There appear to be three ways of handling this:

* Our prototype gave such blocks a neutral color ini-
tially, and used Hindley-Milner inference to deter-
mine their type as the program evolved.

Code.org’s version instead uses a neutral color and,
eschewing an inference process, leaves the blocks in
that color. This unfortunately grossly violates the pre-
cept of block languages, confusing the meaning of
colors, thereby creating considerable confusion for
learners. This is not to suggest that the inference-
based solution is more usable; it is certainly more ac-
curate, and its usability needs to be studied further.

A third possibility, which we are now exploring in our
collaboration with Code.org, is to simply have each of
these constructs be duplicated across the different col-
ors. This simple expedient appears to gracefully ad-
dress both of the above problems, but it creates its own
issues: (a) the user must pre-select which colored con-
ditional to use, and pay a high switching cost if they
chose incorrectly; and (b) it suggests that there are N
different notions of the conditional construct, which
is at least unsavory (and arguably highly inaccurate)
from a programming linguistic perspective.

* One of the strengths of a block-based language for stu-
dents is that dragging a block may simply be faster than
typing an expression. However, teacher workshops them-
selves rarely suffer from this constraint. We have found
that for the teachers in our professional development,
writing a program using blocks takes far more time than
typing. As facilitators, our goal is often to spend most
of our time discussing pedagogy and content, and expect
the actual typing to be quite brief. The use of a block lan-
guage interferes with this, requiring much longer work-
shops or less discussion of content and pedagogy.

Note that these problems largely disappear in most textual
representations. Some of these are specific to professional
development of teachers, but some are much more general.
We therefore believe each of these represents a line of re-
search necessary into the relative strengths—and designs—
of textual and block languages.

Acknowledgements This work is partially supported by
the US National Science Foundation, Code.org, Google,
CSNYC, and TripAdvisor. We thank Rosanna Sobota and
Emma Youndtsmith for their collaboration and insights.

2015/8/27



