
Traversing Recursive Object Structures:
The Functional Visitor in Demeter

Pengcheng Wu
College of Computer &

Information Science
Northeastern University
Boston, MA 02115, USA

wupc@ccs.neu.edu

Shriram Krishnamurthi
Computer Science

Department
Brown University

Providence, RI 02912, USA
sk@cs.brown.edu

Karl Lieberherr
College of Computer &

Information Science
Northeastern University
Boston, MA 02115, USA

lieber@ccs.neu.edu

ABSTRACT
Adaptive Programming (AP) provides a graph-based model for sep-
arating the traversal of a data structure from computations over the
structure. This paper presents a new programming paradigm in AP
that adds the power of functional composition of VISITOR meth-
ods while preserving the flexibility of traversal control. The paper
departs from a pure iterative approach to AP and introduces a recur-
sive approach using default combination methods to achieve adap-
tiveness. Default combination methods are a novel form of advice
that adapts to the number of outgoing edges the traversal joinpoint
uses.

1. INTRODUCTION
Traversing an object structure and performing processing during
the traversal is a common concern in software development. The
VISITOR pattern [2] improves the implementation of that concern
by separating the code implementing the traversal (usually the re-
sponsibility of the object structure) and the code implementing the
process logic along the traversal (by defining a Visitor class).
However, the VISITOR pattern still suffers from two limitations.
The first is that it requires the object structure being visited to pro-
vide some hooks (accept methods) through which the Visitor
methods can be executed along the traversal. Those hooks pol-
lute the interfaces of the object structure since they exist solely for
implementation purposes. Besides, it will be impossible to apply
Visitor operations to a legacy object structure that wasn’t imple-
mented to support them. The second limitation is that the classic
VISITOR pattern doesn’t have flexible control of the traversal itself.
The traversal is either implemented as hard-wired code in the object
structure, which cannot make complex traversals dependent on the
results of operations (defined by Visitor methods) on the object
structure, or it is implemented in the body of Visitor methods,
which is difficult to adapt and reuse.

The Adaptive Programming work (implemented in Demeter sys-
tems: DemeterJ and DJ) [7, 10, 9] aims to improve the separation
of the traversal-related concerns from other concerns. In Demeter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

systems, the above two limitations have been eliminated quite well.
In this paper, we focus on one Demeter programming tool DJ but
the ideas can be applied to other versions of Demeter and AOP in
general (advice that adapts to join point context). DJ is a pure Java
library. It supports the Demeter methodology by providing Java
classes for the concepts of Demeter (ClassGraph, Strategy, Visitor,
etc.) It lifts the first limitation of the VISITOR pattern by providing
traverse methods in DJ library for developers to access. Con-
cretely, it uses Java reflection [3] to traverse an object structure and
to execute the Visitor methods during the traversal when the type
of the object being traversed matches any Visitor method’s sig-
nature. Thus the accept methods in the object structure side are
no longer needed. The second limitation is overcome by provid-
ing a high level description language for traversal control, i.e., a
traversal strategy (this is also the case in DemeterJ). The traversal
graph itself can be computed at run time resulting in very powerful
control over traversals.

However, the Demeter system itself still has some problems, one of
which is that the Visitor methods cannot have return values (this
is also the case in the classic presentation of the VISITOR pattern),
so all the computation by the Visitor has to be done through side-
effects. That makes it inconvenient to express computations that
are conveniently solvable by recursive functions, e.g., traversing a
recursive data structure and returning the computation result from
the structure [11]. This paper presents our recent extension to DJ
by which the Visitor methods can have return values and those
return values can be composed in a special mechanism so that the
computation along the traversal over recursive object structures can
be expressed in a more natural and convenient way.

This paper is organized as follows. In Section 2, we give the defini-
tions of Adaptive Programming and briefly introduce the key con-
cepts in Demeter system, especially in DJ; Section 3 presents the
extension introduced to DJ and shows, through an example, how
the new feature helps solve the problem; Section 4 discusses re-
lated work.

2. ADAPTIVE PROGRAMMING AND KEY
CONCEPTS IN DJ

We generalize the concept of Adaptive Programming (AP) and make
a connection to Aspect-oriented Programming (AOP) [4, 5].

2.1 AP and AOP
This paper presents an improvement to AP. Therefore, we present
a definition of AP as a kind of parametric polymorphism.

DEFINITION 1. A program
�

is adaptive if it is parameterized
by a family of programs that it enhances. The result of applying a
program

�
to the parameter � is written as

��� ��� .

By enhance we mean that additional information is added, like
adding a member to a class or adding an extra code segment be-
fore the execution of a method. As parameters � we consider call
graphs and class graphs.

DEFINITION 2. The scattering of an adaptive program
��� ���

is defined as ���
	�� �
��� ������� number of nodes and edges in � en-
hanced by

�
.

DEFINITION 3. An adaptive program
�

is scattering if there
exists an infinite sequence of programs �������������������
����������� such that
sequence ��� 	�� �
��� � � ���
����� 	�� �
��� � � ���
���������
���
	�� �
��� � � ���
������� is strictly
increasing.

DEFINITION 4. An adaptive program
�

is aspect-oriented if
�

is scattering.

AOP is about modular implementation of crosscutting concerns.
An adaptive program is an implementation of a concern that cross-
cuts the concerns implemented by the parameter programs. The
scattering property is necessary for an adaptive program to be called
aspect-oriented, since it ensures the modularity of the program.

The Demeter system is a specialized AOP system that separates
traversal-related concerns from other concerns. It includes two
adaptive Java programming tools: DemeterJ and DJ. DemeterJ is
a static tool that injects traversal methods into classes according
to the traversal strategy and combines the traversal methods with
Visitor methods that define the computation during the traversal.
DJ is a pure Java package that interprets a traversal strategy at run
time and executes Visitor methods during traversal.

2.2 Key Concepts in DJ
The emphasis of this paper is on DJ, so here we present the key
concepts used in DJ.

! Class Graph. The class graph is an abstraction of the class
structure of the base program. Its nodes are types in the pro-
gram and the edges are relationships between types, i.e., as-
sociation relationships and generalization relationships. As-
sociation relationship edges have labels which are the fields’
names corresponding to the relationship. In DJ, the class
graph is computed at run time by using Java’s reflection mech-
anism [3].

! Object Graph. The object graph is a concrete object whose
structure conforms to the class graph of the program. Usually
the object graph is the object to traverse.

! Traversal Strategy. A traversal strategy [8] is a descriptive
string that describes the route to be taken by the traversal.
It supports graph primitives and logic combinators, such as
from, to, via, bypassing, and and or. A sample traversal strat-
egy is from A to B, whose informal semantics expresses the
intent to traverse from an object of type " to all the reachable

objects of type # . The meaning of the strategy is defined in
terms of the first set on nodes in object graphs of class " .
An edge $ outgoing from a node % of type " is in first(o)
iff there exists an object of type class(target(e))1 that can
lead the traversal to reach a # -object. The formal seman-
tics of traversal strategy is available in the work by Wand
and Lieberherr [13].

! Traversal Graph. The traversal graph is a subset of the class
graph, computed by applying the traversal generating algo-
rithm to the class graph with respect to the traversal strategy.
The nodes and edges in the traversal graph are the types, and
relationships between types, reachable by the traversal strat-
egy. DJ computes the traversal graph dynamically.

! Visitor. Programmers specify the computation to execute along
the traversal in a Visitor class (in DJ, it can be any class
that extends abstract class Visitor), whose methods’ signa-
tures should conform to some predefined forms described
later. When the traversal reaches a point in the object graph
and there is a Visitor method whose signature matches the
traversal point, DJ executes the corresponding method. Con-
cretely, in DJ, the signatures of Visitor methods should be
one of the following forms (with their corresponding infor-
mal semantics):

1. void before(A host)When the traversal reaches an
object o whose type is A, then before traversing the
parts of o, this before method is executed with host
bound to o.

2. void after(A host)When the traversal finishes travers-
ing all the parts reachable from an object o whose type
is A, this after method is executed with host bound to
o.

3. void before(A s,String l,B t)When the traver-
sal is traversing an association edge whose source node
has the type of class A and whose target node has the
type of class B, then before the traversal reaches the tar-
get node, this before method is executed with s bound
to the source object, t bound to the target object and l
bound to the label of the edge.

4. void after(A s,String l, B t)When the traver-
sal has finished traversing an object of type B via an as-
sociation edge whose source node has the type of class
A and the target node has the type of class B, this after
method is executed with s bound to the source object,
t bound to the target object and l bound to the label of
the edge.

The actual traversal begins by invoking the traverse method on a
ClassGraph object with an object to traverse, a string of traversal
strategy and a Visitor object as arguments. DJ can compute

the traversal graph according to the class graph information and
traversal strategy, and it can get the signatures and bodies of the
methods defined by the Visitor class and traverse from an object
to its parts by reflection. All the traversal and Visitor execution
can therefore be automated.

We claim that DJ lifts the limitations of classic VISITOR pattern
because:
� target(e) is the target node of the edge $ and class(x) is the class
of the object & .

1. It provides the traversal method as a system level API so that
the accept methods in the base structure are unnecessary.
The base class structure is even unaware of the existence of
traversals or of the Visitor.

2. A traversal strategy acts as a higher level description
of traversal control, which allows the programmers to pay
less attention to the structural details of the base program
and renders the program less sensitive to structural changes.

3. RECURSIVE PROGRAMMING STYLE
When traversing recursive object structures, it is common to com-
pute an aggregate value for an object that is generated composition-
ally from the aggregate values of sub-components.

Since DJ’s Visitor methods cannot return values, programmers
implement such recursive computations in a roundabout way. They
define the Visitor class such that different Visitor methods
share instance variables through which the methods access the “re-
turn vales” of a traversal of sub-components, and update this vari-
able to store the “return value” of the traversal on the object itself.
This has proven to be both unnatural and error-prone for the fol-
lowing reasons:

! It makes it considerably more difficult for programmers to
reason about their programs. The most natural solution would
instead be to define recursive functions and employ them
compositionally.

! The Visitormethods share the instance variables of the vis-
itor by side-effects, so a variable may be updated in many
methods in different traversal situations. This non-localized
access makes the program more likely to generate logic er-
rors.

! When the traversal is on a recursive object structure, to cor-
rectly access the “return values” from subcomponents, users
have to manually maintain some special data structure (usu-
ally a stack) to keep track of those values.

To support our argument, we present an example to show how the
DJ is usually used to solve a problem with the above properties.

3.1 An Example
Figure 1 is the UML class diagram of the example. A Container

can contain a list of Items, each of which can be either a Simple
item or a Container item. Simple items can not contain any other
items and each Simple item has a weight property; Container
items can contain other items and each Container item has a prop-
erty of capacity (for the purpose of simplicity, assume a Container
doesn’t have weight). Obviously, this structure is a recursive object
structure. Note that an edge from a Collection class to its contents
usually has no label, while in the DJ’s internal representation of
ClassGraph, a label elements is always added automatically. As-
sume we are supposed to ensure that the total weight of items in
a container doesn’t exceed the container’s capacity. It is natural to
think of using traversals to solve this problem.

How do we implement this checker using DJ? Currently, we would
write this solution (rather inelegantly) as follows. We use a traver-
sal strategy ‘‘from Container to Weight’’ to direct the traver-
sal, i.e., the traversal starts from a Container object and tries

 Item

Container

Simple

11

Capacity Weight
value: Integer value: Integer

weightcapacity

1 contents

Collection
*

elements

Figure 1: The UML diagram of the Container example

to reach all Weight objects. The Visitor class, which specifies
what computations to perform along the traversal, has the following
methods:

1. void before(Weight host) We must add all the weights
of the simple items in a container (directly or indirectly). To
do so, we declare an instance variable total in the Visitor
class to record the total weight so far and in this before

method, we update total by adding the weight of the host
to total.

2. void before(Container host) Now the total main-
tains the total weight of all the simple items having been
traversed so far. What we need is the total weight of sim-
ple items held in this container. To get that, in this before
method, we record the value of total before entering host

by pushing total into a stack.

3. void after(Container host)When finishing traversing
a container object host, we know the total weight of simple
items contained in host by subtracting the value we stored in
the top of the stack from total we have so far. Then we can
check if the total weight of this container’s contained items
exceeds the container’s capacity.

One may solve this problem in a different way by using VISITOR
pattern; however, the stack operations or the similar mechanisms
are always needed to simulate the recursive structure of the objects.

3.2 Functional Style Visitor methods
Having observed these weaknesses, we have extended DJ to bet-
ter support Visitor computations on recursive object structures.
Our design goal is to make this extension a very conservative one
so that we can support better composition of Visitor computations
while keeping those existing desirable properties in DJ, such as, im-
plicit traversal. The main contribution of the extension is that the
Visitor methods can now have return values, and we provide a
convenient composition mechanism for users to combine the return
values. The definition of the return value of the traversal on a node
is the return value of a special Visitor method named around.

The return type of that method is (by covariance in the return posi-
tion, a subtype of) Object. The method has two arguments. The
types of the first argument can be any type of the nodes on which
the users want to perform special computation when traversed. The
type of the second argument is always Subtraversal, which is a
newly added class in DJ’s API to allow users to invoke subtraversals
to components and to access the return values from those subtraver-
sals. Note that if there is no around method defined on a type of
node, then the traversal will just proceed as directed by the traver-
sal strategy, thus the desirable feature of implicit traversal in DJ is
kept.

Similar to the before and after methods, an around method
will be executed automatically at run time if the traversal reaches
an object whose type matches the type of its first argument. An
instance of Subtraversal will be automatically created with the
traversal context and be passed to the method. Subtraversals from
that object are invoked and the return values from them are accessed
in an around method body by calling one of the following three
public methods on the Subtraversal argument:

! Object[] apply() It traverses all the parts reachable from
the current object in the traversal graph and returns the return
values from each of the parts as an Object array;

! Object apply(String edgeName) It traverses to the non-
repetition edge (in UML’s terminology, the multiplicity is' ����() from the current object, whose label is indicated by
edgeName, and returns the return value from the target of
the edge as an Object;

! Object[] applyElements() It traverses down to the rep-
etition edge, i.e., an edge from a Collection class or an ar-
ray to its elements, and returns the return values from the
traversal to each element as an Object array. The argument
edgeName is not needed in this situation, since its label is
always elements.

There are some situations in which we don’t want to define an
around on every kind of node because we wish to perform the
same processing on most of them. For those nodes, users can pro-
vide a default around method in the Visitor class, which has the
signature Object combine(Object[] values). The argument
is an array of return values from the traversal to each of the parts of
the object being traversed. If an explicit around method is defined
on a type of node, then the default combine method will not be
executed.

Listing 1 is the source code to solve the container checking problem
using the new around visitor feature. Note the default combine
method implements the “summing up” functionality. Since there is
no around method defined on Simple objects or Collection ob-
jects, the combine method will be applied on them automatically,
thus the apply method call in the around method of Container
objects will return the total weight of items in the currently visited
Container object. The around method on Weight implements
the base case. As is evident from the code, we no longer need the
stack operations, and the program is easier to understand, since the
program is the natural recursive fashion. We have conducted other
experiments with around visitor methods and have found that it
facilitates natural recursive computations on recursive object struc-
tures.

Listing 1: ContainerChecker.java

// The traversal strategy is
// "from Container to Weight"
class ContainerChecker extends Visitor {
Object combine(Object[] values) {
int total=0;
for(int i=0; i<values.length; i++) {
if(values[i]!=null)

total+= ((Integer)values[i]).intValue();
}
return new Integer(total);

}
Object around(Weight w,Subtraversal st) {
return w.get_value();

}
Object around(Container c,Subtraversal st) {
Integer total = (Integer)st.apply("contents");
if(total.intValue() > c.get_capacity().
get_value().intValue())
System.out.println("An Overloaded Container");

return total;
}

}

3.3 Greater Dynamic Traversal Control
In addition to adding support for a recursive programming style, we
now have greater dynamic control over traversals in DJ, which was
not supported well in previous DJ versions. A similar feature was
also presented in [11].

With the introduction of the Subtraversal class, we can now de-
cide whether we want the traversal to go further along an edge de-
pending on the results of run-time values by choosing to invoke or
not invoke those apply methods. We can even traverse the same
edge (and the corresponding target objects) multiple times by call-
ing an applymethod multiple times with the same edge label as the
argument. In some situations, it is also important that the traversal
order of the part objects of an object be programmable. We now
can specify the order by choosing the order in which we call the
apply methods. Of course, any path we choose to traverse at run
time must have been in the set of paths in the traversal graph com-
puted from the traversal strategy.

4. RELATED WORK
The Demeter work on traversals is a generic tool for solving prob-
lems related to crosscutting traversal concerns that can be abstracted
as graphs. In one application, the graph is the dynamic call graph
of the execution of an object graph traversal. The crosscutting con-
cern selects a subset of the nodes and edges in the object graph
traversal. This kind of selection can also be achieved with a general
purpose aspect-oriented language where we can select general dy-
namic join points, not just the ones corresponding to object graph
traversal. Therefore we compare now to AspectJ [1] as the most
prominent aspect-oriented language.

4.1 Related work in AspectJ
The support in DJ for aroundmethods with a non-void return value
enhances the expressiveness of the Demeter system and provides
for a very symmetric mapping between the Join Point Model (JPM)
of AspectJ [4, 1] and that of DJ.

4.1.1 Symmetric Mapping to AspectJ’s JPM
The JPM of an AOP language specifies how the implementations
of crosscutting concerns are integrated (or woven) together to form

a functional system. Generally speaking, when we design a JPM,
three questions should be answered about the model:

1. What are the possible join points to which the implementa-
tions of other concerns can be integrated?

2. How to select a subset of those join points where integration
should happen?

3. How to specify what needs to be integrated at the points spec-
ified by item 2.

As a general purpose AOP language, AspectJ has join points in dy-
namic call graph (for 1) and provides a pointcut definition language
(for 2) and the advice mechanism (for 3).

DJ is a specialized AOP system, which supports modular imple-
mentation of traversal-related concerns, by providing a traversal
strategy description language that defines a traversal whose node
and edge visits we care about (for 1) and a Visitor mechanism (for 2
and 3). The visitor method signatures select the join points that we
want to enhance (for 2) and the visitor method bodies provide the
enhancement code (for 3). For details see [9] (DJ class Visitor).

Table 1 lists the answers to the three questions for AspectJ and DJ,
respectively.

AspectJ DJ
Join Points The points in the The nodes/edges in the

dynamic call graph of object structure specified
the program by a traversal strategy

Where The points in call The nodes/edges selected
graph selected by by visitor method
pointcuts signatures

What before/around/after before/around/after visitor
advice method bodies

Table 1: The Join Point Model of AspectJ and DJ

A join point model (besides having the three properties mentioned
above) also exposes context information about the join points. The
JPM of DJ operates on object graph slices (object graphs selected
by a traversal specification) while the JPM of AspectJ operates on
dynamic call graphs. Table 2 shows symmetric mappings between
the two tools. However, it is important to note that with DJ (which
can be used simultaneously with AspectJ) it is much more conve-
nient to express traversal-related concerns than with AspectJ alone.

4.2 Other Traversal-related Work
Ovlinger and Wand explored similar features in a traversal system
[11] but they sacrificed high-level traversal specifications in the
form of strategies. In their system, a construct of traversal spec-
ification is introduced to direct the traversal and the execution of
Visitor methods. The traversal specification will be translated into
runnable code and the implementation of traversal and the actions
along the traversal are separated. The Visitor methods can also
have return values, but the combination mechanism is not as flexi-
ble as we have presented in this paper. Our approach supports the
default combination that will be always applied unless the more
specific one is defined, while in their system, every combination
has to be explicitly defined. Our system is also more structurally
adaptive since our approach is based on DJ. However, their system

AspectJ DJ
p(A a):target(a)&&call(* *(..)) Visitor method signature (A a)
p(A a,B b):this(A)&&target(b) Visitor method signature
&&call(* *(..)) (A a,String l,B b)
around advice having return around visitor methods having
value return value
In around advice, one can In around methods, one can
decide whether to proceed decide whether to continue one
by calling proceed() branch of the traversal by calling

apply() methods
Reflection: thisJoinPoint Reason about the traversal itself:

Subtraversal
Table 2: Parallels between AspectJ and DJ

should have better runtime performance due to the fact that they use
the code generation approach while our system interprets traversals
and visitors at runtime.

In his paper about visitor combination and traversal control [12],
Joost Visser presents a novel way to add traversal control to the
classic VISITOR pattern. The traversal control is on the visitor side,
that is, he defines some generic Visitor combinators which can pro-
vide common traversal orders, such as bottom up, top down, etc.,
and a Visitor object can be passed to those combinators to achieve
the goal of applying the visitor to a data structure in a defined order.
Unlike the Demeter system, this work is using a standard object-
oriented framework approach: the accept methods on the base
class structure are still needed.

Strategic Programming [6] is a generic programming idiom for pro-
cessing compound data by separating basic data-processing compu-
tations from traversal schemes. We view it as a more general model
of [12]. The power of Strategic Programming lies in the power
of the combinators of strategies, i.e., users can compose complex
traversal strategies by applying combinators to simpler strategies,
while the strength of the Demeter work is the efficient computation
of traversals. It is not clear if Strategic Programming supports the
functional composition capability presented in this paper.

5. CONCLUSION
We propose a better approach to aspect-oriented programming of
traversal-related concerns on recursive object structures. We in-
troduce around methods with non-void return values and a com-
bination mechanism into DJ visitors and add a selective traversal
continuation construct in around methods.

The paper makes a contribution to the domain of concern-specific
aspect languages. Using the extended DJ tool presented in this pa-
per it is more convenient to address traversal-related concerns than
doing it directly in the general purpose aspect language AspectJ.

Acknowledgements
We are grateful to Mitchell Wand for pointing out the inconve-
nience of expressing certain computations on recursive object struc-
tures in the Demeter system. Many thanks to Doug Orleans for very
helpful discussions about the functional visitor in DJ. We thank
Johan Ovlinger and anonymous reviewers for their valuable feed-
back.

6. REFERENCES

[1] X. P. AspectJ Team. AspectJ home page. http://aspectj.org.
Continuously updated.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, Reading, Mass., 1995.

[3] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language
Specification. Addison-Wesley, 2 edition, 2000.

[4] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. In J. Knudsen,
editor, European Conference on Object-Oriented
Programming, pages 327–355, Budapest, 2001. Springer
Verlag.

[5] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors,
ECOOP ’97 — Object-Oriented Programming 11th
European Conference, Jyväskylä, Finland, volume 1241 of
Lecture Notes in Computer Science, pages 220–242.
Springer-Verlag, New York, NY, June 1997.

[6] R. Lämmel, E. Visser, and J. Visser. Strategic Programming
Meets Adaptive Programming. In Proc. of the 2nd
International Conference on Aspect Oriented Software
Development. ACM Press, 2003. 10 p.; To appear.

[7] K. J. Lieberherr. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996.

[8] K. J. Lieberherr, B. Patt-Shamir, and D. Orleans. Traversals
of Object Structures: Specification and Efficient
Implementation. ACM Transactions on Programming
Languages and Systems, 2003. to appear.

[9] D. Orleans and K. Lieberherr. Demeter API home page.
http://www.ccs.neu.edu/research/demeter/software/docs/api.
Continuously updated.

[10] D. Orleans and K. Lieberherr. DJ: Dynamic Adaptive
Programming in Java. In Reflection 2001: Meta-level
Architectures and Separation of C rosscutting Concerns ,
pages 73–80, Kyoto, Japan, September 2001. Springer
Verlag. 8 pages.

[11] J. Ovlinger and M. Wand. A language for specifying
recursive traversals of object structures. In Proceedings of
the 1999 ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
70–81. ACM Press, 1999.

[12] J. Visser. Visitor combination and traversal control. In
Object-Oriented Programming Systems, Languages and
Applications Conference, in Special Issue of SIGPLAN
Notices, pages 270–282. ACM, October 2001.

[13] M. Wand and K. Lieberherr. Traversal semantics in object
graphs. Technical Report NU-CCS-2001-05, Northeastern
University, May 2001.

