
Applying Module System Research to Package Management

David B. Tucker
Brown University

Box 1910
Computer Science Department

Providence, RI 02912
+1 401 863 7687

dbtucker@cs.brown.edu

Shriram Krishnamurthi
Brown University

Box 1910
Computer Science Department

Providence, RI 02912
+1 401 863 7722

sk@cs.brown.edu

ABSTRACT
Package managers found in popular operating systems are
similar to module systems in many programming languages.
Recent language research has focused on numerous ways to
improve module systems, especially by endowing them with
the characteristics of components. These improvements map
well to package managers also. We identify several weak-
nesses with package managers, describe how components
solve these problems in the programming context, and sug-
gest how the structural principles of components can be ap-
plied to build the next generation of package managers.

Keywords
software package management, module systems, compo-
nents, programming language modularity

1 INTRODUCTION
Software systems are growing increasingly complex and in-
terdependent. For instance, numerous packages now offer
alternate interfaces through mail clients, the Web, and other
network devices, for both use and configuration. This in-
creased functionality, however, translates directly into addi-
tional work to configure, install and maintain the software.

Managing software packages is thus a critical problem in real
systems. Distributions of open-source operating systems,
such as Debian, RedHat, and FreeBSD, all employ pack-
age management systems that aid the installation, configu-
ration, and uninstallation of software. Currently, the main
focus of such systems is to ensure that dependencies are cor-
rectly tracked; that is, if you want to install packageA which
relies on packageB, then the package manager will require
you to installB first.

Bundling existing software into packages and testing them
is already a time-consuming and error-prone problem. This
problem has intensified both with the proliferation of pack-
age systems, hardware platforms and OS kernels, and with
the increasing complexity of the software packages them-

selves. The burden of tracking these dependencies seems to
fall on the distribution maintainers, who must have an in-
timate knowledge of the individual packages. As a result,
release dates are pushed back, or platforms are abandoned.
Furthermore,the main emphasis of OS distributions has be-
come software packaging, thus pushing aside other important
goals such as usability and security.

One way to ameliorate these problems is to make it easier for
programmers, distributors and users to specify, observe and
satisfy complex dependencies. Existing package managers
do a particularly poor job of meeting these ends. These tools
tend to be ad hoc accretions of features. While these features
reflect the diversity of packages and users, the tools them-
selves offer only limited support asspecification languages.
Without disregarding these features, it should be possible
to provide package description and installation systems that
better cater to the complexity of the underlying software.

In the same manner that software engineers have devel-
oped component-based solutions for organizing large soft-
ware systems, they must now develop solutions for organiz-
ing large operating systems. We illuminate several short-
comings of real world package managers, and demonstrate
how similar issues have been addressed in programming lan-
guage research. We believe that the application of this re-
search to software configuration will result in better package
managers, and thus better systems overall. To focus our pro-
posal, we will deal only with the installation process. Ex-
isting approaches to tasks such as upgrading, deletion and
change tracking largely carry over in an analogous manner.

2 SHORTCOMINGS OF PACKAGE SYSTEMS
Current package managers are similar to simple module sys-
tems. They provide a simple encapsulation layer for a group
of files, just as modules encapsulate a series of definitions.
The requirement list of a package is similar to the import
list of a module. Because there is no distinction between the
package and its instances, a package does not possess any
explicit state.

Packages are more complex than this simple characteriza-
tion suggests. Each package does have a notion of state:
typically, this is the configuration information stored on the
filesystem. We consider this state because modifying it af-



fects the behavior of the program even though the code itself
remains the same.

Scenario #1: You are the webmaster of a ma-
chine that runs two instances ofapache , one as a
production web server, and one as an experimen-
tal web server. Each copy runs on different ports,
maintaining distinct logs.

If a package has state, it is meaningful to ask whether there
is “really” only one copy of a package in a system. In fact,
there can be severalinstancesof a package, each with its own
state, such as configuration information.1 (In this paper, we
will use Web servers as a running example.) Current pack-
age managers do not allow multiple copies of the same pack-
age. Furthermore, there is no straightforward way to extend
current package managers to allow this capability; one fun-
damental assumption of these systems is that each package
contains files that belong in exactly one place in the filesys-
tem.

Many packages work around this on their own. For instance,
production Web servers allow users to employ a variety of
mechanisms, such as command-line flags, to specify multi-
ple instances of the configuration of the server. These tech-
niques are both unwieldy to the programmer and error-prone
to the user: if the programmer fails to properly make the
program “safe” for multiple instances, the user has to deal
with the outcome. Early instances of the Apache server,
for instance, allowed multiple log files for some services but
not others. In short, these mechanisms are symptoms of the
problem, not its solution.

A second problem that this simplistic notion of package ob-
scures is that of mutual dependencies. Packages explicitly
list a group of packages that they depend on, and the package
manager checks for the existence of those packages before
installing the new one. Sometimes, however, two packages
may rely on the functionality of each other.

Scenario #2:In Debian/GNU Linux, the packages
cron andexim depend on one another.cron is
a scheduler for periodic commands, the output of
which are sent to the user by mail.exim is a mail
server, which in turn relies oncron for scheduling
periodic buffer flushes.

Traditional package managers cannot capture this mutual de-
pendency. Expressing it directly usually results in instal-
lation failure: packageA cannot install because it requires
packageB, but attempting to installB fails because it re-
quiresA. To work around this weakness, packages some-
times install dummy packages, much like forward declara-
tion directives given to compilers. This solution is not only
needlessly complex, it is also unsafe: there is no way to

1This is the same distinction drawn between aclassand itsobjects.

guarantee the placeholder will eventually be replaced. (Com-
pilers, in contrast, can demand the entire program to verify
satisfaction of the forward reference.) Once again, this is a
symptom rather than a robust solution.

Third, packages are flat; they lack a hierarchical structure
with client-specified satisfaction of dependencies.

Scenario #3: As a systems administrator, you
want to create partially complete distributions.
You fix most of the dependencies of the Web
server, but want to leave a few, such as ports and
root filesystems, unspecified so that local deploy-
ers in the organization can define them.

Hierarchical structure makes it possible to create compound
packages, which specify some but not all of a package’s im-
ports. Allowing clients to specify what satisfies an import
makes it easy to reflect local concerns. In short, it moves
control from the producer to the consumer.

3 COMPONENTS AND PACKAGE MANAGEMENT
Much of the research of the past several years at the in-
tersection of software engineering and programming lan-
guages concerns the development of the notion ofcompo-
nents[1, 2, 3, 4]. A careful examination of the scenarios
listed above reveals an interesting detail: all these problems
are addressed in programming languages by components. To
wit, Szyperski, Flatt and others define components to have
the following properties:

• they can be compiled separately;

• they are multiply instantiable;

• they are linked externally; and,

• their linkage is hierarchical.

In this paper, we exploit a specific implementation of com-
ponents calledunits[1]. Units have been developed and used
extensively in an extension of the Scheme programming lan-
guage. Our extensive experience using units suggests that
the unit model fits many of the needs of package manage-
ment also. The rest of this paper elaborates on this position.

4 UNITS FOR PACKAGE MANAGEMENT
We first present units purely in the context of structuring the
innards of programs. We then explain how these concepts
address some of the problems raised in the context of pack-
age managers. Finally, we outline the steps we believe need
to be taken to transport the unit model to package manage-
ment.

A Primer on Units
The simplest way to understand a unit is as a closed container
of code. Closure means that the code has no free variables,
that is, all references to external entities are through explicit



imports. This implies that the meaning of a unit is indepen-
dent of its context of use, which in turn implies that it can be
compiled separately.

A unit explicitly lists its imports and exports, which define
its interface. Schematically, a unit looks like

(defineName
(unit (import id · · ·)

(export id · · ·)
(define. . .)
. . .))

That is, it imports a sequence of identifiers and exports an-
other sequence of identifiers. The definitions can refer to one
another, and to the imported identifiers. The exported identi-
fiers must all have been defined within the unit. For instance,
a Web server might have the form

(defineServer
(unit (import port initiate-logging log-entry)

(export serve-directory)
(defineserve-directory. . .)
. . .))

where port indicates which port to service andinitiate-
loggingandlog-entry, both produced by some log file main-
tenance application, are used by the server to log accesses.
The server provides one service to clients:serve-directory.
The client can invoke this function on any number of direc-
tory names. The server disseminates the content of each of
these directories.

How does a programmer satisfy a unit’s imports? The ser-
vices imported by a unit must be exported by some other
units. Therefore, all the programmer needs to do is to wire
these producers and consumers together. To do this, a pro-
grammer writes acompound unit. In the running exam-
ple, suppose the implementation of logging services is called
Logger.

(defineLoggingServer
(compound-unit

(import ws-port)
(link
[WS (Server ws-port(LOG start) (LOG do))]
[LOG (Logger)])

(export (WS serve-directory))))

This compound unit combines two units, the server and the
logger. Each is given a tag,WS andLOG respectively, for
the purpose of linking. The server has three imports. The
first is left unresolved, making it an import of the compound
unit. The other two are both satisfied by exports from the
logger, denoted by the use of the logger’s tag. The logger
has chosen different names for these same services, so the
logger’s export ofstart is wired to the server’s second import,
initiate-logging; similarly, the logger’sdo is used to satisfy

the server’s third import,log-entry. The resulting compound
unit exports the server’s export.

To the outside world, compound units look similar to atomic
units. Both have a sequence of imports and exports, while
their contents are black-boxes. As a result, a compound unit
may be used in any context expecting a unit; thus compound
units may compound other compound units, as long as the
imports and exports match up.

How do we use units? A programmer runs a unit byinvoking
it, supplying values for any remaining imports. Suppose we
compound the logging server with a program that actually
indicates which directories to serve:

(defineClient
(unit (import serve-dir)

(export)
(serve-dir" /etc/httpd/htroot" )
(serve-dir" /u/hckr/webstuff" )))

(defineServeOurStuff
(compound-unit

(import ws-port)
(link
[LS (LoggingServer ws-port)]
[CLIENT (Client (LS serve-directory))])

(export)))

We can then run this program with

(invoke-unit ServeOurStuff80)

which invokes a copy of the Web server on port 80 to serve
the two directories named by the client.

In the scenarios of section 2, we discussed the problem of
the two packages that have mutual dependencies. Our run-
ning example above has thus far ignored this complexity.
The benefit of units, however, is that they can adequately
handle mutual references, i.e., graph-shaped linking, just as
well as they can handle conventional tree-shaped linking.
Suppose the logger actually consumes the server’sserve-
directory function to indicate the location of the log files.
The definition ofLoggingServerthen changes to read

(defineLoggingServer
(compound-unit

(import ws-port)
(link
[WS (Server ws-port(LOG start) (LOG do))]
[LOG (Logger (WS serve-directory) )])

(export (WS serve-directory))))

(the boxed section shows the change from the previous ver-
sion) and none of the other code needs to change. Thus, units
not only accommodate mutual references, they do so without
forcing changes to the interfaces of all the code that depends
on the mutually referential entities.



This discussion of units obscures an important aspect of their
dynamic semantics. How many copies of a unit are there in
a running system? Each invocation of a (potentially com-
pound) unit instantiates each of the constituent units. That is,
the unit implementation creates a separate copy of the state
of each unit on invocation. Programmers thus need not rea-
son about shared state: a separate invocation is guaranteed to
have a separate copy of the state, so they need not synchro-
nize against other instances. This is again precisely the same
as the class-versus-object distinction.

The description of the unit system has neglected pragmatic
concerns such as name management. For instance, suppose
the client links two servers with the same logging agent.
Each server might export a procedure namedserve. In the
C linking context, this is problematic because clients do not
have explicit control over the names. In contrast, in a com-
pound unit, the twoserves can be distinguished by using
the link clause tag names to tell them apart. This not only
permits the linking of two servers, it also makes it easy for
clients to indicate precisely which server to use in which con-
text.

Other module languages do not have the same capabilities
as units. In Java, for example, modules (“packages”) are in-
ternally linked—the connection between modules is speci-
fied by the name in theimport statement. ML’s functors
have external linking, but they do not support mutually re-
cursive modules. C’s module system (i.e., the system linker)
appears to have both these capabilities. Linkage in C is exter-
nal: the actual program pieces defined by these names can be
interchanged via the linker. These modules can also refer to
one another. The problem with name-based linking, though,
is that programmers cannot instantiate a module multiple
times; rather, each module’s exports reside in a global space
from which other modules atmospherically resolve their de-
pendencies. Thus, C’s implicit module system, while in the
right spirit for extensible development, fails to provide suf-
ficient control to programmers, and does not allow multiple
uses of the same module in a linking specification. The unit
system addresses all these limitations.

Addressing Deficiencies of Package Managers
Now we can examine how units can address each of the sce-
narios described in section 2.

1. The first scenario discusses the need to have multiple
copies of the same package on a system. By now, the
reader should recognize this popular refrain as the class-
object distinction. Traditional package managers do not
make this distinction in the same way that traditional
program organization module systems have also failed
to distinguish between the two. In a component frame-
work, such as that implemented by units, this distinction
is easy to make. It is precisely the difference between
the units themselves, which are static entities, and their
instances, of which there can be many dynamic ones.

2. The second scenario demonstrates how packages can
refer to one another in their configurations. It should
be clear that the unit-style linking mechanism permits
mutual references at the unit level. The act of resolv-
ing references essentially amounts to a fixed-point com-
putation; units provide a natural way of expressing the
constraints, and resolve the references in their imple-
mentation.

3. The third scenario refers to creating partially satisfied
groups of packages. The reader will recognize this
as analogous to the compounding of the Web server
with a particular implementation of logging. This fixes
some parameters, namely those of the server that per-
tain to logging. It leaves some other parameters (in
the example, the server’s port) to be fixed by the ac-
tual client. Similar configurations help administrators
make organization-wide policy decisions without hav-
ing to commit all decisions at the same level.

5 IMPLEMENTING PACKAGES AS UNITS
In this section, we describe how each of the elements of units
maps to package management.

Naturally, we identify atomic units with individual packages.
A package has a set of requirements and provides itself as a
service, which maps naturally to the imports and exports of
units. Whereas in a programming context a unit’s imports
are functions and values, in the package context the natural
analog seems to be other packages—in short, a dependency
list. We consider the problem of versioning to be orthogonal
to the problems we are trying to address here. Therefore,
which packages are allowed to satisfy a unit’s import is a
function of the versioning semantics in use.

Normally, the body of an atomic unit contains definitions.
The body of a package will probably instead contain the
source and binary files, scripts, registry updates, and other
information that constitutes the package. That is, a unit be-
comes the atomic notion of distribution; this would have to
be a special file format, just as, say, Debian packages or Red-
Hat RPMs are.

A compound unit is also a distributable bundle that should be
indistinguishable from an atomic unit to a client. Therefore,
the distribution form of a compound unit needs to contain
copies of all the units (atomic or compound) that are linked
together by it. An actual implementation should have the
liberty of replacing the actual atomic units with references to
them—for instance, when linking a logger and a Web server,
the compound unit does not need to contain the entire server
package, but can rather rely on the local copy available on
the target host.

The important operation is unit invocation, since this truly
distinguishes units from existing package managers. Invoca-
tion needs to create a fresh “heap” for the units to populate
with their state. In this case, the state refers principally to



files of various sorts. Therefore, the implementation of units
needs to create a distinguished area in the disk system to
hold the state of each invocation. For instance, on Unix,
the unit-based package manager can assume control of a
directory like /etc/pkg/inst/ , and each invocation
creates a sub-directory there with a distinguished name (say
an instance number). Thus, the first invocation of a unit
creates the directory/etc/pkg/inst/1/ , and so forth.
This then becomes the root directory for all files specific
to that instance. If the Web server wants to create the
file /etc/httpd/access_log , say, this gets written
to /etc/pkg/inst/1/etc/httpd/access_log .
Therefore, the state of one invocation remains completely
separate from the state of another.

This raises the question of how to detect files correspond-
ing to state and how to relocate them. Determining which
files to relocate seems to be a package-specific task. In gen-
eral, each package has some region where it stores files, and
all file accesses in this region need to be relocated. In con-
tract, references to files outside this region, or to known files
such as/etc/passwd , should be left unmolested. Having
determined which files to relocate, the actual modification
can employ both static and dynamic components. Many of
the paths can be modified statically by simply altering the
pathnames. However, a package might also synthesize file-
names at run-time. The common point of control for all these
accesses is thefopenprimitive; the implementation of the
unit-based package manager needs to trap these invocations
and, when they refer to local files, refer them elsewhere. The
simplest way of accomplishing this is by altering the shared
library that providesfopen. For some applications, it may
be necessary to (also) modify the binary. In these cases, the
modified, instance-specific binary can reside in the instance
directory. While this relocation does impose a run-time over-
head, we believe the overhead is negligible compared to the
cost of actual file i/o operations.2

So far, we have only discussed configuration files as ele-
ments of state. In practice, an application has many other
bits of state as well. For instance, it may listen on TCP ports;
the identity of these ports is part of its state. Sometimes
these ports correspond to well-known services (the default
Web server should listen on port 80, for instance). In other
cases, the instance simply listens onsomeport whose iden-
tity needs to be communicated with the user. These state
resources can be re-routed just like files, and the interposed
library layer can communicate the mapping from specified
to selected ports to the user.

This re-routing of state has one very practical benefit. Cur-
rently, package writers and installers have to go to great pains
to determine where to situate configuration, cache and other
files. Each operating system, and even different distributions
of the same operating system (such as Linux), expect appli-

2This relocation seems like a task for Unix’schroot call, butchroot is
too constraining; we want to relocate only some, not all, files.

cations files to reside in different locations. The problem is
compounded by the expectations of individual sites, which
may complicate or even override these conventions. Similar
problems arise for resources such as port numbers.

A program distributed for the unit-based package manager
can avoid these problems entirely. It can simply place con-
figuration information in a (virtual) root directory, i.e., in
/ (under Unix). Why? Because the package system is
going to relocate this file to a harmless directory such as
/etc/pkg/inst/42/ (since for most applications, writ-
ing to / will obviously need to be relocated). Further, two
applications linked together can easily share files through
this simple protocol: suppose the Web server and logging
service need to share a configuration file, they only need to
know its name, and can assume its location is/ —because
the package manager will map each program’s/ to the same
directory. This avoids the complex and frustrating process
of supplying compile-time or command-line flags, or setting
environment variables, to share this information.

In short, units refine the notion of time in the system.
Whereas previously packages had a static existence indepen-
dent of program execution, units interpose the time of invo-
cation. There are therefore both packages, which are entirely
static entities, and invocations, which are the states corre-
sponding to configurations of the packages. A running pro-
gram executes the code from a package (or a copy thereof,
customized to an instance), relative to theinstance’s state.

6 CONCLUSION
We have discussed several failings of current package man-
agement systems. Elevating the packages to components can
address these problems, which we illustrate with several ex-
amples. We have also briefly discussed how to implement an
improved alternative for package management.

ACKNOWLEDGMENT
We thank Manos Renieris for numerous useful conversations
and suggestions on the writing.

REFERENCES

[1] M. Flatt and M. Felleisen. Cool modules for HOT lan-
guages. InACM SIGPLAN Conference on Programming
Language Design and Implementation, 1998.

[2] K. Lieberherr, D. Lorenz, and M. Mezini. Program-
ming with Aspectual Components. Technical Report
NU-CCS-99-01, College of Computer Science, North-
eastern University, March 1999.

[3] Y. Smaragdakis and D. Batory. Implementing layered
designs and mixin layers. InEuropean Conference
on Object-Oriented Programming, pages 550–570, July
1998.

[4] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 1998.


